35 research outputs found

    Conformational variability of the glycine receptor M2 domain in response to activation by different agonists

    Get PDF
    Models describing the structural changes mediating cys-loop receptor activation generally give little attention to the possibility that different agonists may promote activation via distinct M2 pore-lining domain structural rearrangements. We investigated this question by comparing the effects of different ligands on the conformation of the external portion of the homomeric α1 glycine receptor M2 domain. Conformational flexibility was assessed by tethering a rhodamine fluorophore to cysteines introduced at the 19’ or 22’ positions and monitoring fluorescence and current changes during channel activation. During glycine activation, fluorescence of the label attached to R19’C increased by ~20% and the emission peak shifted to lower wavelengths, consistent with a more hydrophobic fluorophore environment. In contrast, ivermectin activated the receptors without producing a fluorescence change. Although taurine and β-alanine were weak partial agonists at the a1R19’C GlyR, they induced large fluorescence changes. Propofol, which drastically enhanced these currents, did not induce a glycine-like blue-shift in the spectral emission peak. The inhibitors, strychnine and picrotoxin, elicited fluorescence and current changes as expected for a competitive antagonist and an open channel blocker, respectively. Glycine and taurine (or β-alanine) also produced an increase and a decrease, respectively, in the fluorescence of a label attached to the nearby L22’C residue. Thus, results from two separate labelled residues support the conclusion that the GlyR M2 domain responds with distinct conformational changes to activation by different agonists

    Ginkgolic acid specifically potentiates alpha 1 glycine receptors

    Get PDF

    Loss of Tiparp results in aberrant layering of the cerebral cortex

    Get PDF
    Yes2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase (TIPARP) is an enzyme that adds a single ADP-ribose moiety to itself or other proteins. Tiparp is highly expressed in the brain; however, its function in this organ is unknown. Here, we used Tiparp–/– mice to determine Tiparp’s role in the development of the prefrontal cortex. Loss of Tiparp resulted in an aberrant organization of the mouse cortex, where the upper layers presented increased cell density in the knock-out mice compared with wild type. Tiparp loss predominantly affected the correct distribution and number of GABAergic neurons. Furthermore, neural progenitor cell proliferation was significantly reduced. Neural stem cells (NSCs) derived from Tiparp–/– mice showed a slower rate of migration. Cytoskeletal components, such as α-tubulin are key regulators of neuronal differentiation and cortical development. α-tubulin mono-ADP ribosylation (MAR) levels were reduced in Tiparp–/– cells, suggesting that Tiparp plays a role in the MAR of α-tubulin. Despite the mild phenotype presented by Tiparp–/– mice, our findings reveal an important function for Tiparp and MAR in the correct development of the cortex. Unravelling Tiparp’s role in the cortex, could pave the way to a better understanding of a wide spectrum of neurological diseases which are known to have increased expression of TIPARP.European Union Seventh Framework Program (FP7-PEOPLE-2013-COFUND) Grant n609020-Scientia Fellows (to G.G.) and by the Johan Throne Holst Foundation and the University of Oslo (J.M.)

    Transcriptional and functional effects of lithium in bipolar disorder iPSC-derived cortical spheroids

    Get PDF
    Lithium (Li) is recommended for long-term treatment of bipolar disorder (BD). However, its mechanism of action is still poorly understood. Induced pluripotent stem cell (iPSC)-derived brain organoids have emerged as a powerful tool for modeling BD-related disease mechanisms. We studied the effects of 1 mM Li treatment for 1 month in iPSC-derived human cortical spheroids (hCS) from 10 healthy controls (CTRL) and 11 BD patients (6 Li-responders, Li-R, and 5 Li non-treated, Li-N). At day 180 of differentiation, BD hCS showed smaller size, reduced proportion of neurons, decreased neuronal excitability and reduced neural network activity compared to CTRL hCS. Li rescued excitability of BD hCS neurons by exerting an opposite effect in the two diagnostic groups, increasing excitability in BD hCS and decreasing it in CTRL hCS. We identified 132 Li-associated differentially expressed genes (DEGs), which were overrepresented in sodium ion homeostasis and kidney-related pathways. Moreover, Li regulated secretion of pro-inflammatory cytokines and increased mitochondrial reserve capacity in BD hCS. Through long-term Li treatment of a human 3D brain model, this study partly elucidates the functional and transcriptional mechanisms underlying the clinical effects of Li, such as rescue of neuronal excitability and neuroprotection. Our results also underscore the substantial influence of treatment duration in Li studies. Lastly, this study illustrates the potential of patient iPSC-derived 3D brain models for precision medicine in psychiatry.publishedVersio

    Modulation of glycinergic transmission in the rat spinal dorsal commissural nucleus by ginkgolide B

    No full text
    The action of ginkgolide B (GB), the powerful compound of Ginkgo biloba extract, on glycinemediated spontaneous currents in rat spinal sacral dorsal commissural nucleus (SDCN) neurons was examined. IPSCs evoked in spinal cord slices were inhibited in a dose-dependent manner by the addition of GB to the superfusion solution. The amplitude of eIPSCs was reduced to 61 ± 6.4% by 10 μM GB, with acceleration of the kinetics of the currents indicating the effect of GB on channel pores. Both the amplitude and success ratio (Rsuc) of eIPSC induced by electrical focal stimulation of single glycinergic nerve endings (boutons) also decreased in the presence of 1 μM GB. These data suggest that GB modulates not only post-synaptic glycine receptors but also the pre-synaptic glycine release mac hinery.Вплив гінкголіду В (GB) – діючої сполуки екстракту з гінкго дволопатевого (Ginkgo biloba) на гліцинопосередковані синаптичні струми вивчався на нейронах спінального сакрального дорсального комісурального ядра (SDCN) щурів. Гальмівні постсинаптичні струми (ГПСС), викликані в препаратах зрізів спинного мозку, дозозалежно зменшувалися при аплікації GB. Амплітуда викликаних ГПСС під дією 10 мкМ GB падала до 61 ± 6.4 % з одночасним прискоренням кінетики струмів, що свідчило про наявність впливу на канальні пори. Як амплітуда, так і відносна кількість синаптичних подій (викликаних ГПСС), індукованих електричною фокальною стимуляцією поодиноких гліцинергічних нервових закінчень (бутонів), також зменшувались у присутності 1 мкМ GB. Ці результати свідчать, що GB не тільки модулює постсинаптичні гліцинові рецептори, але й впливає на пре синаптичні механізми вивільнення гліцину

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    Get PDF
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs

    A picrotoxin-specific conformational change in the glycine receptor M2-M3 loop.

    Get PDF
    The external loop linking the M2 and M3 transmembrane domains is crucial for coupling agonist binding to channel gating in the glycine receptor chloride channel (GlyR). A substituted cysteine accessibility scan previously showed that glycine activation increased the surface accessibility of 6 contiguous residues (Arg(271) Lys(276)) toward the N-terminal end of the homomeric alpha 1 GlyR M2 - M3 loop. In the present study we used a similar approach to determine whether the allosteric antagonist, picrotoxin, could impose conformational changes to this domain that cannot be induced by varying agonist concentrations alone. Picrotoxin slowed the reaction rate of a sulfhydryl-containing compound ( MTSET) with A272C, S273C, and L274C. Before interpreting this as a picrotoxin-specific conformational change, it was necessary to eliminate the possibility of steric competition between picrotoxin and MTSET. Accordingly, we showed that picrotoxin and the structurally unrelated blocker, bilobalide, were both trapped in the R271C GlyR in the closed state and that a point mutation to the pore-lining Thr(6') residue abolished inhibition by both compounds. We also demonstrated that the picrotoxin dissociation rate was linearly related to the channel open probability. These observations constitute a strong case for picrotoxin binding in the pore. We thus conclude that the picrotoxin-specific effects on the M2 - M3 loop are mediated allosterically. This suggests that the M2 - M3 loop responds differently to the occupation of different binding sites

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    Get PDF
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs

    Development of a Multimodal Apparatus to Generate Biomechanically Reproducible Spinal Cord Injuries in Large Animals

    No full text
    Rodents are widespread animal models in spinal cord injury (SCI) research. They have contributed to obtaining important information. However, some treatments only tested in rodents did not prove efficient in clinical trials. This is probably a result of significant differences in the physiology, anatomy, and complexity between humans and rodents. To bridge this gap in a better way, a few research groups use pig models for SCI. Here we report the development of an apparatus to perform biomechanically reproducible SCI in large animals, including pigs. We present the iterative process of engineering, starting with a weight-drop system to ultimately produce a spring-load impactor. This device allows a graded combination of a contusion and a compression injury. We further engineered a device to entrap the spinal cord and prevent it from escaping at the moment of the impact. In addition, it provides identical resistance around the cord, thereby, optimizing the inter-animal reproducibility. We also present other tools to straighten the vertebral column and to ease the surgery. Sensors mounted on the impactor provide information to assess the inter-animal reproducibility of the impacts. Further evaluation of the injury strength using neurophysiological recordings, MRI scans, and histology shows consistency between impacts. We conclude that this apparatus provides biomechanically reproducible spinal cord injuries in pigs

    The beta subunit increases the ginkgolide B sensitivity of inhibitory glycine receptors.

    No full text
    We investigated the effect of ginkgolide B (GB), a component of the extract from the leaves of the Ginkgo biloba tree, on recombinant glycine receptors (GlyRs) expressed in Xenopus oocytes by using voltage-clamp recording. GB (0.01-10 microM) inhibited glycine-induced currents of homo-oligomeric alpha1, alpha2 and alpha 3 GlyRs, with the highest potency being found at the alpha1 GlyR (IC(50) value=0.61+/-0.1 microM). Coexpression of the alpha subunits with the beta subunit resulted in a shift of the IC(50) value of GB to nanomolar values, indicating selectivity of GB for beta subunit containing GlyRs. We also analyzed the mechanism of GB inhibition and the effect of point mutations introduced into the alpha1 subunit. Our results are consistent with a channel blocking effect, since (i) GB inhibited glycine currents non-competitively, and (ii) a point mutation in the pore forming M2 domain reduced GB potency. In conclusion, GB is a potent blocker of beta subunit containing GlyR channels and hence can be used to discriminate homo- from hetero-oligomeric GlyRs. As hetero-oligomeric GlyRs are known to be synaptically localized, GB represents a channel blocker that may be employed to separate extrasynaptic from synaptic glycine currents
    corecore