11 research outputs found

    Model independent study of massive lepton elastic scattering on the proton, beyond the Born approximation

    Full text link
    Model independent expressions for all polarization observables in μ+p→μ+p\mu+p\to \mu+p elastic scattering are obtained, taking into account the lepton mass and including the two-photon exchange contribution. The spin structure of the matrix element is parametrized in terms of six independent complex amplitudes, functions of two independent kinematical variables. General statements about the influence of the two--photon--exchange terms on the differential cross section and on polarization observables are given. Polarization effects have been investigated for the case of a longitudinally polarized lepton beam and polarized nucleon in the final state.Comment: 28 pages, 3 figure

    Proton-antiproton annihilation into massive leptons

    Full text link
    We extend previous calculations of polarization observables for the annihilation reaction pˉ+p→ℓ−+ℓ+\bar p +p\to \ell^{-}+\ell^{+} to the case of heavy leptons, such as the τ\tau-lepton. We consider the case when the beam and/or the target are polarized, as well as the polarization of the outgoing leptons. We give the dependence of the unpolarized cross section, angular asymmetry, and various polarization observables on the relevant kinematical variables in the center of mass and in the laboratory system, with particular attention to the effect of the mass induced terms.Comment: 25 pages, 8 figure

    A New Measurement of the π0\pi^0 Radiative Decay Width

    Full text link
    High precision measurements of the differential cross sections for π0\pi^0 photoproduction at forward angles for two nuclei, 12^{12}C and 208^{208}Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the π0→γγ{\pi^0 \to \gamma\gamma} decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The π0→γγ{\pi^0 \to \gamma\gamma} decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is Γ(π0→γγ)=7.82±0.14 (stat.)±0.17 (syst.) eV\Gamma{(\pi^0 \to \gamma\gamma)} = 7.82 \pm 0.14 ~({\rm stat.}) \pm 0.17 ~({\rm syst.}) ~{\rm eV}. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions.Comment: 4 pages, 5 figure
    corecore