8 research outputs found

    Inhaled Nitric Oxide Therapy for Pulmonary Disorders of the Term and Preterm Infant

    Get PDF
    The 21st century began with the FDA approval of inhaled nitric oxide therapy for the treatment of neonatal hypoxic respiratory failure associated with pulmonary hypertension in recognition of the two randomized clinical trials demostrating a significant reduction in the need for extracorporeal support in the term and near-term infant. Inhaled nitric oxide is one of only a few therapeutic agents approved for use through clinical investigations primarily in the neonate. This article provides an overview of the pertinent biology and chemistry of nitric oxide, discusses potential toxicities, and reviews the results of pertinent clinical investigations and large randomized clinical trials including neurodevelopmental follow-up in term and preterm neonates. The clinical investigations conducted by the Eunice Kennedy Shriver NICHD Neonatal Research Network will be discussed and placed in context with other pertinent clinical investigations exploring the efficacy of inhaled nitric oxide therapy in neonatal hypoxic respiratory failure

    Hypoxia Preconditioning Increases Survival and Decreases Expression of Toll-like Receptor 4 in Pulmonary Artery Endothelial Cells Exposed to Lipopolysaccharide

    Get PDF
    Pulmonary or systemic infections and hypoxemic respiratory failure are among the leading causes of admission to intensive care units, and these conditions frequently exist in sequence or in tandem. Inflammatory responses to infections are reproduced by lipopolysaccharide (LPS) engaging Toll-like receptor 4 (TLR4). Apoptosis is a hallmark of lung injury in sepsis. This study was conducted to determine whether preexposure to LPS or hypoxia modulated the survival of pulmonary artery endothelial cells (PAECs). We also investigated the role TLR4 receptor expression plays in apoptosis due to these conditions. Bovine PAECs were cultured in hypoxic or normoxic environments and treated with LPS. TLR4 antagonist TAK-242 was used to probe the role played by TLR4 receptors in cell survival. Cell apoptosis and survival were measured by caspase 3 activity and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) incorporation. TLR4 expression and tumor necrosis factor α (TNF-α) production were also determined. LPS increased caspase 3 activity in a TAK-242-sensitive manner and decreased MTT incorporation. Apoptosis was decreased in PAECs preconditioned with hypoxia prior to LPS exposure. LPS increased TNF-α production, and hypoxic preconditioning blunted it. Hypoxic preconditioning reduced LPS-induced TLR4 messenger RNA and TLR4 protein. TAK-242 decreased to baseline the LPS-stimulated expression of TLR4 messenger RNA regardless of environmental conditions. In contrast, LPS followed by hypoxia substantially increased apoptosis and cell death. In conclusion, protection from LPS-stimulated PAEC apoptosis by hypoxic preconditioning is attributable in part to reduction in TLR4 expression. If these signaling pathways apply to septic patients, they may account for differing sensitivities of individuals to acute lung injury depending on oxygen tensions in PAECs in vivo

    Blood Cytokine Profiles Associated with Distinct Patterns of Bronchopulmonary Dysplasia among Extremely Low Birth Weight Infants

    No full text
    corecore