133 research outputs found

    Automation of the Process for Obtaining Linguistic Information: State-of-the-Art Capabilities

    Get PDF
    The paper is devoted to the process automation for solution of some problems in linguistic analysis. The review part of the article describes the variety of current linguistic software. We give its classification as follows: electronic dictionaries and thesauri, text conversion programs and text generators, programs for analysis and linguistic processing of documents, natural language processing systems. For each group we mention some examples of relevant applications or web services. In addition, we discuss current capabilities of the software, their scope of use and development prospects. In the main part of the work we overview the add-on we created for the MyStem stemming utility by Ilya Segalovich. The application adds to the features of the utility a user-friendly graphical interface that is easy to learn and intuitive to users who do not specialize in information technology. The algorithm implemented in the software is based on using the results of stemming process to solve some specific problems. It intercepts the output of the MyStem utility, then reformats it and run some specific analysis. The results of this analysis are the basis for main processes of the addon. This way we can get the frequency analysis of the text, can extract any certain parts of speech, and select inciting words in the text. The examples in this part of paper show the results of all units of the software. In conclusion we made several remarks on the prospects for the development of our application

    Information coding in vasopressin neurons-The role of asynchronous bistable burst firing

    Get PDF
    AbstractThe task of the vasopressin system is homeostasis, a type of process which is fundamental to the brain's regulation of the body, exists in many different systems, and is vital to health and survival. Many illnesses are related to the dysfunction of homeostatic systems, including high blood pressure, obesity and diabetes. Beyond the vasopressin system's own importance, in regulating osmotic pressure, it presents an accessible model where we can learn how the features of homeostatic systems generally relate to their function, and potentially develop treatments. The vasopressin system is an important model system in neuroscience because it presents an accessible system in which to investigate the function and importance of, for example, dendritic release and burst firing, both of which are found in many systems of the brain. We have only recently begun to understand the contribution of dendritic release to neuronal function and information processing. Burst firing has most commonly been associated with rhythm generation; in this system it clearly plays a different role, still to be understood fully

    Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine

    Get PDF
    Nicotine exerts its reinforcing action by stimulating nicotinic acetylcholine receptors (nAChRs) and boosting dopamine (DA) output from the ventral tegmental area (VTA). Recent data have led to a debate about the principal pathway of nicotine action: direct stimulation of the DAergic cells through nAChR activation, or disinhibition mediated through desensitization of nAChRs on GABAergic interneurons. We use a computational model of the VTA circuitry and nAChR function to shed light on this issue. Our model illustrates that the α4β2-containing nAChRs either on DA or GABA cells can mediate the acute effects of nicotine. We account for in vitro as well as in vivo data, and predict the conditions necessary for either direct stimulation or disinhibition to be at the origin of DA activity increases. We propose key experiments to disentangle the contribution of both mechanisms. We show that the rate of endogenous acetylcholine input crucially determines the evoked DA response for both mechanisms. Together our results delineate the mechanisms by which the VTA mediates the acute rewarding properties of nicotine and suggest an acetylcholine dependence hypothesis for nicotine reinforcement.Peer reviewe

    Mechanisms explaining transitions between tonic and phasic firing in neuronal populations as predicted by a low dimensional firing rate model

    Get PDF
    Several firing patterns experimentally observed in neural populations have been successfully correlated to animal behavior. Population bursting, hereby regarded as a period of high firing rate followed by a period of quiescence, is typically observed in groups of neurons during behavior. Biophysical membrane-potential models of single cell bursting involve at least three equations. Extending such models to study the collective behavior of neural populations involves thousands of equations and can be very expensive computationally. For this reason, low dimensional population models that capture biophysical aspects of networks are needed. \noindent The present paper uses a firing-rate model to study mechanisms that trigger and stop transitions between tonic and phasic population firing. These mechanisms are captured through a two-dimensional system, which can potentially be extended to include interactions between different areas of the nervous system with a small number of equations. The typical behavior of midbrain dopaminergic neurons in the rodent is used as an example to illustrate and interpret our results. \noindent The model presented here can be used as a building block to study interactions between networks of neurons. This theoretical approach may help contextualize and understand the factors involved in regulating burst firing in populations and how it may modulate distinct aspects of behavior.Comment: 25 pages (including references and appendices); 12 figures uploaded as separate file

    Cyclobutene vs 1,3-Diene Formation in the Gold-Catalyzed Reaction of Alkynes with Alkenes : The Complete Mechanistic Picture

    Get PDF
    The intermolecular gold(I)-catalyzed reaction between arylalkynes and alkenes leads to cyclobutenes by a [2 + 2] cycloaddition, which takes place stepwise, first by formation of cyclopropyl gold(I) carbenes, followed by a ring expansion. However, 1,3-butadienes are also formed in the case of ortho -substituted arylalkynes by a metathesis-type process. The corresponding reaction of alkenes with aryl-1,3-butadiynes, ethynylogous to arylalkynes, leads exclusively to cyclobutenes. A comprehensive mechanism for the gold(I)-catalyzed reaction of alkynes with alkenes is proposed on the basis of density functional theory calculations, which shows that the two pathways leading to cyclobutenes or dienes are very close in energy. The key intermediates are cyclopropyl gold(I) carbenes, which have been independently generated by retro-Buchner reaction from stereodefined 1a,7b-dihydro-1 H -cyclopropa[ a ]naphthalenes

    Convergent Processing of Both Positive and Negative Motivational Signals by the VTA Dopamine Neuronal Populations

    Get PDF
    Dopamine neurons in the ventral tegmental area (VTA) have been traditionally studied for their roles in reward-related motivation or drug addiction. Here we study how the VTA dopamine neuron population may process fearful and negative experiences as well as reward information in freely behaving mice. Using multi-tetrode recording, we find that up to 89% of the putative dopamine neurons in the VTA exhibit significant activation in response to the conditioned tone that predict food reward, while the same dopamine neuron population also respond to the fearful experiences such as free fall and shake events. The majority of these VTA putative dopamine neurons exhibit suppression and offset-rebound excitation, whereas ∼25% of the recorded putative dopamine neurons show excitation by the fearful events. Importantly, VTA putative dopamine neurons exhibit parametric encoding properties: their firing change durations are proportional to the fearful event durations. In addition, we demonstrate that the contextual information is crucial for these neurons to respectively elicit positive or negative motivational responses by the same conditioned tone. Taken together, our findings suggest that VTA dopamine neurons may employ the convergent encoding strategy for processing both positive and negative experiences, intimately integrating with cues and environmental context
    corecore