397 research outputs found

    Radar systems for the water resources mission. Volume 4: Appendices E-I

    Get PDF
    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Radar systems for the water resources mission, volume 1

    Get PDF
    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined

    Radar systems for a polar mission, volume 3, appendices A-D, S, T

    Get PDF
    Success is reported in the radar monitoring of such features of sea ice as concentration, floe size, leads and other water openings, drift, topographic features such as pressure ridges and hummocks, fractures, and a qualitative indication of age and thickness. Scatterometer measurements made north of Alaska show a good correlation with a scattering coefficient with apparent thickness as deduced from ice type analysis of stereo aerial photography. Indications are that frequencies from 9 GHz upward seem to be better for sea ice radar purposes than the information gathered at 0.4 GHz by a scatterometer. Some information indicates that 1 GHz is useful, but not as useful as higher frequencies. Either form of like-polarization can be used and it appears that cross-polarization may be more useful for thickness measurement. Resolution requirements have not been fully established, but most of the systems in use have had poorer resolution than 20 meters. The radar return from sea ice is found to be much different than that from lake ice. Methods to decrease side lobe levels of the Fresnel zone-plate processor and to decrease the memory requirements of a synthetic radar processor are discussed

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to kk7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    A symmetry-preserving second-order time-accurate PISO-based method

    Get PDF
    A new conservative symmetry-preserving second-order time-accurate PISO-based pressure-velocity coupling for solving the incompressible Navier-Stokes equations on unstructured collocated grids is presented in this paper. This new method for implicit time stepping is an extension of the conservative symmetry-preserving incremental-pressure projection method for explicit time stepping and unstructured collocated meshes of Trias et al. [35]. In order to assess and compare both methods, we have implemented them within one unified solver in the open source code OpenFOAM where we use a Butcher array to prescribe the Runge-Kutta method. Thus, by changing the entries of the Butcher array, explicit and diagonally implicit Runge-Kutta schemes can be combined into one solver. We assess the energy conservation properties of the implemented discretisation methods and the temporal consistency of the selected Runge-Kutta schemes using Taylor-Green vortex and lid-driven cavity flow test cases. Finally, we use a more complex turbulent channel flow test case in order to further assess the performance of the presented new conservative symmetry-preserving incremental-pressure PISO-based method. Although both implemented methods are based on a symmetry-preserving discretisation, we show they still produce a small amount of numerical dissipation when the total pressure is directly solved from a Poisson equation. When an incremental-pressure approach is used, where a pressure correction is solved from a Poisson equation, both methods are effectively fully-conservative. For high-fidelity simulations of incompressible turbulent flows, it is highly desirable to use fully-conservative methods. For such simulations, the presented numerical methods are therefore expected to have large added value, since they pave the way for the execution of truly energy-conservative high-fidelity simulations in complex geometries. Furthermore, both methods are implemented in OpenFOAM, which is widely used within the CFD community, so that a large part of this community can benefit from the developed and implemented numerical methods

    Use of in vitro human keratinocyte models to study the effect of cooling on chemotherapy drug-induced cytotoxicity

    Get PDF
    A highly distressing side-effect of cancer chemotherapy is chemotherapy-induced alopecia (CIA). Scalp cooling remains the only treatment for CIA, yet there is no experimental evidence to support the cytoprotective capacity of cooling. We have established a series of in vitro models for the culture of human keratinocytes under conditions where they adopt a basal, highly-proliferative phenotype thus resembling the rapidly-dividing sub-population of native hair-matrix keratinocytes. Using a panel of chemotherapy drugs routinely used clinically (docetaxel, doxorubicin and the active metabolite of cyclophosphamide 4-OH-CP), we demonstrate that although these drugs are highly-cytotoxic, cooling can markedly reduce or completely inhibit drug cytotoxicity, in agreement with clinical observations. By contrast, we show that cytotoxicity caused by specific combinatorial drug treatments cannot be adequately attenuated by cooling, supporting data showing that such treatments do not always respond well to cooling clinically. Importantly, we provide evidence that the choice of temperature may be critical in determining the efficacy of cooling in rescuing cells from drug-mediated toxicity. Therefore, despite their reductive nature, these in vitro models have provided experimental evidence for the clinically-reported cytoprotective role of cooling and represent useful tools for future studies on the molecular mechanisms of cooling-mediated cytoprotection

    A genetic linkage map of Sole (Solea solea): A tool for evolutionary and comparative analyses of exploited (flat)fishes

    Get PDF
    Linkage maps based on markers derived from genes are essential evolutionary tools for commercial marine fish to help identify genomic regions associated with complex traits and subject to selective forces at play during exploitation or selective breeding. Additionally, they allow the use of genomic information from other related species for which more detailed information is available. Sole (solea solea L.) is a commercially important flatfish species in the North Sea, subject to overexploitation and showing evidence of fisheries-induced evolutionary changes in growth- and maturation-related traits. Sole would definitely benefit from a linkage map to better understand how evolution has shaped its genome structure. This study presents a linkage map of sole based on 423 single nucleotide polymorphisms derived from expressed sequence tags and 8 neutral microsatellite markers. The total map length is 1233.8 cM and consists of 38 linkage groups with a size varying between 0 to 92.1 cM. Being derived from expressed sequence tags allowed us to align the map with the genome of four model fish species, namely medaka (Oryzias latipes), Nile tilapia (Oreochromis niloticus), three-spined stickleback (Gasterosteus aculeatus) and green spotted pufferfish (Tetraodon nigroviridis). This comparison revealed multiple conserved syntenic regions with all four species, and suggested that the linkage groups represent 21 putative sole chromosomes. The map was also compared to the linkage map of turbot (Scophthalmus maximus), another commercially important flatfish species and closely related to sole. For all putative sole chromosomes (except one) a turbot homolog was detected, confirming the even higher degree of synteny between these two flatfish species
    corecore