General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

UK- 152427

_REMOTE SENSING LABORATORY

11.....

CRES

(NASA-CR-152427) RADAR SYSTEMS FOR THE N77-16424 WATER RESCURCES MISSICN. VOLUME 4: APPENDICES E-I Final Report (Ransas Univ. Center for Research, Inc.) 279 p Unclas HC A 13/MF AG1 CSCI 08E G3/43 13294

> Radar Systems for the Water Resources Mission - Final Report RSL Technical Report 295-3 VOL. IV Appendices E - I

> > 9107 8 FEB 1977 RECEIVED NASA STI FACILITY INPUT BRANCH

0 1

THE UNIVERSITY OF KANSAS CENTER FOR RESEARCH, INC.

2291 Irving Hill Drive-Campus West Lawrence, Kansas 66045

THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER Raymond Nichols Hall

2291 Irving Hill Drive—Campus West Lawrence, Kansas 66045

Telephone:

CRES

RADAR SYSTEMS FOR THE WATER RESOURCES MISSION FINAL REPORT

Remote Sensing Laboratory RSL Technical Report 295-3 Volume IV (same as Volume II, TR 291-2, "Radar Systems for Near-Polar Observations - Final Study Report," Contract NAS 5-22325).

> R. K. Moore J. P. Claassen R. L. Erickson R. K. T. Fong B. C. Hanson M. J. Komen S. B. McMillan S. K. Parashar

> > June, 1976

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

Technical Monitor: Dr. James Shiue

-REMOTE SENSING LABORATORY

- APPENDIX E, RSL TR 295-1, "A Short Study of a Scanning SAR for Hydrological Monitoring on a Global Basis," by John Claassen, (September, 1975).
- APPENDIX F, RSL TM 295-7, "Comb Filter Theory for Use in a Scanning Synthetic Aperture Radar Signal Processor (SCANSAR)," by Mark Komen (March, 1976).
- APPENDIX G, RSL TR 295-2, "Detailed System Design for the Scanning Synthetic-Aperture Radar (SCANSAR) Using Comb-Filter Range-Offset Processing," by Mark Komen, (July, 1976).
- APPENDIX H, RSL TM 295-2, "A Review of Swath-Widening Techniques," by Stan McMillan, (January, 1976).
- APPENDIX I, RSL TM 295-3, "Synthetic Aperture Radar and Digital Processing," by Stan McMillan, (September, 1975). [Discussion of Gerchberg correlation processor].
- APPENDIX J, RSL TM 295-4, "Methods to Vary Elevation Look Angle and Antenna Beam Pointing Requirements for Spacecraft SAR," by Richard K. T. Fong, (January, 1976).
- APPENDIX K, RSL TM 295-8, "Effects of Different Scan Angles on Ambiguity-Versus-Beamwidth Limitations for SCANSAR," by Richard K. T. Fong, (April, 1976).
- APPENDIX L, TM 295-9, "Focussed Synthetic Aperture Technique Using FFT," by Rod Erickson, (July, 1976, revised edition); 1st printing by Richard K. T. Fong (April, 1976).
- APPENDIX M, RSL TM 295-10, "Use of a Multi-Look Unfocussed SAR Processor on Spacecraft," by Richard K. T. Fong and Rodney L. Erickson, (June, 1976, revised edition); 1st printing by Fong (April, 1976).
- APPENDIX N, TM 291-8, "Development of Single-Sideband SAR Radar Technique," by Richard K. T. Fong, (May, 1976).

- APPENDIX O, RSL TM 291-1, "State of the Art Radar System Parameters," by Rod Erickson, (August, 1975).
- APPENDIX P, RSL TM 291-3, "State of the Art Integrated-Circuit Hardware for Synthetic Aperture Radar Processing," by Rod Erickson, (June, 1976, revised edition); 1st printing November, 1975.
- APPENDIX Q, RSL TM 291-7, "Evaluation of the Fresnel Zone-Plate Processor For Applications in Spaceborne Synthetic Aperture Radar," by Rod Erickson, (June, 1976).
- APPENDIX R, RSL TM 295-12, "Hardware and Power Requirements of a SCANSAR Correlation Processor," by Rod Erickson, (July, 1976).

APPENDIX E

RSL TECHNICAL REPORT 295-3

VOLUME IV

THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY LABORATORIES

2291 Irving Hill Dr. – Campus West Lawrence, Kansas 66044

J,

Telephone:

A SHORT STUDY OF A SCANNING SAR FOR HY-DROLOGICAL MONITORING ON A GLOBAL BASIS

John P. Claassen

RSL Technical Report 295-1 Remote Sensing Laboratory

September, 1975

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

ABSTRACT

The ambiguity problem in synthetic-aperture radars for spacecraft use constrains their application in usual form to relatively narrow swathwidths. Monitoring hydrological and other parameters that require frequent and timely observations indicates the need for much wider swath widths. In this report the use of a scanning antenna beam for a synthetic aperture system is examined as a solution to this problem. When the resolution required is modest, the radar need not use all the time the beam is passing a given point on the ground to build a synthetic aperture, so time is available to scan the beam to other positions and build several images at different ranges. The result is that the scanning synthetic-aperture radar (SCANSAR) can achieve swathwidths of well over 100 km with modest antenna size.

Design considerations for a SCANSAR for hydrologic parameter observation are presented here. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22° swath is considered for that application. For snow and ice monitoring a $22-37^{\circ}$ scan is used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operates in C-band at 4.75 GHz. It achieves an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7° to 31 meters at 37° . The antenna requires an aperture of 3 x 4.16 meters, and the average transmitter power is under 2 watts.

The system uses recursive filters implemented with shift registers to achieve onboard processing. This serial approach seems quite feasible to implement with relatively simple state-of-the-art components in small enough quantity that their cost and power consumption will not be excessive. The result is an output that requires only about 4 megabits/second for telemetry.

Gray-scale resolution is not as good as required for the final analysis, but can be improved by combining cells on the ground.

i

A SHORT STUDY OF A SCANNING SAR FOR HYDROLOGICAL MONITORING ON A GLOBAL BASIS

John P. Claassen

I. Introduction

Intensive interest has recently been indicated in orbiting synthetic aperture radars (SARS) for various global applications. In some applications it is highly desirable to provide expansive coverage on each orbit. A casual examination of the theory indicates that coverage by a SAR is severely limited by the interaction between doppler and range ambiguities. Pulse coding schemes have been proposed to overcome the limitation. However, when high resolution is not necessary, it is conceivable that a radar can synthesize images over a wide swath by scanning to and dwelling on successive cross-track image cells as illustrated in Figure 1. An image is synthesized while the radar dwells on each cell. If the dwell time is sufficiently short (but not too short) and the angular scanning sufficiently rapid, continuously coverage on a wide swath can be realized.

It is the objective of this report to demonstrate the feasibility of such a scanning SAR for a hydrological application requiring moderate resolution. In particular, the theory of a scanning SAR is developed. The theory was incorporated into a computer design program (SCANSAR) and several computer design cases suitable for monitoring soil moisture are reported. Additional design cases are archived in Appendix A while SCANSAR is documented in Appendix B.

On the basis of these design studies a scanning SAR system suitable for hydrological monitoring is proposed and described. A design objective in proposing the system was to realize a simple and relatively inexpensive SAR. A simple on-board processor is proposed. The relaxed resolution requirement and advancements in LSI electronic technology should enable one to realize a simple analog digital processor as proposed here to synthesize image elements on-board the spacecraft. The realization of an on-board processor reduces the required telemetry channel capacity and the ground based processing significantly.

II. System Theory and Design

A. Introduction

A synthetic aperture radar creates an image by preserving both the range and azimuthal histories as it linearily scans a scene. High azimuthal resolution images

Pictorial concept of a scanning SAR.

are achieved by tracking the Doppler (or phase) history of a target for the entire scan through the beam. To adequately preserve that Doppler record, the radar must sample returns from the target at a rate at least twice the Doppler bandwidth F_d. As a consequence the pulse repetition frequency PRF must satisfy

$$PRF \geq 2F_d \tag{1}$$

On the other hand to avoid range ambiguities, the PRF period must be greater than the time for two successive pulses to arrive at the radar simultaneously from the near and far edges of the illuminated area. This is usually expressed as

$$PRF < \frac{c}{2 \Delta R}$$
 (2)

where ΔR is the slant range across the illuminated area and c is the velocity of propagation.

As a result of (1) and (2), we require

$$\frac{c}{2 \Delta R}$$
 > PRF $\geq 2 F_{d}$ (3)

Now for a narrow beam it is easily shown that the slant range is given by

$$\Delta R = Z_0 B_{\text{H}} \tan \theta_0 / \cos \theta_0 \tag{4}$$

where

$$B_{H} = \frac{\lambda}{H}$$
 = beam width in the elevation plane
 Z_{o} = altitude of the SAR
 θ_{o} = beam pointing angle
 H = aperture height

With little loss in generality a planar earth as shown in Figure 2 will be assumed.

From the above it is evident that

$$^{B}_{H} < \frac{c \cos \theta_{o}}{4 F_{d} Z_{o} \tan \theta_{o}}$$
(5)

ie., the beamwidth is the elevation plane is limited by the doppler band. Now, since the azimuthal resolution r_a for a fully focused system is related to the total doppler bandwidth by

$$r_{a} = v_{g}/F_{d}$$
 (6)

where v_{α} is the ground velocity of the imager, it is clear that

$$B_{H} \leq \frac{c r_{a} \cos \theta_{o}}{4 v_{g} Z_{o} \tan \theta_{o}}$$
(7)

It is observed that the beamwidth in the elevation plane is proportional to the desired azimuth resolution. When the range resolution r_r is to be comparable to the azimuth resolution r_a , the images must invariably point at moderate or large incident angles to avoid excessive RF bandwidths. At a pointing angle of 45°, for example, the beamwidth requirement becomes

$$B_{\rm H} < 4.9^{\circ}$$
 (8)

when

 $r_a = 5 \text{ meters}$ $v_a = 7.2 \text{ km/sec}$ $Z_a = 435 \text{ km}$

The corresponding maximum cross-track coverage, given by

 $C_{r} = Z_{o} B_{H} \cos \theta_{o}$ (9)

is only 72.7 km.

To provide more coverage per orbit one may employ partially focused or unfocused systems at the sacrifice of azimuthal resolution. If one further sacrifices to some degree multiple looks on the same resolution cell it is conceivable that sufficient time may be available to slew the radar beam over various image cells over a wide swath while synthesizing images on each cell. Indeed as the following sections show such a scanning SAR can be realized. A design theory is presented and various design realizations of interest are illustrated.

B. A Design Theory for a Scanning Radar.

1. Azimuth Resolution and the Basic Concept.

Suppose that cross-track coverage is desired between incident angles θ_1 and θ_2 as illustrated in Figure 3.* Further suppose that the radar operates at wavelength λ , has an antenna length L, and orbits at an altitude Z_o with a ground velocity v_g. If an azimuth resolution r_{al} is required in the near image cell, a tracking bandwidth (not the total bandwidth) of

^{*} Again a planar earth is assumed with little loss of design accuracy

Figure 3. Geometry for a scanning SAR.

$$\Delta f_{d} = \frac{2 v_{g}}{\lambda} \qquad \frac{r_{a1}}{R_{1}} \tag{10}$$

is required where ${\tt R}_1$ is the radar range to the nearest image cell.

To observe a response from this filter a target in this doppler bandwidth must be tracked for

$$\tau_{d} = 1_{\text{Af}}$$
(11)

seconds. It is clear that we require

$$r_{a1} \ge \frac{L}{2}$$
 (12)

for a realizable design, since $\frac{L}{2}$ is the resolution limit for the fully focused case. If $\frac{L}{2} < r_{a1} < \sqrt{\frac{\lambda R_1}{2}}$ a tracking filter must be employed. On the otherhand, if

$$r_{\alpha 1} \geq \sqrt{\frac{\lambda R_{1}}{2}}$$
(13)

then an unfocused design is specified. In the latter case a resolution, given by

$$r_a = \sqrt{\frac{\lambda R_1}{2}}$$
 (14)

is obtained simply by doppler beam sharpening of the illuminated area with stationary filters.

Regardless of whether tracking or stationary filters are employed, when the total doppler bandwidth is given by

$$F_{d} = 2 v / L$$
 (15)

the number of azimuthal filters required to obtain the desired azimuth resolution is given by

$$N_{d} = 2 F_{d} / f_{d}$$
(16)

7

REPRODUCIBILITY OF THE RIGINAL PAGE IS POOR

Now with an aperture length of L the width of the nearest cell of the antenna beam will be given by

$$C_{x} = \frac{\lambda}{L} R_{1}$$
(17)

For continuous coverage on adjacent scans we therefore require that the angular scan be limited to a time

$$T_{s} = C_{x} (\theta_{1}) / v_{g}$$
(18)

ie., the time for the imager to pass the closest cell.

2. Tracking Filters

The function of the azimuthal tracking filters may be uncerstood in the context of matched filtering as usually applied to synthetic aperture radars. The signal from a point scatterer as observed by an imager can be represented by a time varying phasor

$$s(t) = a(x, y, z, t) \exp [jw_{o}(t - 2r/c)]$$
 (19)

where w_{o} is the rf frequency of the radar, r is the range (time varying) from the imager to the target and a(x,y,z) is a complex amplitude associated with the target reflectivity, the transmitted power and spatial losses ($\frac{1}{4\pi}r^{2}$ dependence). When the beam is narrow the distance r may be approximated by

$$= \sqrt{r_o^2 + x^2}$$

$$\approx r_o^{-+} \frac{x^2}{2r_o}$$
(20)

or

where r_0 is the minimum slant range and x is the along-track displacement to the target. When it is noted that

$$x = v_{g}t$$
(21)

and when a constant phase factor is absorbed in a(x,y,z,t), the return signal may be written as

$$s(t) = \alpha(x, y, z, t) \exp [jw_o (t - v_g^2 t^2/r_o c)]$$
 (22)

The quadratic phase factor describes the azimuthal chirp history. A filter matched to this signal might remove the chirp and integrate the energy in the de-chirped signal.

This action can be realized by the technique shown in Figure 4. The return signal is de-chirped by product modulating with $\cos(w_1 + w_0 v_g^2 t/r_0 c)t$, removing the upper sideband and coherently integrating successive return pulses with a delay line filter. The coherent integrator is tuned to radian frequency $w_0 - w_1$ by adjusting the phase shift so that

$$\Phi = (w_0 - w_1) \tau_r - 2\pi k$$
 (23)

where k is the largest integer dividing $w_0^- w_1$ and $\tau_r = 1/PRF$ [1]. In the above it is assumed that $w_0 > w_1$ and that w_1 is greater than half the rf bandwidth.

The inhibit and sample gate interrupts the integration after G_p pulses and directs the result to the output. In a fully focused system the integration is performed during the entire period when the target is in the beam. In an unfocused system the chirping modulator is discarded and the delay filter is tuned to a particular doppler strip whose bandwidth is given by

$$f_{d} = v_{g} / r_{a}$$
(24)

where $r_a = \sqrt{\frac{\lambda R}{2}}$. The integration time is restricted to r_a/v_g as opposed to $N_a r_a/v_g$ for the fully focused case. The semi-focused case integrates for periods between these limits.

The output of the integrator contains a part or all the range history for an azimuthal element of width r_a depending on the integration time. In the case of a fully focused system, the filter is tuned to the slant range r_o . Other range elements drift through the filter without integrating, so only one range element integrates coherently. Therefore a tracking filter must be provided for each range – element as well as azimuthal element. For the unfocused case the integration time is sufficiently short that the range history in an entire azimuthal doppler strip is available at the output of the coherent integrator. The required number of filters is therefore N_a . For the partially focused case additional filters to cover the range dimension may be required depending on the integration time, wavelength and view angle.

The number of additional filters may be established from the following geometrical considerations. Suppose that the integration period is $1/\Delta f_d$. During this period the spacecraft will have moved a distance

 $e^{j(\omega_1 t + \sqrt[3]{t^2})}$

Figure 4. Matched filter for SAR.

ej∮

$$\Delta x = v_{g} \frac{1}{\Delta f_{d}}$$
(25)

(See Figure 5). If we consider that the filter is tuned to the near edge of the image cell then during the integration period the filter will have scanned an angle of α on the ground to keep the near edge in focus. In doing so the filter will have attempted to integrate the targets on the far edge subtended by α . If C_y is the length of the image cell, then the distance traversed on the far edge will be given by αC_y . If $\alpha C_y < r_a$, then the entire azimuthal strip will have remained essentially in focus. On the other hand, if $\alpha C_y > r_a$ then additional filters are required in range. If

$$\alpha C_{y} = N_{r}r_{a}$$
(26)

where N_r is an integer, then the number of filters in range is given by N_r . The total number of filters is given by

$$N_{f} = N_{r}N_{a} \tag{27}$$

Although not obvious from the above, N_r is dependent on view angle; the near image cells require more filters in range than far image cells.

3. Aperture Height and Related Parameter

If a range guard band factor of 2 is chosen, the PRF is specified as

$$PRF = c/4 \Delta R_{2}$$
(28)

where ΔR_2 is the slant range across the farthest image cell. Substituting (4), we may write

$$PRF = \frac{c \cos \theta_2}{4 z_0 B_H \tan \theta_2}$$
(29)

If we conservatively sample the total Doppler bandwidth such that

$$PRF = 2.5 F_{d}$$
(30)

then using (28) and (29) from above we can specify

$$B_{H} = \frac{c}{10R_{2}F_{d}\tan\theta_{2}}$$
(31)

$$H = \frac{\lambda}{B_{H}} = \frac{10 \ Z_{o} F_{d} \tan \theta_{2}}{c \ \cos \theta_{2}} = \frac{10 \ Z_{o} F_{d} \tan \theta_{2}}{F_{o} \cos \theta_{2}}$$
(32)

12

or

where $R_2 = \frac{Z}{\gamma_{\cos\theta_2}}$ has been used. The necessary aperture height has thus been established.

The PRF will be governed by the farthest image cell, i.e.,

$$PRF = c/4 \Delta R_2 \tag{33}$$

where

$$\Delta R_2 = B_H R_2 tan \theta_2 \tag{34}$$

(See Figure 2).

With the above parameters we are in a position to compute several others. The processing gain, assuming the full RF band will be processed, will be given by

$$G_{p} = PRF/\Delta f_{d}$$
(35)

where $1/\Delta f_d$ is the integration time. The number of scan cells between θ_1 and θ_2 is given by

$$N_{c} = (\theta_{2} - \theta_{1}) / B_{H}$$
(36)

and the dwell time on each cell by

$$T_{c} = T_{s} / N_{c}$$
(37)

If $T_c < \frac{1}{\Delta f_d}$, then there is insufficient time to build a subaperture with the desired resolution. In this case either the azimuthal resolution must be relaxed or the angular coverage $\theta_2 = \theta_1$ shortened. If $T_c \ge 1/\Delta f_d$, the design may proceed. If $T_c \ge 2/\Delta f_d$, multiple looks on the same azimuthal strip are possible when many parallel subapertures are simultaneously synthesized across the beam. The number of multiple looks will be given by

$$D_{f} = T_{c} \Delta f_{d}$$
(38)

The multiple looks can be used to reduce the speckle inherent in coherently constructed images.

Finally with aperture height specified it is noted that coverage in the range dimension for a particular look angle is given by

$$C_{r} = B_{H} Z_{o} / \cos \theta$$
 (39)

4. Range Resolution and the RF Bandwidth.

If a range resolution of $\mathbf{r}_{\mathbf{r}}$ is required by the design, the RF bandwidth will be given by

$$BW = c/2r_{\mu}\sin\theta_{\mu} \qquad (40)$$

where θ_1 is the smallest pointing angle. The pulse duration is therefore

$$\tau_{p} = 1/BW \tag{41}$$

Note that, if pulse compression is used, this is the width of the compressed pulse.

5. Power Requirement

To compute the transmit power requirement, we note that the peak return power W_{rp} from a single resolution cell is given by

$$W_{rp} = \frac{W_{tp} A^2 \sigma^0 r_r r_q}{4\pi \lambda^2 R^4 L}$$
(42)

where

 W_{tp} = peak transmitter power A = effective aperture of antenna σ^{0} = scattering coefficient R = range to cell L = Loss factor

Since the tracking filter is a matched filter, it is appropriate to define the signal to noise ratio in terms of the peak power to the mean-squared noise. The peak signal power in relation to this signal-to-noise ratio is therefore given by

$$W_{rp} = F k T BW (S/N)/G_{p}$$
(43)

where

F = receiver noise figure

k = Boltzmann's constant

T = receiver input noise temperature

BW= rf bandwidth

 G_{p} = match-filtered processing gain

The peak transmitter power is related to the average transmitter power by

$$W_{tp} = \frac{BW}{PRF} W_{ta}$$
(44)

The required transmitter power is therefore

$$W_{fa} = \frac{4\pi \lambda^2 R^4 L F k T (S/N) PRF}{G_p A^2 \sigma^0 r_a r_r}$$
(45)

In view of a typical scattering characteristic, the transmit power will be governed by the minimum σ° at the largest view angle θ_2 . A conservative estimate of σ° would include the Rayleigh characteristic of the return in computing W_{ta} . These considerations were, however, discarded within the time frame of this study.

6. Telemetry Channel Capacity

If σ_{max} and σ_{min} are, respectively, the maximum and minimum scattering coefficients anticipated in the interval (θ_2 , θ_1), then the bit requirement N_b is given by

$$2^{N_{b}} = \frac{\sigma^{\circ}_{\max}}{3.01 \sigma^{\circ}_{\min}}$$
(47)

if we presume a gray-scale resolution equal the minimum σ° . If a N bit word is transmitted for each resolution cell, then the total number of bits per scan cell is given by

$$B_{c} = N_{b} C_{r} C_{a} / r_{ra}^{r}$$
(48)

and the required channel capacity by

$$C_{c} = B_{c} / T_{c} \quad bits/sec$$
 (49)

Error recovery codes, calibration parameters and control words would increase the bit rate slightly.

If the number of levels is specified in terms of a fractional gray scale resolution (constant resolution in dB), the derivation is somewhat different. For this case logarithmic encoding is required. The number of levels needed is then

$$N_{L} = \frac{\sigma_{\max}^{o} (dB) - \sigma_{\min}^{o} (dB)}{r_{g} (dB)}$$
(50)

where r_{g} is the gray-scale fractional resolution. The number of bits required per resolution cell is therefore

$$N_{b} = \log_2 N_{L}$$
(51)

The required channel capacity is given by (48) and (49), with (51) used instead of (47). The computer outputs presented here are based on use of (47) rather than (51), but use of the criterion expressed in (50) will results in an easily applied multiplier.

C. Computer Aided Design Study

A computerized design program was based on the above design theory. The coding appears in Appendix A. The program, with the aid of the above text and the comments integral to the program, make the program largely self-explanatory.

With the assistance of the computer program various scanning SAR designs were considered. Parametric studies were primarily based on the span of angles (θ_2, θ_1) , operating wavelength λ , aperture length L and resolution specifications. In all cases a spacecraft ground velocity of 7.2 km/sec and an altitude of 435 km were assumed. The transmit power was based on readily available scattering data, a loss factor of 7dB, a signal to noise ratio of 3dB (for the smallest σ^0), an aperture efficiency of 75%, and a receiver input noise temperature of 300°K. The loss factor is based on 3dB attenuation between the transmitter and antenna and on a IdB two way atmospheric loss. These values are believed to be conservative. Noise figures were based on conservative estimates depending on wavelength. The results of all design cases considered are tabulated in Appendix B.

The parametric studies considered scans between 7° and 22° and between 22° and 37° . The angular span about the smaller angles was chosen since it is known that the sensitivity to soil moisture is greatest at small angles of incidence [2]. The span across moderate angles was examined as an alternative which also may intuitively be useful for hydrology studies of snow covered mountainous terrain and for surveying arctic ice*. Frequencies of 9., 4.75, 3.75 and 1.4 GHz were investigated. The central two frequencies are considered near optimum for soil moisture detection when the ground is covered with vegetation [3]. For the above combination of angles and frequencies, various aperture lengths from 1 to 10 meters, depending on frequency, were considered. Moderate resolutions from 50 to 150 meters were specified in the design cases. Results of these studies are summarized in Table IV.

^{*} The time span of this study did not permit the author to search for measurements in these categories. Other reports in this series examine these problems.

An examination of the cases in Appendix A indicates the following observations:

I. Increased coverage is indeed feasible with a scanning SAR, e.g., 125 km coverage for small angles of incidence as opposed to 15 km for a non-scanning SAR.

2. All design cases were achieved with a very modest transmitter power requirement. For example, most cases of interest indicated powers in the neighborhood of a watt (four watts when Rayleigh fading is included).

3. As a result of the modest resolutions specified and on-board processing anticipated in the design very nominal telemetry channel capacities are required.

4. At small incident angles, range resolutions less than 150 meters require large RF bandwidths with prohibitive sampling rates for the processor. The tracking filter bit capacity to integrate the range history, for example, must be excessively high to achieve the desired bit resolution.

5. The number of tracking filters is inversely proportional to the antenna length, proportional to wavelength and inversely proportional to the azimuth resolution.

6. It is also apparent that the number of independent looks can be increased by sacrificing resolution or swath width (or both).

7. The total number of filters increases with decreasing frequency for the same antenna length. The reader will note from Appendix B, that the antenna length was increased to 10 meters and the swath width decreased to 10° at $\lambda = .214$ in attempt to decrease the number of filters.

When choosing an imager suitable for soil moisture detection, one must consider designs at $\lambda = 0.063$ and 0.08 meters over the small view angles. Also, recent studies [4] indicate that 50 meter resolution is a minimal resolution to define field boundaries. Yet as observed above, 50 meter resolution in the range dimension is difficult to achieve at the small incident angles without undue complexity in the tracking filters. As a compromise it is proposed that 150 meter resolution in the range dimension be accepted at the smallest view angle and a 50 meter resolution in the azimuthal dimension over the entire swath. Since the total number of filters is smaller at $\lambda = 0.063$, considerations will be focused on that wavelength and an aperture length of 3 meters. It is interesting to note that the antenna is nearly square and would also serve as a suitable radiometer antenna should one consider a

composite sensor. The chosen design case is shown in Table I. The upper third of the table discloses the input design parameters as apply to the smallest and largest pointing angle (first and second row). The remainder of the table discloses the computed design values. The entries are defined in Table II. From the computed range resolutions it is apparent that the range resolution improves with pointing angle and achieves a value of 48.80 meters at the outer image cell. If the aperture height were increased to 4.17 meters the same system could also optionally scan the angular region between 22° and 37° with a nominal 50 x 50 meter resolution over the entire swath as Table III indicates. It is noted that four independent looks are achieved between 7° and 22° and two independent looks between 22° and 37° .

TABLE I RECOMMENDED DESIGN FOR COVERAGE BETWEEN 7 AND 22 DEGREES

.

PAW DESIGN PARAMETERS

PAPAMETEPS	١	ALUES	UNITS
ANGLE SPAN AZ P2S PA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP	7.00 50.00 150.00 0.063 7.2 435.0 3.0 75.0 7.0 12.00 -4.00 6.0 300.0	22.00 2.00 -8.00	DEG M M KM/SEC KM M PERCENT DB DB DB DB DB DB DB DB DB
CUMPHITED SYST	5.00 FM PARAMETERS		DD
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP	SEMI-FUCUSED 1.92 0.14 12.00 4.80 8.2 463 4	1.35	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL	1 185	<u>1</u>	
CHAN CAP	0.78	2.76	MBITS/SEC
COVERAGE AND	RESOLUTION		

SWATH	137.96		KM
CELLS/SCAN	8 .		
CELL WIDTH	9.26	9.91	КM
CELL LENGTH	14.56	16.68	KM
SCAN TIME 💦 🖓	1.29		SEC
TIME/CELL	0.151	•	SEC
AZ RES	50.00	53,52	• M
RA RES	150.00	48.80	М
	•		

TABLE II DEFINITION OF SYMBOLS

APER	=	aperture
AZ	=	azimuth
XMIT PWR	=	transmit power
FD	=	total doppler bandwidth
RF BW	=	rf bandwidth
PROC	=	processing
NCAP	=	no. of multiple looks on the same azimuthal strip
NCA	=	no. of filters in range
No. of FIL	=	number of filters in azimuth
CHAN CAP	=	Channel capacity
RES		resolution

Note: Total number of filters is given by NCA x No. of filters.

REPRODUCIBILITY OF THE

TABLE III A DESIGN COMPATIBLE WITH THAT OF TABLE I BUT OPERATING BETWEEN 22 AND 37 DEGREES

· _

RAW DESIGN PARA	METERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMEDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE	22.00 0.063 3.0 50.00 50.00 7.2 435.0 75.0 7.0 5.0 3.00	37.00	DEG M M M KM/SEC KM PERCENT DB DB DB
REC TEMP SIGMAX	300.0 2.00	-2.00	. DEG K DB
SIGMIN	-8.00	-12.00	BB
COMPUTED SYSTEM	PARAMETERS		
SYSTEM TYPE: S APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN	EMI-FOCUSED 4.16 0.22 12.00 4.80 8.0 496	1.41	N WATTS KHZ KHZ NHZ
NCA	1	1	
ND. OF FIL CHAN CAP	198 1.89	4.08	MBITS/SEC
COVERAGE AND RE	SOLUTION		•
SWATH CELLS/SCAN CELL WIBTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 9.91 7.71 1.38 0.081 50.00	11.51 10.39 58.05	KM KM SEC SEC M
KH KES	JU.UU	31,12	£1

TABLE IV SUMMARY OF DESIGN CASES IN APPENDIX A

X Band	- 3.13 cm	<u>7-22</u>	o 				-		
APERTI Length - (M)	URE • Height (M)	Swath (KM)	r _R (M)	r _A (M)	[#] Ind. Looks	P _T (W)	# FIL	RF BW (MHz)	TM CAP (MB/S)
1	3.03	128	50-16	50-54	4	39	292	25	9.5
			150-49	50-54	4	13	292	8.2	3,2
			150-49	88-95	7	13	165	8.2	1.8
3	1.01	138	50-16	50-54	4	39	97	25	9.5
			150-49	50-54	4	13	97	8.2	3.2
			150-49	88-95	7	13	55	8.2	1.8
6	0.50	154	50 - 16	50-54	4	39	9 8	25	9.5
			150-49	50-54	4	13	98	8.2	3.2
			150-49	88-95	7	13	28	8.2	1.8
	<u>22-37°</u>								
1	6.6	155	50-31	50-59	2	13	312	8.0	5.0
			150-93	50-58	2	5	312	2.7	1.7
			150-93	95-111	4	4	164	2.7	0.9
3	2.19	161	50-31	50-58	2	13	104	8.0	4.9
			150-93	50~58	2	5	104	2.7	1.6
			150-93	95-111	4	4	5ວ	2.7	0.9

۵.

C Dullu	0.0 011	1 22						
APERTU Length -	RE Height	Swath	^r R	[#] Ind r _A Looks	1. ; P _T	# FIL	RF BW	TM CAP
3	1.9	138	50-16	50-54 4	3	185	25	8.3
			150-49	50-54 4	1.4	185	8.2	2.8
			150-49	122-131 10	1.1	76	8.2	1.1
6	1.0	154	50-16	50-54 4	3	372	25	8.3
			150-49	50-54 4	1.4	372	8.2	2.8
			150-49	122-131 10	1.1	38	8.2	1.1
		<u>22-37°</u>						
3	4.2	161	50 - 31	50 - 58 2	1.4	198	8.0	4.1
			150-93	50 - 58 2	0.5	198	2.7	1.4
			150-93	131-153 5	0.5	75	2.7	0.5
6	2.1	170	50-31	50-58 2	1.4	99	8.0	4.3
			150-93	50-58 2	0.5	99	2.7	1.4
			150-93	1 31- 153 5	0.5	38	2.7	0.6

TABLE IV (CONT.)

7 TH 18 F				# Ind			95	T14
- Height	Swath	^r R	r _R	Looks	P _T	FIL	BW	CAP
2.4	1 3 8	50-16	50-54	4	4	468	25	7.1
		150-49	50-54	4	1.4	468	8.2	2.4
		150-49	137-147	11	1.4	85	8.2	0.9
1.2	154	50-16	50 - 54	4	4	585	25	7.1
		150-49	50-54	4	1.4	585	8.2	2.4
		1 50-49	137-147	11	1.3	43	8.2	0.9
	<u>22-37</u> °							
5.25	161	50-31	50-58	2	2.2	250	8.0	4.9
		150-93	50~58	2	0.5	250	2.7	1.6
		150-93	148-171	6	0.5	85	2.7	0.6
2.6	170	50 31	50-58	2	1.4	125	8.0	5.2
		150-93	50 - 58	2	0.5	125	2.7	1.7
		150-93	148-171	5	0.5	42	2.7	0.6
- 21.4 cm	<u>10-20°</u>							
2.9	117	150 -7 6	50 - 52	8	0.3	3150	5.8	1.0
1.7	140	150-76	50-52	10	0.3	3969	5.8	0.8
	20-30 ⁰							
5.0	116	150-103	50-54	4	0.3	1650	2.9	1.0
3.0	131	150-103	50-54	5	0.3	594	2.9	0.8
	TURE - Height 2.4 1.2 5.25 2.6 - 21.4 cm 2.9 1.7 5.0 3.0	TURE - Height Swath 2.4 138 1.2 154 $\frac{22-37^{\circ}}{5.25}$ 161 2.6 170 - 21.4 cm $\frac{10-20^{\circ}}{1.7}$ 1.7 140 $\frac{20-30^{\circ}}{5.0}$ 5.0 116 3.0 131	TURE Swath r_R 2.4 138 50-16 150-49 150-49 1.2 154 50-16 150-49 150-49 1.2 154 50-16 150-49 150-49 1.2 154 50-16 150-49 150-49 150-49 150-49 150-49 150-49 150-49 150-49 150-49 150-93 150-93 150-93 2.6 170 50-31 150-93 150-93 2.6 170 50-31 150-93 150-93 2.6 170 50-31 150-93 150-93 2.9 117 150-76 1.7 140 150-76 1.7 140 150-76 1.7 140 150-76 5.0 116 150-103 3.0 131 150-103	TURE - Height Swath r_R r_R 2.4 138 50-16 50-54 150-49 50-54 150-49 137-147 1.2 154 50-16 50-54 150-49 50-54 150-49 137-147 22-37° 5.25 161 50-31 50-58 150-93 50-58 150-93 148-171 2.6 170 50-31 50-58 150-93 148-171 2.6 170 50-31 50-58 150-93 148-171 2.9 117 150-76 50-52 1.7 140 150-76 50-52 1.7 140 150-76 50-52 20-30° 5.0 116 150-103 50-54 3.0 131 150-103 50-54	TURE Swath r_R r_R r_R Looks 2.4 138 50-16 50-54 4 150-49 50-54 4 150-49 137-147 11 1.2 154 50-16 50-54 4 150-49 137-147 11 1.2 154 50-16 50-54 4 150-49 50-54 4 150-49 137-147 11 22-37° 150-49 137-147 11 11 11 22-37° 161 50-31 50-58 2 150-93 50-58 2 5.25 161 50-31 50-58 2 150-93 148-171 6 2.6 170 50-31 50-58 2 150-93 50-58 2 150-93 148-171 5	TURE Swath r_R r_R r_R Looks P_T 2.4 138 50-16 50-54 4 4 150-49 50-54 4 1.4 1.2 154 50-16 50-54 4 4 1.2 154 50-16 50-54 4 4 1.2 154 50-16 50-54 4 4 1.2 154 50-16 50-54 4 4 1.2 154 50-16 50-54 4 4 1.2 154 50-16 50-54 4 1.4 1.2 154 50-16 50-58 2 2.2 150-49 137-147 11 1.3 3 3 3 3 3 3 3 3 3 3 4 3 160-93 50-58 2 0.5 3 3 3 3 3 3 3 3 3 4 3 150-93 148-171 5 0.5 3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

III. Proposed System Design

[

To achieve the design objective of 250 km coverage it is proposed that two scanning SARs be operated simultaneously. Each SAR would scan one side of the ground track providing coverage between 7° and 22° (could reduce to 20°) and would have the design characteristics specified in Table I. To scan in angle rapidly it is necessary that a controllable phase array be employed. It is preferable to use a vertically polarized array since the power requirement would not be as great. If possible the same array would cover both sides of the track. The frequency assigned to each system would be separated by several RF bandwidths (8.2 megahertz) to provide isolation between the left and right processors. Each scanning SAR would have its own receiver as well as processor; however, the transmitter (and antenna) could be time-shared by both. If two processors are allocated per side, it is con-ceivable to operate at two frequencies on each side to realize another four independent looks on each resolution cell.

The transmitter – receiver section of one of the SARs is illustrated in Figure 6. The controller commands the phased array to point at the appropriate image cell. The transmitter-modulator transmits G_p pulses where G_p is the processing gain. The RF and IF chain amplifies the return while retaining coherencey.

The output of the IF amplifier is fed to a set of parallel tracking filters each assigned to a different azimuth-range strip. Figure 7 illustrates one filter and post processor channel. The controller initializes the transmit cycle on the basis of the chirp frequency and controls the chirp rate in accord with the spacecraft ground speed. The product modulator dechirps the incoming signal, the LPF discards the upper modulation product. The clutter tracker follows the center frequency in the channel and adjusts the mean frequency of the de-chirp oscillator so as to account for changes in the center of the doppler return frequency as induced by beam squinting. The dechirp oscillators in the other channel should be replicas of one another except that the chirps will be off-set from one another. As a consequence the chirp oscillators need not be duplicated for each channel. As the signal is de-chirped, the pulses are coherently integrated by the delay line filter. The filter may be digital or discrete time analog devices to avoid drift in the delay time. The processor would provide the clock frequency for the filter. The phase shift \emptyset_1 is set to integrate w₂ and its harmonics. After G_p pulses the integration is interrupted and the range history is dumped. The

Figure 7. Tracking filters with post processor.

range history is then sampled under control of the processor and stored in a set of parallel shift registers. The controller then initiates a new cycle. In the mean time the processor stores and clears the contents of the shift register. The contents are squared and added to previous looks on the same azimuthal-range strip. Once the multiple looks are completed, the array scans to a new angle and the cycle is initiated on a new image cell. The averaged data is then passed to the telemetry stream. The processor must retain memory of the azimuth off-set between looks at the same pointing angle. This memory is transferred to the clutter-tracker for the proper azimuth off-set compensation.

IV. Conclusions and Recommendations

This short system study has developed a design procedure for a scanning synthetic aperture radar. With this design procedure it was shown by way of many examples (Appendix B) that when the resolution is relaxed sufficiently increased swath width coverage can be realized as compared to a fixed angle SAR operating in nominally the same angular band. Specifically at small incident angles a scanning SAR can provide coverage in the vicinity of 140 km as opposed to a fixed angle coverage of nominally 15 to 30 km. A method of on-board processing which should be realizable with today's technology [5], [6] was proposed. The design cases show that the complexity of the processor decreases with increasing frequency for a given aperture length.

A particular design suitable for soil moisture monitoring was proposed. A double sided scanning SAR providing coverage at near optimum angles and frequency was shown to offer a total swath width of 270 km. Half the coverage occurs on each side of the ground track between 7° and 22°. The design based on an azimuth resolution of 50 meters, a minimum range resolution of 150 meters and a 3 by 1.9 meter antenna was achieved with a total of 370 tracking filters in the post processor, a modest transmitter power of 2.70 watts and a telemetry channel capacity of 5.50 megabits/second.* The range resolution improved to 49 meters at the farthest image cell.

In preparing this design study the author uncovered certain problems that within this time frame remain unresolved in his own mind. The literature available to him indicates they have been solved, although the techniques were not disclosed. First it is known that the clutter lock or tracker has long been implemented aboard aircraft. The specific implementation method, however, was not uncovered during this study. It

* This figure could be reduced if on-board storage is provided.

. 28
is recommended that the technique be developed from the literature and adapted to this design. The transmitter power should be reassessed on the basis of the clutter lock S/N ratio requirement. Secondly, in the review of the literature on delay line filters it was not clear how the phase advance is implemented accurately. A cursory examination showed that small phase shift increments are required between adjacent tracking filters. The means by which this is implemented and controlled is not clear. This problem should also be resolved.

REFERENCES

- [1] Bickel, H. J., "Spectrum Analysis with Delay Line Filters," IRE Wescon Convention Record, Part 8, pp. 59-67, 1959.
- [2] Ulaby, F.T. and P.P. Batlivala, "The Effects of Surface Roughness on Radar Sensitivity to Soil Moisture," URSI Meeting, University of Illinois, June 3-5, 1975.
- [3] Ulaby, F.T., <u>Private Communication</u>, University of Kansas Remote Sensing Laboratory.
- [4] Hardy, N., <u>Private Communication</u>, University of Kansas Remote Sensing Laboratory.
- [5] Gershberg, R., "Synthetic Aperture Radar and Digital Processing," University of Kansas Center for Research, Inc., CRES Technical Report 177–10, Supported under NASA Contract NAS 9–19261, September 1970.
- [6] Kirk, J.C. Jr., "A Discussion of Digital Processing in Synthetic Aperture Radars," <u>IEEE Transactions on Aerospace and Electronic Systems</u>, Vol. AES - 11, No. 3, pp. 326-336, May 1975.

Appendix A

DESIGN CASES FOR A SCANNING SAR

Ś

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUBE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP SIG/NOISE	7.00 50.00 0.033 7.2 435.0 1.0 75.0 7.0 8.00 -10.00 6.0 3.00	22.00 -1.00 -15.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYSTE	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA	SEMI-FBCUSED 3.03 3.24 36.00 14.40 24.6 730 4 1	38.60	M WATTS KHZ KHZ MHZ
NO. OF FIL CHAN CAP	292 2.68	9.45	MBITS/SEC
COVERAGE AND F	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL	127.55 24 14.59 4.85 2.03 0.084	15.62 5.56	KM KM SEC SEC
AZ RES RA RES	50.00 50.00	53,52 16.27	M M

REPRODUCIBILITY ON ORIGINAL PAGE IS POUR

ş

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG~NDISE REC TEMP SIGMAX SIGMIN	7.00 0.033 1.0 50.00 150.00 7.2 435.0 75.0 7.0 6.0 3.00 3.00 8.00 ~10.00	-1.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD FD FD BW PROC GAIN NCAP NCA NO. DF FIL CHAN CAP	SEM1-FDCUSED 3.03 1.08 36.00 14.40 8.2 730 4 1 292 0.89	12.87 1 3.15	M WATTS KHZ KHZ MWZ MBITS/SEC
COVERAGE AND	PESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	127.55 24 14.59 4.85 2.03 0.084 50.00 150.00	15.62 5.56 53.52 48.80	KM KM SEC SEC M M

į

RAW DESIGN PARAMETERS

PARAMETERS	VALUES		UNITS	
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP	7.00 88.38 150.00 0.033 7.2 435.0 1.0 75.0 7.0 8.00 -10.00 6.0 300.0 2.00	22.00 -1.00 -15.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB	
COMPUTED SYST	S.00		T, T,	
CONFOIED SIST	EN FORDNEIERS			
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	UNFDCUSED 3.03 1.08 36.00 14.40 8.2 413	12.87	M WATTS KHZ KHZ MHZ	
NCA NCA	1	1		
CHAN CAP	0.51	1.78	MBITS/SEC	
COVERNGE AND	PESOLUTION			
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	127.55 24 14.59 4.85 2.03 0.084 88.38	15.62 5.56 94.61	KM KM SEC SEC M	
KH RES	150.00	48.80	M	

ş

1

RAW DESIGN PARAMETERS

	VALUES	UNITS	
7.00 50.00 50.00 0.033 7.2 435.0 3.0 75.0 7.0 8.00 -10.00 3.00.0 3.00	22.00 -1.00 -15.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB	
EM PARAMETERS			
SEMI-FOCUSED 1.01 3.24 12.00 4.80 24.6 243 4 1 97 2.68	38.66 <u>1</u> 9.45	M WATTS KHZ KHZ MHZ MHZ	
RESOLUTION			
137.96 8 4.86 14.56 0.68 0.084 50.00	5.21 16.68 53.52 16.27	KM KM SEC SEC M	
	7.00 50.00 0.033 7.2 435.0 3.0 75.0 7.0 8.00 -10.00 6.0 300.0 3.00 EM FARAMETERS SEMI-FUCUSED 1.01 3.24 12.00 4.80 24.6 243 4 12.00 4.80 24.6 243 4 12.00 4.80 24.6 243 4 12.00 4.80 24.6 243 4 12.00 50.00 50.00 50.00	VALUES 7.00 22.00 50.00 0.033 7.2 435.0 3.0 75.0 7.0 8.00 -1.00 -10.00 -15.00 6.0 300.0 3.00 EM PARAMETERS SEMI-FOCUSED 1.01 3.24 38.66 12.00 4.80 24.6 243 4 1 97 2.68 9.45 RESOLUTION 137.96 8 4.86 5.21 14.56 16.68 0.084 50.00 53.52 50.00 16.27	

35

RAW DESIGN PARAMETERS

4

PARAMETERS		VALUES	UNITS	
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LDSS FACTOR NDISE FIG SIGZNDISE	7.00 0.033 3.0 50.00 150.00 7.2 435.0 75.0 7.0 6.0 3.00	22.00	DEG M M M KM/SEC KM PERCENT DB DB DB	
REC TEMP STGMAX	300.0 8.00	-1.00	DEG K DB	
SIGMIN	-10.00	-15.00	DB	
COMPUTED SYST	EM PARAMETERS			
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP	SEMI-FBCUSED 1.01 1.08 12.00 4.80 8.2 243 4	12.89	M WATTS KHZ KHZ MHZ	
NCA	1	1		
CHAN CAP	77 0.89	3.15	MBITS/SEC	
COVERAGE AND	RESOLUTION			
SWATH	137.96		KM	
CELLS/SUHN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ PES	8 4.86 14.56 0.68 0.084 50.00	5.21 16.68 53 50	KM KM SFC SEC M	
RA RES	150.00	48.80	۲. M	

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NOISE FIG REC TEMP SIG/NOISE	7.00 88.38 150.00 0.033 7.2 435.0 3.0 75.0 7.0 8.00 -10.00 6.0 3.00 3.00	22.00 -1.00 -15.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD PF BW PROC GAIN NCAP NCA NO. OF FIL	UNFDCUSED 1.01 1.08 12.00 4.80 8.2 138 7 1 55	12.84 <u>1</u>	M WATTS KHZ KHZ MHZ
CHAN CAP	0.51	1.78	MBITS/SEC
COVERAGE AND I	RESCLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	137.96 8 4.86 14.56 0.68 0.084 88.38 150.00	5.21 16.68 94.61 48.80	KM KM SEC SEC M M

RAW DESIGN F	PARAMETERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG	7.00 50.00 50.00 0.033 7.2 435.0 6.0 75.0 7.0 8.00 -10.00 6.0	22.00 -1.00 -15.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB
REC TEMP	300.0		DEG K BP
COMPUTED SY:	STEM PARAMETERS		
SYSTEM TYPE APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	: SEMI-FOCUSED 0.50 3.23 6.00 2.40 24.6 122	38.50	M WATTS KHZ KHZ MHZ
NCA	4 2	1	
NO. OF FIL CHAN CAP	49 2.68	9.45	MBITS/SEC
COVERAGE ANI) RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	153.58 4 2.43 29.12 0.34 0.084 50.00 50.00	2.60 33.37 53.52 16.27	KM KM Sec Sec M M

LIGH LIES

ты т

RAW DESIGN PARAMETERS

FARANCIERS		VALUES	ONLIS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APSR EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	7.00 0.033 6.0 50.00 7.2 435.0 7.0 7.0 6.0 3.00 3.00 -10.00	-1.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DEG K DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NO. DF FIL CHAN CAP	SEMI-FOCUSED 0.50 1.08 6.00 2.40 8.2 122 4 2 49 0.89	12.83 1 3.15	M WATTS KHZ KHZ MHZ MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN	153.58 4 9.42	5 EN	км км

CELLS/SCAN	- 4		
CELL WIDTH	2.43	2.60	КM
CELL LENGTH	29.12	33.37	КM
SCAN TIME	0.34		SEC
TIME/CELL	0.084		SEC
AZ RES	50.00	53.52	14
RA RES	150.00	48.80	M

RAW DESIGN PARA	METERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH	7,00 88.38 150.00 0.033 7.2 435.0 6 0	22.00	DEG M M M KM/SEC KM
APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP SIG/NDISE	75.0 7.0 8.00 -10.00 6.0 300.0 3.00	-1.00 -15.00	PERCENT DB DB DB DB DB DEG K DB
COMPUTED SYSTEM	PARAMETERS	;	
SYSTEM TYPE: U APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	NFOCUSED 0.50 1.08 6.00 2.40 8.2 69	12.84	M WATTS KHZ KHZ MHZ
NCA	<u>1</u>	1	
CHAN CAP	28 0.51	1.78	MBITS/SEC
COVERAGE AND RE	SOLUTION		
SWATH CELLS/SCON	153.58		KM
CELL WIDTH CELL LENGTH SCAN TIME TIMEZOELI	2.43 29.12 0.34 0.084	2.60 33.37	KM KM SEC SEC
AZ RES RA RES	88.38 150.00	94.61 48.80	seu M M

PARAMETERS	VALUES		UNITS	
ANGLE SPAN	22.00	مربر 37.00	DEG	
LAMBDA	0.033	. – – –	М	
APER LENGTH	1.0		М	
AZ RES	50.00		M	
RA RES	50.00		М	
GRD VEL	7.2		KMZSEC	
ALTITUDE	435.0		KM	
APER EFF	75.0		PERCENT	
LOSS FACTOR	7.0		DB	
NDISE FIG	6.0		DE	
SIG/NOISE	3.00		DB	
REC TEMP	300.0		DEG K	
SIGMAX	-1.00	-5.00	DB	
SIGMIN	-15.00	-18.00	DB	
OTHELIZED SUSTEM	DODOMETEDS			

COMPUTED SYSTEM PARAMETERS

SYSTEM TYPE:	SEMI-FUCUSED		
APER HEIGHT	6.56		М
XMIT PWR	2.68	13.44	WATTS
PRF	36.00		KHZ
FD	14.40		KHZ
RF BW	8.0		MHZ
PROC GAIN	781		
NCAP	2		
NCA	1	1	
NO. OF FIL	312		
CHAN CAP	2.31	5.00	MBITS/SEC

COVERAGE AND RESOLUTION

SWATH	155.06		КM
CELLS/SCAN	52		
CELL WIDTH	15.62	18,14	KM
CELL LENGTH	2.57	3.46	KM
SCAN TIME	2.17		SEC
TIME/CELL	0.042		SEC
AZ RES	50.00	58.05	M
PA RES	50.00	31.12	М

SUMMARY TABLE []

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	$\begin{array}{c} 22.00\\ 0.033\\ 1.0\\ 50.00\\ 150.00\\ 7.2\\ 435.0\\ 75.0\\ 7.0\\ 6.0\\ 3.00\\ 300.0\\ -1.00\\ -15.00\end{array}$	-5.00 -18.00	BEG M M M KM/SEC KM PERCENT DB DB DB DEG K DB DB DB DB
COMPUTED SYST	EN PARAMETERS	7	
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP	SEMI-FOCUSED 6.56 0.89 36.00 14.40 2.7 781 2	4.48	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL CHAN CAP	1 312 0.77	1 1.67	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL FINGTY	155.06 52 15.62	18.14	KM KM
SCAN TIME TIME/CELL AZ RES	2.07 2.17 0.042 50.00	3.46 58.05	KM SEC SEC M
RA REC	T-00-00	70.01	11

VALUES

UNITS

ł.

RAW DESIGN PARAMETERS

PARAMETERS

ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE REC TEMP SIGMAX SIGMIN	22.00 0.033 1.0 95.27 150.00 7.2 435.0 75.0 75.0 7.0 6.0 3.00 300.0 -1.00 -15.00	-5.00 -18.00	DEG M M M KM/SEC KM FERCENT DB DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	FM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN	UNFDCUSED 6.57 0.89 36.00 14.40 2.7 410	4.48	M WATTS KHZ KHZ MHZ
NCA	4 1	1	
ND. OF FIL CHAN CAP	$\begin{array}{c} 164 \\ 0.40 \end{array}$	0.87	MBITS/SEC
COVERAGE AND	RESOLUTION		

SWATH 155.06 ΚM CELLS/SCAN 52 CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL 18.15 15.64 КM 2.57 3.46 KM 2.17 SEC 0.042 SEC AZ RES 110.61 93.37 95.27 M RA RES 150.00 M

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UMITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.033 3.0 50.00 7.2 435.0 75.0 7.0 6.0 3.00 300.0 -1.00 -15.00	-5.00 -18.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYSTE	M PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NO. OF FIL CHAN CAP	SEMI-FOCUSED 2.19 2.68 12.00 4.80 8.0 260 260 1 104 2.26	13,46 1 4.90	M WATTS KHZ KHZ MHZ MBITS/SEC
COVERAGE AND R	ESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	161.09 17 5.21 7.71 9.72 0.043 50.00 50.00	6.05 10.39 58.05 31.12	КМ КМ SEC SEC M M

,

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.033 3.0 50.00 150.00 7.2 435.0 75.0 7.0 6.0 3.00 300.0 -1.00 -15.00	-5.00 -18.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EN PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCOP	SEMI-FOCUSED 2.19 0.89 12.00 4.80 2.7 260	4.49	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL CHAN CAP	1 104 0.75	<u>1</u> 1.63	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 5.21 7.71 0.72 0.043 50.00	6.05 10.39 58.05	KM KM SEC SEC M
RA RES	150.00	93.37	M

	VALUES	UNITS
22.00 0.033 3.0 95.23 150.00 7.2 435.0 75.0 7.0 6.0 3.00 -1.00 -15.00	-5.00 -18.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DEG K DB DB
EM PARAMETERS		
UNFDCUSED 2.19 0.89 12.00 4.80 2.7 137 4 <u>1</u> 55 0.40	4.47 <i>1</i> 0.86	M WATTS KHZ KHZ MHZ MBITS∕SEC
RESOLUTION		
161.09 17 5.21 7.71 0.72 0.043 95.23 150.00	6.05 10.39 110.56 93.37	KM KM SEC SEC M
	22.00 0.033 3.0 95.23 150.00 7.2 435.0 75.0 75.0 7.0 6.0 3.00 300.0 -1.00 -15.00 EM PARAMETERS UNFDCUSED 2.19 0.89 12.00 4.80 2.7 137 4 155 0.40 PESDLUTION 161.09 17 5.21 7.71 0.72 0.043 95.23 150.00	VALUES 22.00 37.00 0.033 3.0 95.23 150.00 7.2 435.0 435.0 75.0 7.2 435.0 75.0 7.0 6.0 3.00 300.0 -10.00 -1.00 -5.00 -15.00 -18.00 EM PARAMETERS 0.89 2.19 0.89 2.19 0.89 2.19 0.89 2.19 0.89 2.19 0.89 2.7 137 4 1 55 0.40 8.6 8.6 PESDLUTION 161.09 17 5.21 6.05 7.71 0.72 0.043 95.23 110.56 150.00 93.37

ş

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF	7.00 50.00 50.00 0.063 7.2 435.0 3.0 75.0	22.00	DEG M M M KM/SEC KM M PERCENT DP
SIGMAX SIGMIN NDISE FIG REC TEMP SIG/NDISE	7.0 12.00 ~4.00 5.0 300.0 3.00	2.00 -8.00	DB DB DB DE5 K DB
COMPUTED SYSTEM PAR	AMETERS		
SYSTEM TYPE: SEMI- APER HEIGHT XMIT PWR PRF FD RF BW PRBC GAIN NCAP	FDCUSED 1.92 0.34 12.00 4.80 24.6 463 4	3.22	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL	185	1	
CHAN CAP	2.35	8.27	MBITS/SEC
COVERAGE AND RESOLU	TION		
SWATH 1 CELLSZSCAN	37.96 8		KM
CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RB RES	9.26 14.56 1.29 0.161 50.00 50.00	9.91 16.68 53.52 16.27	米州 米州 SEC SEC 州 州

RAW DESIGN PARAMETERS

₫.

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR	7.00 50.00 150.00 0.063 7.2 435.0 3.0 75.0 7.0	22.00	DEG M M M KM/SEC KM M PERCENT DB
SIGMHX SIGMIN NOISE FIG REC TEMP SIG/NOISE	12.00 4.00 6.0 300.0 3.00	2.00 -8.00	DB DB DEG K DB
COMPUTED SYSTI	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP	SEMIFOCUSED 1.92 0.14 12.00 4.80 8.2 463 4	1.35	M WATTS KMZ KHZ MHZ
NO. OF FIL CHAN CAP	185 0.78	÷ 2.76	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	137.96 8 9.26 14.56 1.29 0.161 50.00 150.00	9.91 16.68 53.52 48.80	KM KM KM SEC SEC M M

48

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
COVERAGE AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR	7.00 121.95 150.00 0.063 7.2 435.0 3.0 75.0 7.0	22.00	DEG M M M KM/SEC KM PERCENT DB
SIGMPX SIGMIN	12.00 -4.00	2.00 -8.00	DB DB
NDISE FIG Rec temp	5.0		DB DEC K
SIG/NOISE	3.00		DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT	UNFOCUSED 1.92		М
XMIT PWR PRF	0.11 12.00	1.07	WATTS KHZ
FD SE BU	4.80		KHZ
PROC GAIN	190		11 11 2
NCA	10 1	1	
NO. OF FIL CHAN CAP	76 0.32	1.13	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH Ceuls/scan	137.96		КM
CELL WIDTH	9.26	9.91	КM
UELL LENGTH SCAN TIME	14.56 1.29、	16.68	KM Sec
TIME/CELL	0.161	100 FF	ŜĒĊ
RA RES	150.00	48,80	M

REPRODUCIBILITY OF THE DRIGINAL PAGE IS POOR

k

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP SIG/NDISE	7.00 50.00 50.00 0.063 7.2 435.0 75.0 75.0 7.0 12.00 -4.00 5.0 300.0 3.00	22.00 2.00 -8.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP NCA	SEMI-FDCUSED 0.96 0.34 6.00 2.40 24.6 232 4 4 4- 00	3.21 1	M WATTS KHZ KHZ MHZ
CHAN CAP	5.32	8.27	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN	153.58 4		KM
CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	4.63 29.12 0.64 0.161 50.00	4.96 33.37 53.52	KM KM SEC SEC M
RA RES	50.00	16.27	M

50

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE REC TEMP SIGMAX SIGMIN	7.00 0.063 6.0 50.00 150.00 7.2 435.0 75.0 7.0 6.0 3.00 300.0 12.00 -4.00	22.00 -8.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DEG K DB DB DB DEG K
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP	SEMI-FDCUSED 0.96 0.14 6.00 2.40 8.2 232 4	1.35	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL CHAN CAP	4 93 0.78	1 2.76	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME	153.58 4 4.63 29.12 0.64	4.96 33.37	KM KM SEC
TIME/CELL AZ RES RA RES	0.161 50.00 150.00	53.52 48.80	SEC M M

į

RAW DESIGN PARAMETERS

PARAMETERS	VALU	ES	STINU
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NOISE FIG REC TEMP SIG/NOISE	7.00 121.95 150.00 0.063 7.2 435.0 6.0 75.0 75.0 12.00 -4.00 5.0 300.0 3.00	22.00 2.00 ~8.00	DEG M M KM/SEC KM PERCENT DB DB DB DB BB DEG K DB
COMPUTED SYST: SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NCA NCA NCA	EM PARAMETERS UNFDCUSED 0.96 0.11 6.00 2.40 8.2 95 10 10 1 38	1.07 1.	M WATTS KHZ KHZ MHZ
CHAN CAP	0.32	1.13	MBITS/SEC

COVERAGE AND RESOLUTION

SWATH	153.58		КМ
CELLS/SCAN	4		
CELL WIDTH	4.63	4.96	, KM
CELL LENGTH	29.12	33.37	ΚM
SCAN TIME	0.64		SEC
TIME/CELL	0.161		SEC
AZ RES	121.95	130.55	M
RA RES	150.00	48.80	M

KHW DESIGN PHRH	METERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LUSS FACTOR NDISE FIG	22.00 0.063 3.0 50.00 50.00 7.2 435.0 75.0 7.0 5.0	37.00	DEG M M M KM/SEC KM PERCENT DB DB
SIG/MOISE	3.00		DB DBC
SIGMAX	2.00	-2.00	DEG K. DB
SIGMIN	-8.00	-12.00	DB
COMPUTED SYSTEM	PARAMETERS		
SYSTEM TYPE: SE APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	EMI-FOCUSED 4.16 0.22 12.00 4.80 8.0 496	1.41	M WATTS KHZ KHZ MHZ
NCAP NCA	2 1	1	
ND. DF FIL	198	4 00	
COVERAGE AND RES		4.00	MEI 137 SEU
			·
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 9.91 7.71 1.38 0.081 50.00	11.51 10.39 58.05	KM KM SEC SEC M
RA RES	50.00	31.12	M

Ś

RAW DESIGN PARAMETERS

Ł

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES GRD VEL ALTITUDE APER EFF LDSS FACTOR NOISE FIG SIG/NDISE REC TEMP SIGMAX SIGMIN	22.00 0.063 3.0 50.00 150.00 7.2 435.0 75.0 7.0 5.0 3.00 300.0 2.00 -8.00	-2.00 -12.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DEG K DB DB DB DB
COMPUTED SYST	EM PARAMETERS		•
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP NCA ND. OF FIL	SEMI-FOCUSED 4.16 0.07 12.00 4.80 2.7 496 2 1 198	0.47 <u>1</u>	M WATTS KHZ KHZ MHZ
UHHA CHP	0.63	1.36	MBITS/SEC
COVERAGE AND	RESOLUTION	·	
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	161.09 17 9.91 7.71 1.38 0.081 50.00 150.00	11.51 10.39 58.05 93.37	KM KM SEC SEC M M

RAW DESIGN PARAMETERS

PARAMETERS	,	VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE REC TEMP SIGMAX SIGMIN	22.00 0.063 3.0 131.40 150.00 7.2 435.0 7.0 7.0 5.0 3.00 300.0 2.00 -8.00	-2.00 -12.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP	UNFOCUSED 4.16 0.07 12.00 4.80 2.7 189 5	0.47	M WATTS KHZ KHZ MHZ
NCA ND. DF FIL CHAN CAP	<u>1</u> 75 0.24	1 0.52	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 9.91 7.71 1.38 0.081 131.40	11.51 10.39 152.55	KM KM SEC SEC M
RA RES	150.00	93.37	M

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.063 6.0 50.00 7.2 435.0 75.0 7.0 5.0 3.00 300.0 2.00	-2.00 -12.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB
COMPUTED, SYSTE	M PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NCA NO. DF FIL CHAN CAP	SEMI-FDCUSED 2.08 0.22 6.00 2.40 8.0 248 248 2 99 2.00	1.41 <u>1</u> 4.32	M WATTS KHZ KHZ MHZ MBITS/SEC
COVERAGE AND R	ESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	170.14 9 4.96 15.41 0.69 0.077 50.00 50.00	5.76 20.77 58.05 31.12	KM KM SEC SEC M M

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.063 6.0 50.00 150.00 7.2 435.0 75.0 7.0 5.0 3.00 3.00 2.00 -8.00	37.00 -2.00 -12.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DEG K DB DB DB
COMPUTED SYST	EM PARAMETERS		_
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NCA NCA NCA NCA CHAN CAP	SEMI-FDCUSED 2.08 0.07 6.00 2.40 2.7 248 2 48 2 99 0.67	0.47 <u>1</u> 1.44	M WATTS KHZ KHZ MHZ MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	170.14 9 4.96 15.41 0.69 0.077 50.00 150.00	5.76 20.77 58.05 93.37	KM KM SEC SEC M M

PARAMETERS	VF	ALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.063 6.0 131.40 150.00 7.2 435.0 75.0 75.0 5.0 3.00 3.00 2.00 -8.00	-2.00 -12.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYSTE	M PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NO. OF FIL	UNFDCUSED 2.08 0.07 6.00 2.40 2.7 94 5 1 38	0.47 <u>1</u>	M WATTS KHZ KHZ MHZ
CHAN CAP	0.25	0.55	MBITS/SEC
COVERAGE AND R	ESOLUTION		
SWATH	170.14		КM

SMUTIN	TL O # T #		1511
CELLS/SCAN	. 9		
CELL WIDTH	4.96	5.76	ΚM
CELL LENGTH	15.41	20.77	. KM
SCAN TIME	0.69		SEC
TIME/CELL	0.077		SEC
AZ RES	131.40	152.55	М
RA RES	150.00	93.37	М

RAW DESIGN PARAM	1ETERS		
PARAMETERS		VALUES	UNITS
COVERAGE AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH	7.00 50.00 50.00 0.080 7.2 435.0 3.0	22.00	DEG M M M KM/SEC KM
APER EFF LOSS FACTOR SIGMAX SIGMIN NOISE FIG REC TEMP SIG/NOISE	75.0 7.0 5.00 -5.00 3.0 300.0 3.00	3.00 -12.00	PERCENT DB DB DB DB DB DEG K DB
COMPUTED SYSTEM	PARAMETERS		
SYSTEM TYPE: SE APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAR	MI-FDCUSED 2.43 0.21 12.00 4.80 24.6 584	4.04	M WATTS KHZ KHZ MHZ
NCA NO DE ETI	2	<u>1</u>	
CHAN CAP	2.01	7.09	MBITS/SEC
COVERAGE AND RES	OLUTION		
SWATH	137.96		KM
CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL	11.69 14.56 1.62 0.203	12.51 16.68	KM KM SEC SEC
AZ REŠ Ra res	50.00 50.00	53.52 16.27	M M

KNW DESION PR	RENEIERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES PA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE	7.00 0.080 3.0 50.00 150.00 7.2 435.0 75.0 7.0 3.0 3.00	22.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB
SIGMAX	300.0 5.00	3.00	DEG K. BB
COMPUTED SYST	EM PARAMETERS	-12.00	DB DB
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	SEMI-FOCUSED 2.43 0.07 12.00 4.80 8.2 584	1.35	M WATTS KHZ KHZ MHZ
NCA	4 2	1	
NO. OF FIL CHAN CAP	234 0.67	2.36	MBITS/SE
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	137.96 8 11.69 14.56 1.62 0.203 50.00 150.00	12.51 16.68 53.52 48.80	KM KM SEC SEC M M

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE ARER LENGTH	7.00 136.99 150.00 0.080 7.2 435.0 3.0	22.00	DEG M M M KM/SEC KM M
APER EFF LOSS FACTOR SIGMAX SIGMIN NOISE FIG REC TEMP SIG/NOISE	75.0 7.0 5.00 -5.00 3.0 3.0 3.00	3.00 -12.00	PERCENT DB DB DB DB DEG K DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW	UNFOCUSED 2.43 0.07 12.00 4.80 8.2	1.35	M WATTS KHZ KHZ MHZ
NCAP NCA	11 11 1	1	
ND. DF FIL CHAN CAF	85 0.24	0.86	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH	137.96		KM
CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL	11.69 14.56 1.62 0.203	12.51 16.68	KM KM SEC SEC
HZ RES RA RES	136.99 150 00	146.65 48.80	IN M

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
COVERAGE AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR	7.00 50.00 50.00 7.2 435.0 6.0 75.0 7.0	22.00	DEG M M M KM/SEC KM M PERCENT DB
SIGMAX SIGMIN	5.00	3.00	DB DB
NOISE FIG	3.0	14.00	DE
REC TEMP	300.0		DEG K
SIGNADISE	3.00		DВ
COMPUTED SYSTI	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRCC GAIN	SEMI-FOCUSED 1.21 0.21 6.00 2.40 24.6 292	4.04	M WATTS KHZ KHZ MHZ
NCA	4	1	
NO. OF FIL	117	41 1	
CHAN CAP	2.01	7.09	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH	153.58		KM
CELL WIDTH	5.84	6.26	КМ
CELL LENGTH	29.12	33.37	KM
SCAN TIME	0.81		SEC
IINE/CELL	0.203		SEU

SCAN TIME TIME/CELL AZ RES RA RES

53.52 16.27

M M

62

0.203 50.00 50.00

RAW DESIGN PARAMETERS

PARAMETERS	•	VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE REC TEMP	7.00 0.080 6.0 50.00 150.00 7.2 435.0 75.0 7.0 3.00 3.00 5.00 5.00	22.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB
SIGMIN	-5.00	-12.00	DB
COMPUTED SYSTE SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NCA ND. OF FIL CHON COP	M PARAMETERS SEMI-FOCUSED 1.21 0.07 6.00 2.40 8.2 292 4 5 117 0.47	1.35 1 2.35	M WATTS KHZ KHZ MHZ MHZ
Stutt Cla			
COVERAGE AND R	ESOLUTION		
SWATH CELLSZSCAN	153.58 4		KM
CELL WIDTH	5.84 29.12	6.26 33.37	KM KM

CELL LENGTH 29.12 - S (0.81 0.203 50.00 150.00 TIME/CELL AZ RES 53.52 48.80 RA RES

SEC SEC

M М

63

÷..

Q

PARAMETERS		VALUES	UNITS
ANGLE SPAN AZ RES RA RES LAMBDA GRD VEL ALTITUDE APER LENGTH APER EFF LOSS FACTOR SIGMAX SIGMIN NDISE FIG REC TEMP SIG/NDISE	7.00 136.99 150.00 0.080 7.2 435.0 75.0 7.0 5.00 -5.00 3.0 3.00	22.00 3.00 -12.00	DEG M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FB RF BW PROC GAIN NCAP	UNFECUSED 1.21 0.07 6.00 2.40 8.2 107 11	1.34	M WATTS KHZ KHZ MHZ
NCA NO DE ETI	1.	<u>1</u>	
CHAN CAP	0.24	0,86	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH	153.58 4 5 84	6.26	KM KM
CELL LENGTH SCAN TIME TIME/CELL	29.12 0.81 0.203	33.37	KM SEC SEC
AZ RES RA RES	136.99 150.00	146.65 48.80	M - M

• .
ļ

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NDISE FIG SIG/NDISE REC TEMP SIGMAX SIGMIN	22.00 0.080 3.0 50.00 7.2 435.0 75.0 7.0 5.0 3.00 3.00 -12.00	37.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EN PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP NCA NO. OF FIL CHAN CAP	SEMI-FOCUSED 5.25 0.44 12.00 4.80 8.0 626 2 1 250 2.26	2.23 <u>1</u> 4.90	M WATTS KHZ KHZ MHZ MHZ
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	161.09 17 12.51 7.71 1.74 0.102 50.00 50.00	14.52 10.39 58.05 31.12	KM KM SEC SEC M M

RAW DESIGN PARAMETERS

. . . .

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.080 3.0 50.00 150.00 7.2 435.0 75.0 7.0 3.00 3.00 3.00 -12.00	37.00 -15.00	DEG M M M M KM/SEC KM PERCENT DB DB DB DB DEG K DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN	SEMI-FOCUSED 5.25 0.09 12.00 4.80 2.7 626	0.47	M WATTS KHZ KHZ MHZ
NCA NCA MO. DF FIL CHAN CAP	2 250 0.75	<u>1</u> 1.63	MBITS/SEC
COVERAGE AND (RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 12.51 7.71 1.74 0.102 50.00	14.52 10.39 58.05	KM KM SEC SEC M
RA RES	150.00	93.37	М

66

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.080 3.0 147.60 150.00 7.2 435.0 75.0 3.0 3.00 3.00 3.00 3.00 -12.00	37.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DEG K DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP	UNFDCUSED 5.25 0.09 12.00 4.80 2.7 212 6	0.47	M WATTS KH2 KH2 MH2 MH2
NCA NO. OF FIL CHAN CAP	1 85 0.26	1 0.55	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	161.09 17 12.51 7.71 1.74 0.102 147.60	14.52 10.39 171.36	KM KM SEC SEC M
KE KEQ	100.00	72.21	••

RAW DESIGN PARAMETERS

÷.,

PARAMETERS	•	VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.080 6.0 50.00 7.2 435.0 75.0 7.0 3.0 3.00 3.00 -12.00	37.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PROC GAIN NCAP	SEMI-FOCUSED 2.63 0.28 6.00 2.40 8.0 313 2	1.40	M WATTS KHZ KHZ MHZ
NCA NO. OF FIL CHAN CAP	1 125 2.40	<u>1</u> 5.19	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL	170.14 9 6.26 15.41 0.87 0.097	7.26 20.77	KM KM SEC SEC
RA RES	50.00	31.12	nu Na Maria

68

RAW DESIGN PARAMETERS

2

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	22.00 0.080 6.0 50.00 150.00 7.2 435.0 7.0 3.0 3.0 3.00 3.00 -12.00	37.00 0. -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DEG K DB DEG K DB
COMPUTED SYSTI	EM PARAMETERS		
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD PF BW PROC SAIN NCAP NCA NO. OF FIL CHAN CAP	SEMI-FOCUSED 2.63 0.09 6.00 2.40 2.7 313 2 125 0.80	0.47 <u>1</u> 1.73	M WATTS KHZ KHZ MHZ MHZ
COVERAGE AND	RESOLUTION		
SWATH	170.14		км

SMHIH	170.14		ND
CELLS/SCAN	9		
CELL WIDTH	6.26	7,26	КM
CELL LENGTH	15.41	20.77	КM
SCAN TIME	0.87		SEC
TIME/CELL	0.097		SEC
AZ RES	50.00	58.05	M
RA RES	150.00	93.37	M

RAW DESIGN PARAMETERS UNITS PARAMETERS VALUES ANGLE SPAN 22.00 37.00 DEG 0.080 М LAMBDA М APER LENGTH 6.0 AZ RES 147.60 М RA RES 150.00 М GRD VEL KM/SEC 7.2 ALTITUDE 435.0 КM APER EFF 75.0 PERCENT LOSS FACTOR 7.0 DB DB NDISE FIG 3.0 SIG/MOISE 3.00 DB DEG K REC TEMP 300.0 SIGMAX 3.00 0. DĒ SIGMIN -12.00-15.00 \mathbf{DE} COMPUTED SYSTEM PARAMETERS SYSTEM TYPE: UNFOCUSED APER HEIGHT 2.63 M XMIT PWR 0.47 WATTS 0.09 6.00 PRF KHZ 2.40 KHZ FD RF BW MHZ 2.7 PROC GAIN 1065 1 NCAP 1 NCA. NO. OF FIL 42 0.59 👘 CHAN CAP 0.27 MBITS/SEC COVERAGE AND RESOLUTION 170.14 KΜ SWATH CELLS/SCAN - 9 6.26 KΜ CELL WIDTH 7,26 15.41 20.77 КM CELL LENGTH 0.87 SEC SCAN TIME SEC TIME/CELL 0.097 HZ RES 147.60 171.36 M

RA RES

70

150.00

93.37

М

SUMMARY	TABLE 4	0
---------	---------	---

RAW DESIGN PARAMETERS

- --

1	VALUES	UNITS
10.00 0.214 6.0 50.00 150.00 7.2 435.0 75.0 7.0 3.0 3.00 3.00 12.00 -5.00	20.00 5.00 -10.00	DEG M M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB
EM PARAMETERS		
SEMI-FOCUSED 2.88 0.03 6.00 2.40 5.8 788	0.25	M WATTS KHZ KHZ MHZ
8 10 315 0.45	5 0.97	MBITS/SEC
RESOLUTION		
116.54 2 15.75 33.28 2.19 1.094 50.00	16.51 36.55 52.40	KM KM SEC SEC M
	10.00 0.214 6.0 50.00 150.00 7.2 435.0 7.0 3.0 3.00 3.15 0.45 RESOLUTION 116.54 2.19 1.094 50.00 150.00 150.00	VALUES 10.00 20.00 0.214 6.0 50.00 150.00 7.2 435.0 7.0 3.0 3.00 3.00 3.00 3.00 5.00 -5.00 -10.00 EM PARAMETERS SEMI-FDCUSED 2.88 0.03 0.25 6.00 2.40 5.8 788 8 10 6 315 0.45 0.97 RESOLUTION 116.54 2 15.75 16.51 33.28 36.55 2.19 1.094 50.00 52.40 150.00 52.40

71

	SUMMARY	TABLE 41	•
RAW DESIGN PARAM	IETERS	•	
PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG	$10.00 \\ 0.214 \\ 10.0 \\ 50.00 \\ 150.00 \\ 7.2 \\ 435.0 \\ 75.0 \\ 7.0 \\ 3.0 \\ 3.0 \\ 3.0 \\ \end{array}$	20.00	DEG M M M KM/SEC KM PERCENT DB DB
SIG/NOISE REC TEMP SIGMAX SIGMIN	3.00 300.0 12.00 ~5.00	5.00 -10.00	DB DEG K DB DB
COMPUTED SYSTEM	PARAMETERS		
SYSTEM TYPE: SE APER HEIGHT XMIT PWR PRF FD RF BW PPDC GAIN	MI~FOCUSED 1.73 0.03 3.60 1.44 5.8 473	0.25	M WATTS KHZ KHZ MHZ
NCAP NCA ND DE ETI	10 2 <u>1</u> 189	3	
CHAN CAP	0.37	0.81	MBITS/SEC
COVERAGE AND RE	SOLUTION		
SWATH CELLS/SCAN	139.81 L		KM
CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL	9.45 55.46 1.31 1.313	9.51 60.91	KM KM SEC SEC
AZ RES Ra res	50.00 150.00	52.40 76.16	M M
· · · · · · · · · · · · · · · · · · ·		and the second	

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA RES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP SIGMAX SIGMIN	$\begin{array}{c} 20.00\\ 0.214\\ 6.0\\ 50.00\\ 150.00\\ 7.2\\ 435.0\\ 75.0\\ 7.0\\ 3.0\\ 3.00\\ 3.00\\ 300.0\\ 5.00\\ -10.00\end{array}$	30.00 2.00 -15.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB DB DB DB DB DB DB DB
COMPUTED SYST	EM PARAMETERS	10100	22
SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN NCAP NCA	SEMI-FBCUSED 4.96 0.04 6.00 2.40 2.9 826 4 5	0.25 2	M WATTS KHZ KHZ MHZ
ND. OF FIL CHAN CAP	330 0.57	0.98	MBITS/SEC
COVERAGE AND	RESOLUTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES RA RES	115.94 4 16.51 21.23 2.29 0.573 50.00 150.00	17.92 25.00 54.25 102.61	KM KM SEC SEC M M

	SUMMARY	TABLE 43	· · ·
RAW DESIGN PARAMET	ERS		
PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH AZ RES RA PES GRD VEL ALTITUDE APER EFF LOSS FACTOR NOISE FIG SIG/NOISE REC TEMP	$\begin{array}{c} 20.00\\ 0.214\\ 10.0\\ 50.00\\ 150.00\\ 7.2\\ 435.0\\ 75.0\\ 75.0\\ 3.0\\ 3.0\\ 3.00\\ 300.0\\ \end{array}$	30.00	DEG M M M KM/SEC KM PERCENT DB DB DB DB DB DB
SIGMAX SIGMIN	5.00 -10.00	2.00 -15.00	DB DB
COMPUTED SYSTEM PR	RAMETERS		
SYSTEM TYPE: SEMI APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN	FDCUSED 2.98 0.04 3.60 1.44 2.9 495	. 0.25	M WATTS KHZ KHZ MHZ
NCAP NCA	5 5	1	
NO. OF FIL CHAN CAP	198 0.48	0.82	MBITS/SEC
COVERAGE AND RESOL	UTION		
SWATH CELLS/SCAN CELL WIDTH CELL LENGTH SCAN TIME TIME/CELL AZ RES	131.35 2 9.91 35.39 1.38 0.688 50.00	10.75 41.67 54.25	KM KM SEC SEC M
PA PES	150 00	102 61	м

APPENDIX B

COMPUTERIZED DESIGN PROGRAM FOR THE SCANNING SAR

(SCANSAR)

DESIGN OF A SCANNING SAR 0010CSCANSAR THIS PROGRAM WAS PREPARED BY 00200 00300 JOHN P. CLAASSEN 0040C 00500 DIMENSION THETAD(2), THETAR(2), SIGMAX(2), RA(2), 0060 0070 RR(2), CC(2), WT(2), TYPE(4), GR(2), GA(2), R(2), 2. 0080 & SIGMIN(2) REAL NF, KT, LOSS, K 0090 DATA C, DEG, YES, PI, TYPE, THOUS, K, JJ/ 0100 & 3.0E08, 0.0174532925, 'YES', 3.141925, 0110 'UNFECU','SED', 'SEMI-F','ECUSED', 1000.0, 1.38E-23, 0120 8: © D177177077040/ 0130 ARITHMETIC ASSIGNMENT STATEMENT 0140C 0150 TAN(X) = SIN(X)/COS(X)0160C SPPRESS CAPRIAGE RETURNS ON READS 0170 CALL FPARAM(3,JJ) INPUT PARAMETERS(GEOMETRY) 01800 0190 WRITE(6,1000) 10 FORMAT(////1X, 'DESIGN OF A SCANNING SAR HAVING', 0200 1000 0210 8. INPUT DESIGN PARAMETERS AS FOLLOWS:/// "APERTURE LENGTH (M) "> 0220 8. READ(5+1001) AL 0230 0240 1001 FORMAT(F8.2) WRITE(6,1002) FORMAT(1X, OPERATING WAVELENGTH (M) () 0250 0260 1002 0270 READ(5,1001) ωL 0280 WRITE(6,1003) 0290 1003 FORMAT(1X; MIN AND MAX VIEW ANGLES (DEG) /) READ(5,1008) 0300 THETAD 0310 1008 FURMAT(2F8.2) 0320 WRITE(6,1004) 0330 1004 FORMAT(1X) AZIMUTH RESOLUTION (M) () 0340 READ(5,1001) RA(1) WRITE(6,1005) 0350 FORMAT(1X) (RANGE RESOLUTION (M) () 0360 1005 READ(5,1001) RR(1) 0370 0380 WRITE(6,1006) 0390 1006 FORMAT(1X, 'GROUND VELOCITY (KM/SEC) /) 0400 READ(5,1001) VGP 0410 WRITE(6,1007) 0420 1007 FORMAT(1X, 'SPACECRAFT ALTITUDE (KM) 10 READ(5,1001) ZP 0430

Figure B-1a. Fortran Listing for SCANSAR.

...

04400	
04400	SCHEE WHRITHBLES
0450	VG = VGP+TKOUS
0460	Z = 2P+THOUS
0470C	UNFOCUSED PRESUMPTION
0480	ITYPE = 1
0490C	COMPUTE MAX AND MIN RANGE
0500	BO 20 I=1.2
0510	THETAR(I) = THETAD(I)+DEG
0520	P(I) = 7/00S(THETAP(I))
0520 20	CONTINUE
0030 20	CURTINGE EN LY EDONOCO I IMITOTION
00400	
0000	
0560	IF(RHFF .LT. RH(1)) GU TU 30
0570	WRITE(6,2000)
0580 2000	FORMAT(1X; 'INADEQUATE APERTURE LENGTH TO';
0590 %	<pre>/ ACHIEVE RESOLUTION. INPUT DATA AGAIN!///)</pre>
0600	GO TO 10
06100	UNFOCUSED LIMITATION
0620 30	$RAUF = SORT(WL \Rightarrow R(2)/2.0)$
06300	ESTABLISH SYSTEM TYPE
0640	TECRAUE 1T RACING OF TO 40
0040	DOTTONY OF THE YOU TO THE STORES STORE PENITOER
06300	TER - 2 ANGADO(1) (C(1) (U)
0000	DPD = 2.07V07RH(1)/R(1)/WL
0670	$RH(2) = DED + OU + R(2)/2 \cdot U/AB$
0680	ITYPE = 3
0690	GD TD 45
0700 40	RA(1) = RAUF
0710C	UNFOCUSED SYST燃料 REQUIRED
0720	DFD = 2.0+VG+RA(1)/4(1)/WL
0730	RA(2) = DFD+WL+R(2)/2.0/VG
0740C	APERTURE HEIGHT TO SATISFY DOPPLER SAMPLING
07500	REGITREMENT
0760 45	$FII = 2 \cdot 0 + V F / F I$
0770	NETLT = ED/DED + 0 5
0700	AN IET A TERBERTADIONATENTETERIONALIÍZE
07000	AR - IV.VTPYRKC/YTRIKTRETREKC//YWE/C OUECK WIIN RESIGNER
07900	UDITECK WITH DESIGNER
0800	WRITE(5:3000) HH
0810 3000	FORMATCIX, THE APERTURE HEIGHT IS', F6.2, M. ',
0820 %	1 DO YOU WISH TO INCREASE THE HEIGHT1/)
0830	READ(5:3001) ANS
0840 3001	FORMAT(A3)
0850	IF(ANS .NE. YES) GD TD 70
0860 50	READ(5,1001) AHNEW

Figure 8-1b. Fortran Listing for SCANSAR.

REPRODUCIBILITY OF THE

0870	IF (AHNEW .GT. AH) GO TO 60
0880	WRITE(6,3002)
0890 3002	FORMAT(1X, 'NEW APERTURE HEIGHT MUST BE LARGER THAN',
0900 &	' THE DLD. TRY AGAIN! //>
0910	60 TO 50
0920 60	AH = AHNEW
0930 70	BETAH = ML > AH
0940C	COVERAGE PARAMETERS
0950	NCELL = $(THETAR(2) - THETAR(1)) / BETAH + 0.5$
0960	BETAL = WL/AL
0978	DO = 1 = 1 = 2
0980	BR(I) = P(I) + BETAL / THOUS
0990	BR(T) = R(T) + BETAHZCOS(THETAR(T)) ZTHOUS
1000 80	CONTINUE
1010	SWATH = $(R(2) + S^{T}N(TKETAR(2)) - R(1) + S^{T}N(THETAR(1)))/THOUS =$
1020 8	(SP(2) + SP(1))/2.0
10300	TIMING
1040	TSUEL = $GB(1)/VG+THOUS$
1850	
1060	TECTOPUL ST. 1.0/DED) ST TO SE
1020	
1080 3003	FORMAT(//1X+'INSUFFICIENT TIME TO ACHIEVE RESPONDENT.
1090 8	A TRY AGAIN(22)
1100	GR TO 10
11100	PHISE REPETITION ERECHENCY
1120 85	$\mathbf{MFIR} = \mathbf{RETRH + P(2) + Ten(THETAP(2))}$
1130	$PPE = C_{Z}(A_{D} A_{D} E_{D} E_{D})$
11400	PANGE RESOLUTION
1150	$\overline{\mathbf{RP}} = \mathbf{PP}(1) + \mathbf{SIN}(T + \mathbf{FTAP}(1))$
1160	PP(2) = Dextin(ThereP(2))
11700	BANDWIDTH FEQUIDED
1180	BM = CZ2.0ZBZTHOUS++2
11900	PROCESSING GAIN
1200	NEP = PPEZDED +0.5
12100	NO. OF CELLS AVAILABLE FOR AVERAGING
1220	NCAP = TOFIL + DED + 0.5
12300	NO. OF CELL AVERAGABLE BEENDE
12400	DEEDCUSING IN GZIMUTH
1250	$Y = 7 \bullet TON(THETOD(2) - PETAM, 2 B)$
1260	$\mathbf{DF}(\mathbf{Y} = -\mathbf{Y} + 7 \bullet TAN(THETAP(2) + PETCH(2) 0)$
1276	BELY = VEZDED
1280	$\frac{2}{10} = 2 \frac{1}{10} \frac{1}{1$
1290	$\mathbf{P}_{\mathbf{r}} = \mathbf{P}_{\mathbf{r}} \mathbf{O}_{\mathbf{r}} $
	THOM THAT AND A THAT A CALLER THAT A CALLER AND A

\$

Figure B-1c. Fortran Listing for SCANSAR.

1380C	INPUT POWER PARAMETERS
1310	URI(END)44000/ EDDMAT((Y-/)8000 CONTOD (DD)/)
1330	PREPRINTAT LUSE FRUIDE (DD7) DEAR(5.1001) DS9
1340	Meiner (14002)
1350 4002	FORMATCINAL SEFECTIONE (DB)/)
1360	READ(5,1001) NF
1370	WRITE(6+4003)
1380 4003	FORMAT(1X,'SIGNAL/NDISE (DB)/)
1390	READ(5,1001) SN
1400	WRITE(6:4004)
1410 4004	FORMAT(1X, MAX SCATTERING CHEFFICIENTS (DB)/)
1420	READ(5,1008) SIGNAX
1430	WRITE(6,4007)
1440 4007	FORMAT(1X+1MIN SCATTERING COEFFICIENTS (DB)1)
1450	READ(5+1008) SIGMIN
1460	WRITE(6,4005)
1470 4005	FURMAT(13, APPERTURE EFF (PERCENT))
1480	
1490	HEFF = HEFF/100.0
1300 1510 4004	WRITELS(4005) Bernadizing (decenter indut tempédature (dec VSC)
1500 4000	FURTHING RELEIVER INFUT (ENTERNIUME (DEG K)')
15300	CIMPLITY TEAC DEMONSTREE DAME AND CLEANEL COOOCITY
1540	$\mathbf{CAPTID} = \mathbf{A} \mathbf{A} \mathbf{D} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{A} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{A} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} C$
15500	NOL OF BITS PER CELL
1560	NBITS = $(SIGMRX(1) - SIGMIN(2))/3.0183 + 0.5$
1570	DD 90 I = 1.2
1580	WT(I) = FACTUR+P(I)++4/(10.0++(SIGMIN(I)/10.0)+RA(I)+RR(I)+NGP+
1590 &	(AL+AH+AEFF)++2)
1600	CC(I) = GR(I)+GA(I)/(RA(I)+RR(I))+NBITS/TCELL
1610 90	CONTINUE
16200	LIST SYSTEM DESIGN PARAMETERS
1630	WPITE(6,5000) THETAD, WL, AL, RA(1), RR(1),
1640 &	V5P, ZP, AEFF+100.0, LUSS, NF, SN, TEMP, SIGMAX, SIGMIN
1650 5000	FURMAT(>>>20X; SUNMARY TABLE >>>1X; RAW DESIGN PARAMETERS >>>
1660 &	1X, PARAMETERS 17X, VALUES , 10X, UNITS ///
1670 &	18, HNGLE SPHN' +4X, 2(F10.2,5X) + DEG'/
1201 6	1X3'LENDEDF 36X3F10.33CUA3'E'/
1070 &	10,7 DEEK LENDIH (2007-10,1)2007 M/2
1710 Q	10, D2 K20 (00)F10.2(00) () / 10, D3 D2(1.00)F10 () .0(0)/()//
4710 Q 1720 &	10, KR REG (003F10/23200) H / 19./EDR VEL / 79.F10 1.2009./KM/920//
1730 2	1X************************************
1740 %	1X* APER FEE1*6X*E10.1*20X* PERCENT/2
1750 8	1X*/LDSS FACTER1*3X*F10.1*20X*/DB1/
1760 &	1X, 'NDISE FIG', 5X, F10.1, 20X, 'DB'/

Figure B-1d. Fortran Listing for SCANSAR.

1770	ŧ.	1X,'SIG/NOISE',5X,F10.2,20X,'DB'/
1780	ę.	1X; /REC_TEMP1; 6X; F10.1; 20X; /BEG_K//
1790	8.	1X; (SIGMAX', 8X, 2(F10, 2, 5X); DB(/
1800	8	1X; 'SIGMIN';8X;2(F10.2;5X); 'DB'//)
18100	2	COMPUTED PAPAMETERS
1820		WRITE(6,5001) TYPE(ITYPE),TYPE(ITYPE+1),AH, WT,
1830	2	PRF/THOUS, FD/THOUS, BW, NGP, NCAP, NCA, NFILT, CC
1840	5001	FORMAT(1X)/COMPUTED SYSTEM PARAMETERS///
1850	8	1X, 'SYSTEM TYPE: ',2X,2A6/
1860	2	1X, APER HEIGHT13X, F10.2, 20X, 1M1/
1870	2:	1X;/XMIT_PWR/;6X;2(F10.2;5X);/WATTS//
1880	۶.	1X, (PRF1,11X,F10.2,20X, (KHZ1/
1890	&	1X, 'FD', 12X, F10.2, 20X, 'KHZ'/
1900	• &	1X, /RF_BW/, 9X, F10.1, 20X, /MHZ//
1910	2,	1X,/PRDC GAIN/,5X,110/
1920	&	1X * / NCRP1 * 1 0X * 11 0/
1930	· \$.	1X; 1NCA1; 11X; 110/
1940	2,	1X;/NO. OF FIL/;4X;I10/
1950	&	1X, 'CHAN_CAP', 6X, 2(F10.2, 5X), 'MBITS/SEC'///)
1960		WRITE(6,5002) SWATH, NCELL, GA, GR, TSLEW, TCELL, RA, PR
1970	5002	FORMAT(1X, COVERAGE AND RESOLUTION///
1980	&	1X,'SWATH',9X,F10.2,20X,'KM'/
1990	&	1X, CELLS/SCAN1, 4X, II0/
2000	8	1X, CELL WIDTH: 4X, 2(F10.2,5X), (KM//
2010	t .	1X;/CELL_LENGTH/;3X;2(F10.2;5X);/KM//
2020	8.	1X,/SCAN_TIME/,5X,F10.2,20X,/SEC//
2030	8.	1X;/TIME/CELL1;5X;F10.3;20X;/SEC1/
2040	&	1X,/AZ_RES1,8X,2(F10.2,5X),/M//
2050	å	1X,/RA_RES(,8X,2(F10.2,5X),/M////
2060	8	1X/WANT TO DESIGN ANOTHER DNE//)
2070		READ(5:3001) ANS
2080		IF(ANS .EQ. YES) GD TD 10
2090		WRITE(6,9000)
2100	9000	FORMAT(//1X, 'VERY INTERESTING!', ' AUFWIEDERSEHEN'/)
2110		STOP
2120		FNT

Figure B-1e. Fortran Listing for SCANSAR.

APPENDIX F

9

RSL TECHNICAL REPORT 295-3

VOLUME IV

INE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER. Raymond Nichols Hall

Lawrence, Kansas 66045

2291 Irving Hill Drive-Campus West

Telephone:

COMB FILTER THEORY FOR USE IN A SCANNING SYNTHETIC APERTURE RADAR SIGNAL PROCESSOR (SCANSAR)

Remote Sensing Laboratory RSL Technical Memorandum 295-7

Mark Komen

March _ 1976

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

IIII REMOTE SENSING LABORATORY

TABLE OF CONTENTS

. 1

Page

ABSTR	ACT	11
1.0	INTRODUCTION	1
2.0	THE COMB FILTER PROCESSOR	1
3.0	ANALYSIS OF A COMB FILTER DELAY LINE	2
4.0	ULTIMATE USE IN THE SAR PROCESSOR	7
REFERE	NCES	10

LIST OF FIGURES

Figure	1	Comb filter passbands showing carrier and its side- bands (zero phase shift).	8
	2	Comb filter passbands phase-shifted to account for Doppler shifting.	8
	3	A comb filter delay line.	8
	4	A simplified comb filter delay line.	9
	5	Sin nx/sin x comb response centered on the harmonics of the received pulse.	9
	6	Representation of comb filter Doppler band coverage.	9

i

ABSTRACT

A great deal of interest has been shown in the development of a spaceborne synthetic aperture radar capable of wide-swath coverage. Although digital processors are presently quite popular, analog processors offer a means for processing radar images on-board and in real time. The processor discussed herein is based on the idea of comb filters implemented by recursive use of delay lines. In this form, the various range elements are processed sequentially as a signal circulates around a delay line and is added to the incoming signal. No memory is required for the individual signal elements as in processors that first accumulate all the elements required for the synthetic apertures for a bank of range cells and then process them in a batch mode. The resulting reduction in processor size, complexity, and power consumption makes the comb filter processor concept an attractive possibility for use in a spaceborne system.

ii

COMB FILTER THEORY FOR USE IN A SCANNING SYNTHETIC APERTURE RADAR SIGNAL PROCESSOR (SCANSAR)

Mark Komen

1.0 INTRODUCTION

A real-time spaceborne synthetic-aperture radar could provide the wide-swath coverage necessary for the water resources and sea ice missions, and other missions requiring frequent imaging. With a relatively modest resolution, the radar has enough time to build many images of areas on the ground and can scan its beam to look at areas at different ranges.

Basically, SAR data processing involves correlating chirp waveforms generated by varying Doppler shifts as the radar travels past targets on the ground. Today, digital processing of SAR data has become widely used thanks to its speed, capacity, reliability, and cost effectiveness. Obviously, a satellite-borne processor must be compact and fast enough to provide data in real time. Although digital processors have the necessary speed, their large memory requirements and the subsequently large number of operations involved make them questionable candidates for modestresolution radars when considering power consumption and spacecraft size constraints.

A very credible alternative to the digital processor is a serial analog processor using comb filters to process the returns from different azimuth elements (range elements at a given azimuth being processed sequentially). The comb filter has a set of passbands spaced as the Fourier components of the received pulse, thereby permitting narrow-band Doppler filtering while retaining the wideband characteristic of the pulse train necessary to retain range resolution. This memorandum concerns itself with an analytical description of the theory behind a comb filter processor.

2.0 THE COMB FILTER PROCESSOR

The great advantage of this type of processor is that it sequentially processes the data as it is received from the ground thus tremendously decreasing the amount of data storage space needed by the digital processor. The comb-filter processor is described in analog terms, but could be implemented digitally. If the integration time necessary to yield a required azimuth resolution is T and if the system pulse repetition frequency is F, then the number of pulses transmitted (and received) by the system during building of each synthetic aperture is given by

N = TF

In other words, the ground is illuminated by N pulses and by integrating these N returns, an image is constructed. In the comb filter, each return is delayed by the repetition period and summed with the next incoming return, this cycle being repeated until all N pulses have been added together. Only signals having the proper period add each time, the others drifting in and out of phase during integration.

The comb filter passbands are spaced such that they align with the Fourier components of the received pulse as in Figure 1. However, the effect of Doppler shift is to introduce an offset in the spectral components, so the comb filters must be phase-shifted by this same amount per Figure 2. The system then is composed of a set of comb filters, each tuned to accomodate the Doppler shifts from a different azimuth element such that the entire range of Doppler frequencies over an observed area on the ground is within the total passband of the processor.

As shown in Figure 3, a comb filter consists of a delay device, a tunable phase shifter, and a weighting amplifier. The delay device samples the first return and holds it for the proper period, the phase-shifter tunes the filter for the desired Doppler shift, and the weighting amplifier is used to reduce sidelobes in the sin X/X character of the comb teeth. After the proper number of received pulses has been integrated by the filter, the resulting composite waveform is then fed into a buffer for temporary storage.

3.0 ANALYSIS OF A COMB FILTER DELAY LINE

To examine what happens analytically during processing, refer to Figure 4 for a simplified version of the comb filter delay line. A pulse enters through the switch into a delay device where it is delayed for one repetition period. The delayed pulse is then phase-shifted and added to the next incoming pulse entering via the switch.

For pulses circulating the loop at some frequency w_n , the value of the output after N trips through is given by

$$\Sigma_{\alpha_{n}} \cos w_{n}^{\dagger}$$
+ $\Sigma_{\alpha_{n}} \cos [w_{n}(t - T) + \phi]$
+ $\Sigma_{\alpha_{n}} \cos [w_{n}(t - 2T) + 2\phi]$
+ \vdots
+ $\Sigma_{\alpha_{n}} \cos [w_{n}(t - NT) + N\phi]$

where T is a variable time delay and ϕ is a constant phase shift. It is desired to set a value for ϕ such that all cosine $(w_n t)$ terms will add in phase. ϕ must be less than 2π .

Examine the expression for an entering pulse and one that has been through the loop (both at frequency w_n):

$$a_n \cos w_n^{\dagger} + a_n \cos (w_n^{\dagger} + \phi - w_n^{\dagger})$$
.

For these quantities to add in phase

$$\phi - w_{\rm p} T = -2 \pi r$$

where r is some integer.

Therefore,

$$v_n = \frac{\phi + 2\pi r}{T}$$

Now looking at the expression for a pulse at frequency ${\bf w}_{\rm n}$ having been through the loop twice

$$\cos(w_{p}^{\dagger} + 2\phi - 2w_{p}^{\dagger})$$
,

It can be seen that

$$2(-\phi + w_T) = 2\pi s$$
.

To add in phase with the other pulses (s is an integer)

$$w_n = \frac{\phi + \pi s}{T}$$

Where r = 2s, the two equations for w_n are identical.

It has been shown that

$$w_n T - \phi = 2 \pi r$$
.

Looking at the next harmonic w_{n+1}

$$w_{n+1} T - \phi = 2\pi (r + 1)$$

 $w_{n+1} = \frac{\phi + 2\pi (r + 1)}{T}$

Noting that $w_0 = \frac{2\pi}{1}$ where w_0 is the pulse repetition frequency

$$w_{n+1} = \frac{\phi}{T} + (n+1) w_0$$

$$w_n = \frac{\phi}{T} + n w_0 \qquad \text{where } n = r$$

From this result, it can be seen that a constant phase shift introduced at some frequency w_n will appear in all the harmonics of that frequency.

At this point, suppose a small drift from w_n is introduced

 $w = w_n + \delta_n$

Rewriting the circulation expression for N trips through the loop:

$$a_{n} \cos (w_{n} + \delta_{n}) t$$

$$+ a_{n} \cos [(w_{n} + \delta_{n}) (t - T) + \phi]$$

$$+ a_{n} \cos [(w_{n} + \delta_{n}) (t - 2T) + 2\phi]$$

$$+ \vdots$$

$$+ a_{n} \cos [(w_{n} + \delta_{n}) (t - iT) + i\phi]$$

$$+ - \vdots$$

$$+ a_{n} \cos [(w_{n} + \delta_{n}) (t - NT) + N\phi].$$

Examining the expression after one trip through the loop by opening the brackets

$$(w_n + \delta_n) (t - T) + \phi = w_n t + \delta_n t - w_n T - \delta_n T + \phi$$
$$w_n T = \phi + n w_0 T$$

from before, and

$$w_0 T = 2\pi$$

 $n w_0 T = 2n\pi$.

Hence,

 $w_n T = \phi + 2n\pi$.

However, phases differing by multiples of 2π can be ignored, so

or

$$w_n T = \phi$$

and
$$(w_n + \delta_n) (t - T) + \phi = w_n t + \delta_n t - \phi - \delta_n T + \phi$$
$$= w_n t + \delta_n (t - T)$$

Expanding the brackets for the ith trip through the loop

$$(w_n + \delta_n) (t - iT) + i\phi = w_n t - iw_n T + \delta t - i\delta T + i\phi$$
$$= w_n t - i(\phi + 2\pi n) + \delta_n t - i\delta_n T + i\phi$$
$$= w_n t + \delta(t - iT)$$

Rewriting the circulation expression up to the Ith iteration as exponentials

$$\sum_{n=1}^{1} jw_{n}^{t} j_{\delta}(t-iT)$$

$$\sum_{n=1}^{\infty} \alpha_{ni}^{n} e^{-e}$$

$$e^{-iT}$$

If $a_{ni} = a_n$ for all i

	j(w_ + 6_)†	<u>Ι</u> -jiδ_Τ
Σ	αຼe [™] ກ′	Σe [°] n
n	11. I.I.	i

Recognizing the second summation as the sum of a geometric series of the

form

$$\sum_{i}^{I} r^{i} = \frac{1 - r^{I}}{1 - r} ,$$

the expression becomes

$$\sum_{n} \alpha_{n} e^{j(w_{n} + \delta_{n}) t} \left(\frac{1 - e^{-jI} \delta_{n} T}{\frac{-j}{\delta_{n}} T} \right)$$

Manipulating the quantity in the parentheses and using Euler's formula, the final form of the expression is

$$\sum_{n} \alpha_{n} e^{j(w_{n} + \delta_{n}) t} \left(\frac{\sin \underline{IT} \delta}{2} \right) e^{j(\underline{I-1}) T \delta}$$

$$i(w_{n} + \delta_{n}) t$$

Note that $\sum_{n}^{\infty} a_{n} e^{j(N-1)}$ represents the original signal w_{n} with the δ_{n} offset. The $e^{j(1-1)} \frac{T\delta}{2}$ term can be neglected since T and δ are both small quantities. The sin nx/sin x expression shows the comb response. There will be a maximum where

 $\sin \frac{T\delta}{2} = 0$

or where

$$\frac{T\delta}{2} = m\pi$$

For small $\frac{T\delta}{2}$,

$$\frac{\sin \frac{IT\delta}{2}}{\sin \frac{T\delta}{2}} = \frac{\frac{IT\delta}{2}}{\frac{T\delta}{2}} = I$$

Therefore, there will be a peak of height I where

$$\delta = \frac{2m\pi}{T} = w_0 m$$

See Figure 5.

From this, it can be seen that regardless of the modulating signal, as long as the pulse repetition frequency is the same, there will be an offset δ where there is a drift δ_n from w_n, and a consequent reduction in amplitude.

Introducing the weighting amplifier with gain K as originally shown in Figure 3 will modify the circulation expression which now becomes

for the ith trip through the loop where K_i is the amplifier gain function. Standard methods in antenna and filter design can be used to establish weights $[K_i]$ that give desired sidelobe suppression, with the usual widening of the main response.

4.0 ULTIMATE USE IN THE SAR PROCESSOR

As stated previously, the SAR processor must separate out returns from different azimuth elements. This is accomplished by setting up a bank of comb filters, each tuned to a different Doppler frequency such that the bandwidth of the entire banks is at least equal to the expected Doppler bandwidth of returns from the ground. As the satellite moves at its given velocity, the shift will also change at some given rate. Therefore, the returns from a target on the ground will appear in several of the filters as the satellite travels. Figure 6 illustrates the Doppler band coverage. The purpose of each comb filter is to separate these different Dopplers from different along-track elements.

Since the Doppler shift for any point target decreases linearly in frequency with time as the radar passes the target, the processor must take this into account. This can be done either of two ways: (1) change the phase shift in the comb filter feedback path to track the varying Doppler shift; or (2) convert the varying frequency to a fixed frequency by beating the incoming signal with an appropriate reference frequency varying at the same rate as the signal from a point target.

Mechanization of the serial processor is the subject of other reports in this series.

33

ξ.,

÷.,

 \odot

Figure 4. A simplified comb filter delay line.

Figure 5. Sin $nx/sin \times comb$ response centered on the harmonics of the received pulse.

REFERENCES

 Bickel, H. J., "Spectrum Analysis With Delay Line Filters," IRE Wescon Convention Record, Part 8, pp. 59-67, 1959.

 Claassen, J. P., "A Short Study of a Scanning SAR For Hydrological Monitoring on a Global Basis," RSL Technical Report 295-1, University of Kansas Center for Research, Inc., September 1975.

- 3. Dome, George, <u>Private Communication</u>, University of Kansas Remote Sensing Laboratory.
- McMillan, S., "Synthetic Aperture Radar and Digital Processing," RSL Technical Memorandum 295-3, University of Kansas Center for Research, Inc., September 1975.
- 5. Westinghouse Electric Corporation, "Final Report Spaceborne SAR Pilot Study," Systems Development Division, Baltimore, MD., April 11, 1974.

VOLUME IV

RSL TECHNICAL REPORT 295-3

APPENDIX G

THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER Raymond Nichols Hall

2291 Irving Hill Drive—Campus West

Lawrence, Kansas 66045

Yelephone:

DETAILED SYSTEMS DESIGN FOR THE SCANNING SYNTHETIC-APERTURE RADAR (SCANSAR) USING COMB FILTER RANGE-OFFSET PROCESSING

Remote Sensing Laboratory RSL Technical Report 295-3

Mark J. Komen

July, 1976

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

1.2

REMOTE SENSING LABORATORY

ABSTRACT

With modest resolution requirements, a spacecraft synthetic aperture radar system can be developed which is capable of wide swath coverage. This is achieved by scanning the antenna beam outward in range to dwell on successive areas on the ground (scan or image cells). This scanning synthetic aperture radar (SCANSAR) can utilize the extra observation time brought about by this resolution to take several looks at areas on the ground and improve image interpretability.

The SCANSAR system discussed herein utilizes a comb filter approach to analog processing implemented by the use of serial analog memories as recursive delay lines. By this method, the various range elements are processed sequentially as a signal circulates around the delay line and is added to the incoming signal, thereby eliminating memory requirements for individual signal elements. Furthermore, the use of low power CMOS devices in the processor makes for small power consumption.

The angular swath coverages for the SCANSAR design are 6.7 to 22.5° to sense soil moisture and 22.1 to 37° for ice monitoring. Total swaths are 128.8 km and 150.2 km respectively. Azimuth resolution is 50 m in both swaths with the range resolution varying from 150 m at angles near the satellite track to 33 m at the far angles. The average transmitter power is approximately 15 watts and the total power consumption for a single-sided SCANSAR processor is around 200 watts.

TABLE OF CONTENTS

...!

ABST	RACT		i i
1.0	THE SCAN	SAR CONCEPT	1
	1.1	INTRODUCTION	1
	1.2	COVERAGE LIMITATIONS	1
	1.3	SCANSAR DESIGN THEORY	5
	1.4	INTERPRETABILITY CONSIDERATIONS	11
		• • • • • • • • • • • • • • • • • • •	
2.0	SYSTEM P	ARAMETERS	16
	2.1	INTRODUCTION	16
	2.2	PARAMETER SELECTION	16
	2.3	CONCLUSIONS	17
3.0	RADAR SY	STEM AND ANTENNA	22
	3.1	INTRODUCTION	22
	3.2	PULSE COMPRESSION TECHNIQUES	22
		3.2.1 Linear FM	22
		3.2.2 Phase-coding	23
	3.3	RECOMMENDED HARDWARE	26
		3.3.1 Power Output Amplifier	26
		3.3.2 Receiver Front-End	26
••••	3.4	ANTENNA CONSIDERATIONS	27

Page

ł

			rage
4.0	PROCESSO	R	28
	4.1	INTRODUCTION	28
	4.2	COMB FILTER CONCEPTS	28
	4.3	DESIGN CONSIDERATIONS	31
		4.3.1 PRF Diversity	31
		4.3.2 Doppler Slope	36
	4.4	SYSTEM DESIGN	40
· .		4.4.1 The Scanning Local Oscillator (SLO)	44
		a. SLO by Phase Shifting	44
		b. SLO by Balanced Modulators	46
		4.4.2 Divider Network	58
		4.4.3 The Filter Channel	58
		a. Serial Analog Memories	60
		b. Phase-Shifter	61
		c. Weighting	63
	•	d. Gain Stabilization	67
		e. Channel Summing Point	67
	4.5	DETECTION AND BUFFERING	70
•	4.6	TIMING AND CONTROL	74
	4.7	ALTERNATIVE PROCESSOR CONFIGURATION	74
	4.8	EDGE EFFECTS	76
	4.9	SUMMING THE LOOKS	82

iv

5.0 MOTION COMPENSATION

	raye
6.0 POWER AND SIZE	86
6.1 POWER CONSUMPTION	86
6.2 SIZE	91
7.0 CONCLUSIONS AND RECOMMENDATIONS	94
APPENDIX A	95
APPENDIX B	101
APPENDIX C	103
APPENDIX D	129
APPENDIX E	133

136

REFERENCES
LIST OF FIGURES

Figure	I	Pictorial concept of a scanning SAR.	2
	2	SAR geometry.	4
	3	Satellite isodops (top view).	7
	4	Image cell isodops.	7
	5	Pixel size.	13
	6a	The SGL volume.	13
	6 b		13
	7	A chirp generator and decoder using SAW dispersive delay lines.	24
	8	A pulse N $ au$ seconds long expressed in a binary phase code.	
	9	A phase-coded receiver.	25
	10	Comb filter passbands showing carrier and its side- bands (zero phase shift).	30
	11	Comb filter passbands phase-shifted to account for Doppler shifting.	30
	12	A comb filter delay line.	30
	13	Doppler slope geometry.	38
	14	RF to IF frequency translation showing RF bandwidth.	42
	15	RF bandwidth on 5 MHz filter channel carrier showing Doppler spread.	42
	16	Representation of comb filter coverage of Doppler spread.	42
	17	Basic processor.	43
. · · ·	18a	Mixer Input.	43
	185	Mixer Output.	43
	19	SLO.	47

Page

ţ

vī

			raye
ire	20	SLO using balanced modulators.	56
	21	Reference chirp generator.	57
	22	A comb-filter channel.	[.] 59
	23	Parallel channel SAM banks.	62
	24	All-pass phase shift network.	65
	25	Gain stabilization circuit.	68
	26	Channel summing point.	69
	27	Detector-low pass filter circuit.	71
	28	Buffer output system.	71
	29	Detailed buffer output system.	72
	30	An alternative filter channel arrangement.	75
	31	Scan cell slide over 6 looks.	78
	32	Components of the 1677.6 m slide	79
	33	5 scan cells showing slides.	79
	34	Starting points of cells relative to cell 1.	80
	35	Cell overlap in azimuth	81
	36	Motion compensation circuit using balanced modula- tion.	85
	37	Number of filter channels vs. aperture length.	90
	38	Filter channel power consumption vs. aperture length.	93

vii

Figure

12

Pan

÷...-

1.0 THE SCANSAR CONCEPT

1.1 INTRODUCTION

The SCANSAR concept was born out of a need to provide wide swath coverage with special regard to the water resources and sea ice missions (and other missions requiring frequent imaging). However, SAR coverage is limited by the interaction between Doppler (azimuth) and range ambiguities. Fully focussed fine-resolution systems suffer these coverage deficiencies. If fine resolution could be sacrificed for somewhat more modest resolution the radar would have time to achieve the wide-swath coverage desired by scanning to and dwelling on successive cross-track image cells (see Figure 1). With the proper resolution, the radar may have enough time to take several "looks" at each image cell, allowing for averaging and thereby enhancing the interpretability of the radar image.

1.2 COVERAGE LIMITATIONS

To adequately preserve the Doppler history of a target, the Nyquist sampling theorem states that for <u>azimuth-offset</u> the radar must sample the target returns with at least twice the Doppler bandwidth, F_d .

$PRF \geq 2.F_{d}$

However, Harger (1970) states that for <u>range-offset</u> SAR systems, a sampling rate equal to the Doppler bandwidth is acceptable. Oversampling by 50%, the PRF inequality becomes

$$PRF \ge 1.5 F_d = 1.5 \left(\frac{2 Vg}{L}\right)$$

where Vg = satellite ground velocity

 $r_a = \frac{L}{2}$

L = physical length of the antenna.

For a fully-focussed SAR, the azimuth resolution for an antenna of length L is

Hence,

$$PRF \geq \frac{1.5 \text{ Vg}}{r_{a}}$$

For a satellite at an altitude Z_o , with a beamwidth B_h , whose antenna is looking at its farthest look angle θ , illuminating a cross-track distance L on the ground, as in Figure 2, to guarantee that the nth pulse reflected from $R_1 + \Delta R$ reaches the receiver before the arrival of the (n+1)th pulse reflected from R_1 ,

$$\Delta T > \frac{2\Delta R}{c}$$

where $\Delta T = \frac{1}{PRF}$.

Choosing a range guard band of 2,

$$PRF < \frac{C}{4\Delta R}$$

Therefore to avoid ambiguities in range and azimuth it is required that

0۳

$$\frac{R}{a} < \frac{c}{6Vg}$$

Δ

From Figure 2

$$\Delta R = B_h R \tan \theta$$
 .

Since $R = \frac{Z_0}{\cos \theta}$, assuming plane-earth geometry for simplicity,

$$\Delta R = \frac{B_h Zo \tan \theta}{\cos \theta} .$$

Substituting into the ambiguity inequality,

$$\frac{Zo B_{n} \tan \theta}{r_{3} \cos \theta} < \frac{c}{6Vg}$$

$$B_{h} < \frac{c r_{a} \cos \theta}{6Vg Zo \tan \theta}$$

From this equation, it can be seen that the elevation beamwidth is proportional to the azimuth resolution, and since azimuth resolution

$$r_a = \frac{Vg}{F_d}$$

for a fully focussed system, B_h is inversely proportional to the Doppler bandwidth. The cross-track coverage (swath) is then given by

$$S = \frac{B_h Z_o}{\cos^2 \theta}$$

If a very fine resolution is used, r_a is small, B_h will be small, and correspondingly, the swath will be small.

The tracking bandwidth is

$$\Delta f_{d} = \frac{2Vg r_{a}}{\lambda R}$$

where λ is the wavelength and R is the slant range to the nearest image cell. To observe a response from a tracking filter with this bandwidth, the integration time is

$$\tau_{d} = \frac{1}{\Delta f_{d}}$$

Again, with a fine resolution system, Δf_d will be small and τ_d will be large. By sacrificing azimuth resolution, the coverage can be increased and since integration time is inversely proportional to azimuth resolution, time will be available at the expense of the number of independent looks averaged, to scan the radar beam over various image cells over a wide swath. This is the basic concept behind SCANSAR.

1.3 SCANSAR DESIGN THEORY

Claassen discusses the fine points of the SCANSAR design theory in his paper (1975) which is the source for many of the equations used in this section.

For a fully focussed SAR, the azimuth resolution limit is equal to

half the physical length of the antenna. For an unfocussed system, the azimuth resolution is a function of the operating wavelength and the slant range to the image cell observed. Semi-focussed systems are between these two extremes:

$$\frac{L}{2} < r_{a_1} < \sqrt{\frac{\lambda R_1}{2}}$$

where

L = physical length of the antenna

= operating wavelength

 r_{2} = azimuth resolution at the nearest image cell

 $R_1 =$ slant range to the nearest image cell.

In this resolution range, tracking filters (or their equivalent) must be employed. The number of filters depends on the total Doppler bandwidth F_d

 $F_d = \frac{2Vg}{L}$

and the number of filters is given by

$$I_a = \frac{F_d}{\Delta F_d}$$

where Δf_d is the tracking bandwidth discussed earlier. It would be appropriate at this point to discuss the tracking filter concept.

The isodops in the region broad side to the satellite and perpendicular to the satellite track are hyperbolas as in Figure 3 for flat terrain. In the region near the cross-track direction and for relatively narrow beamwidths in both azimuth and elevation, these isodops are closely approximated by parallel straight lines parallel to the zero isodop. This is shown for an image cell in Figure 4. The tracking filters can then be thought of as forming slightly displaced synthetic beams, each filter Δf_d kz wide, integrating returns from a different azimuth strip. As the satellite moves, the Doppler frequencies for each cell will shift and the filters must be able to track the change. Comb filters will be used to track the time varying Doppler frequencies in the proposed design and will be

 \sim

discussed in section 4.

Since the antenna scans, the number of cross-track scan or image cells (not pixels or resolution cells) in a swath is

$$N_{cell} = (\theta_2 - \theta_1) / B_h$$

where θ_2 and θ_1 are the inner and outer look angles over which the beam is scanned.

Referring again to Figure 2, the azimuthal width of the image cell nearest the satellite track is

$$GA_{1} = B_{h}R_{1} = \frac{B_{h}Zo}{\cos\theta_{1}}$$

Therefore for continuous coverage, the total time to scan over the range of look angles is

$$T_{SLEW} = \frac{GA_1(\theta)}{Vg}$$

where GA₁ is the azimuthal width of the image cell closest to the satellite track, and the aperture is constrained to fit this cell.

Hence, the time available to look at each image cell is

$$\Gamma_{CELL} = \frac{1}{N_{CELL}}$$

.

 T_{CELL} must be greater than or equal to $\frac{1}{\Delta f_d}$ to achieve the integration time for the azimuth resolution at each subaperture. If $T_{CELL} \ge \frac{2}{\Delta f_d}$,

there is time to take 2 or more looks at each image cell before scanning to the next one. The number of looks is

$$N_{LOOKS} = T_{CELL} \cdot \Delta f_d$$
.

The PRF was set according to the range to the farthest image cell with a guard band of 2

$$PRF = \frac{C}{4\Delta R}$$

and,

$$\Delta R = \frac{Zo B_h \tan \theta_2}{\cos \theta_2}$$

where θ_2 is the largest look angle. Substituting,

$$PRF = \frac{c \cos \theta_2}{4Zo B_h \tan \theta_2}$$

Sampling the total Doppler bandwidth such that

$$PRF = 1.5 F_{d}$$

$$B_{h} = \frac{c \cos \theta_{2}}{6Zo F_{d} \tan \theta_{2}}$$

The aperture height H is given approximately by

$$H = \frac{\lambda}{B_h}$$

Noting that $F_o = \frac{c}{\lambda}$,

$$H = \frac{6 Z_0 F_d \tan \theta_2}{F_0 \cos \theta_2}$$

where $F_0 = carrier$ frequency.

If the ground-range resolution \mathbf{r}_r is specified in the design, the RF bandwidth will be given by

$$BW = \frac{c}{2 r_r \sin \theta_1}$$

where θ_{1} is the smallest pointing angle. The unchirped pulse length is then $\tau_{p}^{} = \frac{1}{BW}$.

To compute the transmit power requirement, it is noted that the peak return power W_{rp} from a single pixel (resolution cell) is

$$W_{rp} = \frac{W_{tp} A^2 \sigma^{\circ} r_{r} r_{a}}{4\pi \lambda^2 R^4 L_{f}}$$

where

 W_{tp} = peak transmitter power

A = effective aperture of antenna

 σ° = scattering coefficient

R = range to cell

 $L_{f} = loss factor$

The peak signal power in relation to the signal-to-noise ratio is

$$W_{rp} = \frac{F k T BW (S/N)}{G_{p}}$$

where

F = receiver noise figure

k = Boltzmann's constant

T = receiver input noise temperature

BW = RF bandwidth

 $G_n = tracking filter processing gain$

 $G_p = \frac{PRF}{\Delta f_d}$ and can be thought of as the number of pulses integrated necessary to achieve the desired resolution.

The peak transmitter power is related to the average transmitter power by

$$W_{tp} = \frac{BW}{PRF} W_{ta}$$

Therefore, the required transmitter average power is

$$W_{ta} = \frac{4\pi \lambda^2 R^4 L F K T (S/N) PRF}{G_p A^2 \sigma^\circ r_a r_r}$$

If σ_{max} and σ_{min} are the maximum and minimum scattering coefficients expected in the interval (θ_2, θ_1) , the telemetry bit requirement N_b is

$$I_{\rm b} = \frac{\sigma^{\circ}_{\rm max}}{3.01 \ \sigma^{\circ} \ {\rm min}}$$

presuming a gray scale resolution equal to the minimum σ° . If an N bit

word is transmitted for each resolution cell, the total number of bits per scan cell is

$$B_{c} = \frac{N_{b} (GR_{l}) (GA_{l})}{r_{r} r_{a}}$$

where

 GR_1 = length of image cell nearest satellite track GA_1 = width of the image cell nearest satellite track r_r = range resolution r_a = azimuth resolution.

The required channel capacity is then,

$$C_c = \frac{B_c}{T_c}$$
 bits/sec.

1.4 INTERPRETABILITY CONSIDERATIONS

The interpretability of images is strongly affected by pixel size and by the degree to which speckle hides differences between pixels. There are two considerations in choosing the spatial resolution (pixel size) alone. Bandwidth is related to ground-range resolution by

$$BW = \frac{c}{2 r_r \sin \theta}$$

as discussed in section 1.3. At small look angles, the bandwidth becomes quite large, in spite of modest ground range resolutions. Secondly, if large azimuth resolutions are chosen, fewer filters are required and the complexity of the processor is reduced.

According to Moore (1976), interpretability I is related to resolution by $I = I_{o} e^{-V/V} c$

where V = a volume descriptive of the resolution

V_{c} = an effective volume characteristic of the features to be interpreted.

The volume V, also known as the spatial gray-level volume (SGL) can be expressed as

where

V = r r r g

 $r_a = pixel azimuth resolution$ $r_r = pixel range resolution$ $r_a = gray-level resolution.$

Moore defines gray-level resolution for square-law detection as

$$r_{gN} = \frac{W_{N90}}{W_{N10}}$$

where

W_{N90} = power level below which 90% of the fading signals lie with N independent samples averaged

WN10 =

_ level below which 10% of the signals lie with N independent samples averaged.

This ratio is then a measure of the ratio of signal powers that bound 80% of the expected received levels; or in terms of picture quality, this ratio is that within which 80% of the brightness levels are found. For a Rayleigh-fading signal (coherent reception, no averaging) $r_{gN} = 21.9$ while for a photograph (where thousands of independent samples are averaged by the panchromatic nature of light), $r_{gN} = 1$.

The potential resolution of the system using the full bandwidth for range resolution is r_{ao} by r_{ro} . Averaging signals from several cells results in a larger cell as in Figure 5. In this case 15 smaller cells have been averaged. Synthetic aperture systems may first process the 15 smaller pixels and add them together later or use subaperture processing in azimuth. r_{ao} would be the resolution limit for the fully focussed SAR, $\frac{L}{2}$ where L is the physical length of the antenna.

Figure 6a shows the resolution volume. Rewriting the SGL volume as

$$V = r_{r} [r_{ao} (N)] [r_{a} (N)]$$

where

$$= r_{ao} N$$

eilows for better observation of the inter-relation of the three quantities r_a , r_r , and r_g . This definition of V states that the interpretability is dependent on the area of the pixel and not just its linear dimension.

The minimum volume (best effective resolution) occurs where N r_g (N) is a minimum, if r_r is fixed. r_g (N) decreases rapidly as N goes from 1 to a small number, and then it decreases more slowly. The product Nr_g(N) is plotted in Fibure 6b, where the minimum is shown to lie between N = 2 and N = 3. Since the picture quality is better for N = 3 than for N = 2, and since effective resolution is equivalent, N = 3 gives optimum results for visual interpretation. For quantitative measurement of scattering coefficient, N = 3 results in excessive uncertainty and some resolution must be sacrificed by making N larger to improve the precision of the measurement.

Regarding SCANSAR, and thinking of N as the number of looks per pixel in each scan cell, the tradeoffs between azimuth resolution and interpretability become apparent. The number of looks N_1 is given by

$$N_{L} = \frac{T_{cell}}{\tau} = (T_{cell}) (\Delta f_{d})$$

where

T_{cell} = dwell time on each image cell

 $\Delta f_d = tracking bandwidth$

The tracking bandwidth is directly proportional to the azimuth resolution. For fine resolutions, Δf_d is small and therefore the number of looks is small (and the number of filters needed to process the Doppler bandwidth) is large). For somewhat worse resolutions, Δf_d is larger, the number of looks increases, and the interpretability goes up until N = 3. Obviously very coarse azimuth resolutions are unwanted due to their low information yield.

...

1.3

2.0 SYSTEM PARAMETERS

2.1 INTRODUCTION

The relationships discussed in 1.3 were compiled by Claassen into a computer design program entitled "SCANSAR". This program has since been modified somewhat and an updated listing can be found in Appendix A.

2.2 PARAMETER SELECTION

Two swaths determined by two look angle spans were chosen in order to accomodate both the sea ice and different parts of the water resources missions. An angular span of $7^{\circ}-22^{\circ}$ was chosen since according to Ulaby (1976), the sensitivity to soil moisture is greatest at small angles of incidence. A $22^{\circ}-37^{\circ}$ span was chosen for studies of snowcovered terrain, standing water, glaciers, lake ice, icebergs and sea ice. Although several candidates for operating wavelength were considered, 0.063 m (~ 4.75 GHz) was chosen for two reasons. First, 4.75 GHz is considered a near-optimum frequency for viewing soil moistures when the ground is covered with vegetation (Ulaby, 1976). Second, the number of tracking filters is proportional to wavelength and 0.063 m was the smaller wavelength relative to other possible selections.

The aperture length was selected at 3 meters, the spacecraft altitude at 435 km, and the spacecraft ground velocity at 7.2 km/sec. 50 meters was chosen for the azimuth resolution, but at small incidence angles, 50 meter range resolution involves excessive bandwidth. Hence, 150 m range resolution was decided on for the inner edge of the near swath (7°-22° angle range) and 50 m by 50 m was used in the far swath (22°-37° angle range). The transmit power was based on readily available scattering data, a loss factor of 7 dB (3 dB oneway attenuation between antenna and transmitter and 1 dB 2-way atmospheric loss), a signal-to-noise ratio of 3 dB (for the smallest σ°), an aperture efficiency of 75%, and a receiver input noise temperature of 300° K.

REPRODUCIBILITY OF

The program is set up such that the angles input as the view angles are, in reality, the pointing angles. Hence, the actual range of illumination is somewhat larger due to the beamwidth of the antenna (which is assumed constant over the swath). A problem that has arisen from time to time is that of gaps appearing between the image cells at adjacent view angles. Since the beamwidth is a function of aperture height, which is a function of the largest look angle in the swath, this angle must be chosen with care. A good assumption to start with would be allowing the actual inner and outer edges of the swath illuminated by the extremes of the beamwidth at the inner and outer pointing angles to be 7° - 22° or 22° - 37° and increasing the number of cells in the swath by 1. Using this criterion, the actual input angles were 8.4° and 20.8° for the near swath (actual coverage from 6.7° to 22.4°) and 22.0° and 36.2° for the far swath (actual coverage from 22.1° to 36.9°). Computer runs for the two swaths follow. The "transmit power" number is the average. The processor gain can be thought of as the number of pulses integrated to achieve the desired resolution. The number of filter banks is the number needed for the processor to keep the Doppler shifts from ground targets in focus over the swath. The scan time is the total time for the antenna to scan over all the image cells in the swath. The time per cell is the amount of time the antenna dwells on each image cell.

2.3 CONCLUSIONS

In examining the system parameters and coverage output listings, several comments can be made. A relatively small antenna 3 meters by 2.4 meters could handle the system requirements. The average transmit power is a modest 15 watts in the far swath. 6 looks are obtained in the near swath, 3 in the far. Although the number of filters is fairly large, only one bank is needed for each swath, a filter bank being related to the radar's ability to track the Doppler returns over the swath, which is discussed in more detail in Section 4.0. Perhaps most important, the scanning SAR was able to provide coverage of 130 to 150 km compared with fixed angle coverage of only 15 to 30 km. Thus, for soil moisture obser-

vation, a scanning SAR looking out both sides of the satellite track could offer a total swath width of 260 km with a 50 m azimuth resolution. At a near optimum frequency of 4.75 GHz, using two 3 by 1.07 m antennas and 370 tracking filters, a transmitter power of 27 watts and a telemetry channel of 4.8 megabits/second are required.

DESIGN OF A SCANNING SAR HAVING INPUT DESIGN PARAMETERS AS FOLLOWS:

APERTURE LENGTH (M)? 3.0 OPERATING WAVELENGTH (M)? 0.063 MIN AND MAX VIEW ANGLES (DEG)? 8.40,20.80 AZIMUTH RESOLUTION (M)? 50.00 RANGE RESOLUTION (M)? 150.00 GROUND VELOCITY (KM/SEC)? 7.2 SPACECRAFT ALTITUDE (KM)? 435.0 THE APERTURE HEIGHT IS 1.07 M. DO YOU WISH TO INCREASE THE HEIGHT? NO LOSS FACTOR (DB)? 7.0 MDISE FIGURE (DB)? 6.0 SIGNAL/MDISE (DB)? 6.0 SIGNAL/MDISE (DB)? 3.00 MAX SCATTERING COEFFICIENTS (DB)? 12.00,2.00 MIN SCATTERING COEFFICIENTS (DB)? -4.00,-8.00 APERTURE EFF (PERCENT)? 75.0 RECEIVER INPUT TEMPERATURE (DEG K)? 300.0

SUMMARY TABLE

RAW DESIGN PARAMETERS

PARAMÉTERS		VALUES	UNITS
ANGLE SPAN	8.40	20.80	DEG
LAMBDA	0.063		М
APER LENGTH	3.0		М
AZ RES	50.00		М
RA RES	150.00		м
GRD VEL	7.2		KM/SEC
ALTITUDE	435.0		КM
APER EFF	. 75.0	· .	PERCENT
LOSS FACTOR	7.0		DB
MOISE FIG	6.0		DB
SIG/NDISE	· 3.00		DB
REČ TEMP	300.0	· · · •	DEG K
SIGMAX	12.00	2.00	DB
SIGMIN	-4.00	-8.00	DB

COMPUTED SYSTEM PARAMETERS

SYSTEM TYPE:	SEMI-FOCUSED	•	
APER HEIGHT	1.07		M
XMIT PWR	1.85	13.39	WATTS
PRF	7.20	•	KHZ
FD	4.80		KHZ
RF BW	6.8		MHZ
PROC GAIN	277		
LOOKS	6		
FILTER BANKS	1 -		
FILTERS/BANK	185		
CHAN CAP	0.88	2.40	MBITS/SE
			A CONTRACT OF

COVERAGE AND RESOLUTION

SWATH	128.77			KM
CELLS/SCAN	. 5		· · · ·	
CELL WIDTH	9,23		9.77	КM
CELL LENGTH	26.19	· · · · ·	29.33	KM
SCAN TIME	1.28			SEC
TIME/CELL	0,257	· ·		SEC
AZ RES	56,00		52.91	- M
RA RES	150.00		61.71	e M

DESIGN OF A SCANNING SAR HAVING INPUT DESIGN PARAMETERS AS FOLLOWS:

APERTURE LENGTH (M)? 3.0 OPERATING WAVELENGTH (M)? 0.063 MIN AND MAX VIEW ANGLES (DEG)? 22.90,36.20 AZIMUTH RESOLUTION (M)? 50.00 RANGE RESOLUTION (M)? 50.00 GROUND VELOCITY (KM/SEC)? 7.2 SPACECRAFT ALTITUDE (KM)? 435.0 THE APERTURE HEIGHT IS 2.39 M. DO YOU WISH TO INCREASE THE HEIGHT? NO LDSS FACTOR (DB)? 7.0 NOISE FIGURE (DB)? 5.0 SIGNAL/MOISE (DB)? 3.00 MAX SCATTERING COEFFICIENTS (DB)? 2.00,-2.00 MIN SCATTERING CHEFFICIENTS (DB)? -8.00,-12.00 APERTURE EFF (PERCENT)? 75.0 RECEIVER INPUT TEMPERATURE (DEG K)? 300.0

SUMMARY TABLE

RAW DESIGN PARAMETERS

PARAMETERS		VALUES	UNITS
ANGLE SPAN LAMBDA APER LENGTH	22.90 0.063 3.0	36.20	DEG M M
AZ RES	50.00		М
KH KES GRD VEL	50.00 7.2		M KMZSEC
ALTITUDE	435.0		KM
LOSS FACTOR	7.0		BB
NOISE FIG	5.0		DB
REC TEMP	300.0		DEG K
SIGMAX Stewin	2.00	-2.00 -19 00	DB DB
9100110	-0.00	-12.00	DD -

COMPUTED SYSTEM PARAMETERS

TIME/CELL

AZ RES

RA RES

SYSTEM TYPE: APER HEIGHT XMIT PWR PRF FD RF BW PRDC GAIN LODKS FILTER BANKS FILTER BANKS	SEMI-FOCUSED 2.39 2.76 7.20 4.80 7.7 297 3 199	15.64	M WATTS KHZ KHZ MHZ
CHAN CAP	1.95	3.85	MBITS/SE
COVERAGE AND	RESOLUTION		
SWATH CELLS / SCAN	150.21		КМ
CELL WIDTH CELL LENGTH SCAN TIME TIMEZCELL	9.92 13.53 1.38 0.138	11.32 17,64	KM KM SEC SEC

57.08

32.94

20

 Δ

.М.

М

0.138

50,00

50.00

DEFINITION OF SYMBOLS

APER		aperture
AZ	=	azimuth
XMIT PWR	=	average transmit power
FD	-	total Doppler bandwidth
RF BW	=	RF bandwidth
PROC	8	processing
CHAN CAP	=	channel capacity
RES	=	resolution

•

3.0 RADAR SYSTEM AND ANTENNA

3.1 INTRODUCTION

Based on the parameters discussed in section 2.0, the transmitted pulse length τ is the reciprocal of the RF bandwidth (6.8 MHz for the near swath) and the PRF is 7200 Hz. The duty cycle is defined as the ratio of the time the transmitter is pulsed to the interpulse period or

$$D = \frac{\tau}{T}$$

where $T = \frac{1}{PRF}$.

Using the above numbers, D = .106%. The transmitter average and peak powers are related by the duty cycle as

 $W_{av} = D$ · W_{peak}

If W_{av} is 15 watts, then the peak power is 14.2 KW. This very high peak power can be reduced by using chirp techniques to expand the transmitted pulse and increase the duty cycle. Using a 100 to 1 chirp, the transmitted pulse length becomes 14.7 microseconds, the duty cycle becomes 10.6%, and the peak power becomes a more modest 142 watts.

3.2 PULSE COMPRESSION TECHNIQUES

Although many pulse compression techniques have been developed, passive linear FM and active phase coded implementations are the most widely used. Either implementation could be used in the SCANSAR design.

3.2.1 Linear FM

The linear FM or chirp waveform is relatively easy to generate and because of its ease of implementation it has become one of the most popular pulse compression techniques. Two classes of devices are used in generating and processing chirp waveforms: 1) ultrasonic devices in which an electrical signal is converted to a sonic wave and back, and 2) electrical devices that use the dispersive characteristics of elec-

trical networks. Many types of devices exist in both classes, however, one of the best developed technologies is found in the area of dispersive delay lines which belongs to the ultrasonic class - specifically, the surface acoustic wave (SAW) delay line.

SAW dispersive delay lines use an input and output array of electrodes on the same surface of a piezoelectric plate (nondispersive medium) to create a linear delay-vs.-frequency characteristic. If an electric signal is applied to the electrodes, a surface wave is generated; conversely a surface wave applied to the electrodes will induce a voltage across them. The delay-vs.-frequency behavior is determined by the electrode spacing, which can effect an up or down-chip depending on the orientation. Figure 7 is a block diagram illustrating the use of a SAW delay line chirp generator and decode. Here, a signal is downchirped, mixed up to some carrier frequency and transmitted. The received signal is then mixed down to some intermediate frequency (typically 30-500 MHz) and up-chirped. In practice, the same dispersive delay line may be used for both the transmitted and received signals. Several manufacturers including Plessey and Andersen Laboratories offer product lines with SAW dispersive delay line pulse-compression ratios as high as 625.

3.2.2 Phase-coding

Phase coded waveforms differ from linear FM in that the pulse is divided into several sub-pulses, each of equal length and a particular phase. The phase is selected in accordance with a phase code. Binary coding, the most popular, consists of a sequence of is and 0s or +1s and -1s, the phase of the transmitted signal alternating between 0° and 180° in accordance with the sequence as in Figure 8. The compression ratio is equal to the number of subpulses in the waveform.

A special class of binary codes, the Barker codes, are considered optimum in the sense that the peak of the autocorrelation function is N and the sidelobe magnitude less than or equal to one, where N is the number of elements in the code. At present, Barker codes are known only

1

|-

ŀ

Ī

1

Figure 8. A pulse Nr seconds long expressed in a binary phase code.

Figure 9. A phase-coded receiver.

25

ŝ.

up to a compression ratio as high as 13. Longer phase codes can, of course, be used for greater pulse-compression ratios. They are not optimum in the Barker-code sense, but codes with reasonable sidelobes exist and can be used.

A matched-filter receiver for phase coded waveforms is given in Figure 9. The received signal is passed through a bandpass filter matched to the subpulse width and applied to a tapped delay line. The taps are spaced at intervals of the subpulse width; the phase shift at each tap being 0° or 180° in accordance with the phase code.

3.3 RECOMMENDED HARDWARE

3.3.1 Power Output Amplifier

The selection of the power output amplifier may be made from three candidates: the travelling-wave tube (TWT) the klystron, and the solid state amplifier (SSA). At 4.8 GHz, the SSA, although ideal in many ways is limited in its maximum power output to a peak power on the order of 100 watts. The klystron stability is as good or better than the TWT but it suffers from a lack of bandwidth. The recommended TWT has the best overall bandwidth and efficiency (single stage efficiency running at about 25%). The TWT also has an excellent track record concerning its use on spacecraft. The Hughes family of space-qualified TWT's can boast over 800,000 hours of failure-free life-test and space operation. See Erickson (1975) for more detail concerning power output amplifiers.

3.3.2 Receiver Front-End

Perhaps the single most important consideration amongst receivers is noise. Possible choices for the low noise amplifier (LNA) are the parametric amplifer, the transistor amplifier, and the tunnel-diode amplifier (TDA). According to Erickson (1975), these three amplifiers have noise figures at 5 GHz of approximately 0.5 dB, 2.3 dB, and 4.5 dB respectively. With a total noise figure of 5 dB for SCANSAR, the TDA

can be rejected immediately. Of the paramp and the transistor amplifier, the latter can claim high reliability, large dynamic range, high power output, non-critical power supply, and low weight. With advancing technology the noise figure of the transistor amplifier may be reduced even further, so it would make an excellent choice for the SCANSAR LNA.

3.4 ANTENNA CONSIDERATIONS

Considering the aperture height at the maximum range in the far swath, a 3 meter by 3 meter electronically scanned antenna could handle the SCANSAR system requirements. Two antennas would be used for a double-sided SAR. Electronic scanning is desirable in that a minimum amount of time (1 to 3 microseconds) is spent changing pointing angles. Fong (1976) considers other benefits to electronic scanning including computer operation and reliability. The nominal pointing angle for each swath should be the farthest one. In the computer design, a constant beamwidth was assumed over each swath. In reality, the beamwidth is inversely proportional to the tangent of the pointing angle so the beamwidth increases with decreasing angle. For purposes of coverage, therefore, it would be desirable to set the beamwidth according to the farthest pointing angle and scan the beam inwards towards the satellite.

Another alternative antenna structure is a parabolic reflector with multiple, off-axis, feeds. The number of feeds required is 5 or 10 depending on the swath to be observed. Total scan is about 30°, so pointing at 22° would allow a scan of \pm 15°. Since the feed for such an antenna need be off-axis by only half the scan angle, feeds need only occupy space \pm 7.5° from the "horizontal" axis of the antenna. Such an antenna might well be significantly less expensive than a scanned array, particularly in view of the extensive experience with reflector antennas on communication satellites.

Before reflector antennas can be considered as real candidates for SCANSAR, a thorough study should be made of the effect of aperture blockage on sidelobes and consequently on ambiguities.

4.0 PROCESSOR

4.1 INTRODUCTION

Although digital SAR processors are presently quite popular, analog processors offer another means for processing radar images on-board and in real time. The recommended processor uses comb filters implemented by recursive use of analog shift registers. . ł

In this form, the various range elements are processed sequentially as a signal circulates around a delay element and is added to the incoming signal. The comb-filter has a set of passbands spaced as the Fourier components of the received pulse, permitting narrow band Doppler filtering while retaining the wideband characteristic of the pulse necessary to retain range resolution. An obvious benefit to using this type of processor is that the amount of storage necessary to process the returns is considerably less than those processors which batch process the range cells, since here no memory is required for individual signal elements.

4.2 COMB FILTER CONCEPTS

SAR data processing involves correlating chirp waveforms generated by varying Doppler shifts as the radar travels past targets on the ground. If the integration time necessary to yield a required azimuth resolution is T and if the system PRF is F, then the number of pulses, N, integrated during the building of each synthetic aperture is

N = TF.

In a comb filter, each return is delayed by the repetition period and summed with the next incoming return, this cycle being repeated until all N pulses have been added together. Only signals having the proper period add each time, the others drift in and out of phase during integration.

The comb-filter pass bands are spaced such that they align with the Fourier components of the received pulse as in Figure 10. The effect of Doppler shift is to introduce an offset in the spectral components, so the comb-filter must be phase shifted by this amount as in

Figure 11. The system, then is composed of a set of comb-filters, each tuned to accomodate the Doppler shifts from a particular azimuth element such that the entire range of Doppler frequencies over an observed area on the ground is within the total passband of the processor.

As shown in Figure 12, a comb filter consists of a delay device, a tunable phase shifter, and a weighting amplifier. The delay device samples the first return and holds it for the proper period, the phase shifter tunes the filter for the desired Doppler shift and the weighting amplifier is used to reduce the sidelobes in the sin x/x character of the comb teeth. After the proper number of pulses is integrated by the filter, the composite waveform is fed into a buffer for temporary storage. 198 filters per side are used to facilitate both swaths.

According to Komen (1976) in order for pulses from the same azimuthal strip to add in phase,

$$\phi - W_{n}T = -2\pi r$$

where

 ϕ = phase shift to tune each filter channel W_n = IF frequency of the returns

 $T = \frac{1}{PRF}$

r = some integer.Since $W_n = nW_o$ where $W_o = \frac{2\pi}{T}$,

$$W_{n} = \frac{\Phi}{T} + nW_{o}$$
$$W_{n+1} = \frac{\Phi}{T} + (n+1)W_{o}$$

where W_n and W_{n+1} are harmonics of W_o . These two equations show that a constant phase shift ϕ introduced at some frequency W_n will appear in all the harmonics of that frequency.

The expression for the pulses circulating the loop 1 times can be written as

Ī

÷.

Figure 12. A comb filter delay line. 30 where δ_n is a small offset from W_n .

Rewriting, the expression becomes

$$\sum_{n} a_{n} e^{j(W_{n} + \delta_{n})t} \left(\frac{\sin \frac{LT\delta_{n}}{2}}{\sin \frac{T\delta_{n}}{2}} \right) e^{\frac{j(L-1)T\delta_{n}}{2}}$$

It is noted that Σ a e represents the original signal W with n represents the original signal W with the δ_n offset. The sin nx/sin x expression shows the comb response. As

 $\boldsymbol{\delta}_n$ is small, the last factor can be neglected.

Introducing the weighting amplifier with gain K, the circulation expression becomes

 $j(W_n+\delta_n)t$ ℓ -ji δ_nT $\Sigma a_n e$ $\Sigma K_i e$

Standard methods in antenna and filter design can be used to establish weights (K_i) that give the desired sidelobe suppression with the usual widening of the main response.

Since the Doppler shift for any point target decreases linearly in frequency with time as the radar passes the target, the processor must take this into account. The SCANSAR system converts this varying frequency to a fixed frequency by beating the incoming signal with an appropriate reference function varying at the same rate as the signal from the point target. As the satellite moves, the ground returns will shift in frequency but after beating with the propoer swept local oscillator signal, the return from each azimuth remains fixed. Implementation of the comb-filter follows.

4.3 DESIGN CONSIDERATIONS

4.3.1 PRF Diversity

The tracking bandwidth Δf_d , the integration time τ , the beamwidth

 $\boldsymbol{B}_h,$ and the pulse width $\boldsymbol{\tau}_p$ are listed below.

	∆f _d (Hz)	τ (sec)	B _h (°)	τ _p (sec)
Near Swath	26.0	0.03846	3.376	$.147 \times 10^{-6}$
Far Swath	24.2	0.04132	1.513	$.130 \times 10^{-6}$

Assuming the beamwidth constant, the actual total angular coverage for each scan position for both swaths is listed in Table 1.

In examining the actual angular coverage at each scan position, an interesting problem arises. The beam energy will strike the near edge of each image cell before it strikes the far edge. Since the range R is a function of known angles, the actual times the returns arrive at the antenna can be determined by

$$T = \frac{2R}{C}$$

where c = speed of light.

Ņ

1. Same -

The transmitter will send out pulses every $\frac{1}{PRF}$ seconds. After K pulses, the returns will begin arriving at the antenna at an interval of every $\frac{1}{PRF}$ seconds. Upon closer examination of the transmit and receive times it can be observed that at certain pointing angles, the returns will arrive during the time the transmitter is supposed to be transmitting.

For example, Table 2 lists the actual times a pulse will return from the inner and outer edges of each scan cell (the HP-25 calculator program which generated the data for this Table can be found in Appendix B), neglecting transmit pulse length. Table 3A shows the pulse transmit times at a PRF of 7200 Hz. It is observed that a pulse is being transmitted while the returns from near swath scan cell 4 and far swath cells 2, 6, 8, and 10 are being received at the antenna. This highly undesirable condition can be readily resolved by studying other PRFs that satisfy the ambiguity relationships and selecting one to use as an alternative at the selected pointing angles. A PRF of 7050 Hz was chosen and as Table 3B shows, the problem is solved for the aforementioned scan positions. This means that slightly fewer pulses are integrated. The

Scan	Position	Beam Near Edge	Antenna Pointing Angle	Beam Far Edge	
	1	6.712°	8.400°	10.088°	
	2	9.812°	11.500°	13.188°	
	3	12.912°	14.600°	16.288°	
	4	16,012"	17.700°	19.388°	
	5	19.112°	20.800°	22.488°	

NEAR SWATH

FAR SWATH

1

Scan Position	Beam Nea <i>r</i> Edge	Antenna Pointing Angle	Beam Far Edge_
1	22.144°	22.900°	23.657°
2	23.622°	24.378°	25.135°
3	25.100°	25.856°	26.613°
4	26.577°	27.333°	28.089°
5	28.055°	28.811°	29.568°
6	29.533°	30.289°	31.046°
7	31.011°	31.767°	32.524°
. 8	32.488°	33.244°	34.001°
9	33.966°	34.722°	35.479°
10	35.444°	36.200°	36.957°

Scan Cell	Time From Inner Edge	Time From Outer Edge	Pulse Length
I	2.92001 msec	2.94554 msec	25.52 msec
2	2.94305	2.97855	35.50
3	2.97523	3.02126	46.03
4	3.01705	3.07434	57.29
5	3.06917	3.13867	69.49
	FAR SWA	ATH .	•

TABLE 2:

NEAR SWATH

.

Scan Cell	Time From Inner Edge	Time From Outer Edge	Pulse Length		
1	3.13094 msec	3.16606 msec	35.12 msec		
2	3.16522	3.20332	38.11		
3	3.20241	3.24366	41.25		
4	3.24264	3.28717	44.54		
5	3.28613	3.33721	48.08		
6	3.33306	3.38487	51.81		
7	3.38363	3.43942	55.79		
8	3.43804	3.49807	60.03		
9	3.49663	3.56122	64.58		
10	3.55967	3.62914	69.47		
		•			
	TA	BL	E	3A	•
--	----	----	---	----	---
--	----	----	---	----	---

 $\underline{PRF} = 7200 \text{ Hz}$

	<u>Transmit Time</u>
	2.77778 msec
	2.91667
	3.05556
	3.19444
	3.33333
	3.47222
	3.61111
1 A	3.75000

TABLE 3B.

PRF = 7050 Hz

Pulse Number	<u>Transmit Time</u>
21	2.83688 msec
22	2.97872
23	3.12057
. 24	3.26241
25	3.40426
26	3.54610
27	3.68794
28	3.82979
	•

number of pulses integrated in each swath for each PRF is listed below.

	$\frac{PRF}{PRF} = 7200 \text{ Hz}$	7050 Hz
Near Swath	276	271
Far Swath	297	291

It should be noted that in section 2, the computer listing for the near swath shows the process gain as 277. However, in rounding the tracking filter bandwidth Δf_d to 26.0 Hz, the process gain reduces to 276 and the processor is designed around this number.

The PRF assignment for each scan cell of each swath is as follows:

	PRF = 7200 Hz	7050 Hz
Near Swath	1, 2, 3, 5	4
Far Swath	1, 3, 4, 5, 7, 9	2,6,8,10

The PRF diversity does complicate the processor to some extent but it can be handled easily enough.

4.3.2 Doppler Slope

The SAR processor must correlate chirp waveforms generated by the varying Doppler shifts as the radar travels past targets on the ground. The SCANSAR system accomplishes this by beating these waveforms with some reference function varying at the same rate as the Doppler shifts. The result is a set of fixed frequencies which can be processed by the proper comb-filter channel. It is then necessary to determine just how much the Doppler shifts will change during the time it takes for one look.

From the Westinghouse report ("Final Report - Spaceborne SAR Pilot Study", 1974), the instantaneous Doppler frequency and FM slope are directly proportional to range rate (velocity) and range acceleration, respectively,

$$f_{d} = \frac{-2R}{\lambda}$$
$$f_{d} = \frac{-2R}{\lambda}$$

and

Figure 13 shows how these quantities are related to inertial or flight parameters. Triangle XYR forms a plane where X is the component of the distance from the antenna center to the target in the direction of the velocity vector. Y is the distance from the antenna center to the X plane (earth's surface) orthogonal to X while R is the distance from the antenna center to a target located along the X-axis. Hence,

$$R^2 = X^2 + Y^2.$$

Taking the time derivative of both sides,

$$RR = XX + YY$$
.

However, Y = 0 since V and X are parallel and the satellite is assumed to be flying a straight path. Therefore,

$$R = \frac{XX}{R} = -V \cos \alpha = -V_R$$

where

۷

1

 V_{R} = component of spacecraft velocity along the line of sight to the target (LOS)

 α = angle between the velocity vector and the LOS to the targe.

Then,

$$f_d = \frac{2V}{\lambda} \cos \alpha = \frac{2V_R}{\lambda}$$

Differentiating again with respect to time,

$$\vec{R}^2 + \vec{RR} = \vec{X}^2 + \vec{XX} + \vec{Y}^2 + \vec{YY}$$

 $\vec{R} = \frac{\vec{X}^2 - \vec{R}^2}{R} + \frac{\vec{XX}}{R} + \frac{\vec{Y}^2}{R} + \frac{\vec{YY}}{R}$

Since Y = 0 and substituting for R,

$$\ddot{R} = \frac{V^2 (1 - \cos^2 \alpha)}{R} + \ddot{X} \cos \alpha + \ddot{Y} \sin \alpha$$
$$= \frac{V^2 \sin^2 \alpha}{R} + \ddot{X} \cos \alpha + \ddot{Y} \sin^2 \alpha$$

or,

$$\frac{v^2}{R} = \frac{v^2}{R} - a_r$$

where

 $V\alpha = V \sin \alpha = \text{spacecraft velocity component perpendicular}$ to LOS

a, = component of acceleration along LOS.

Thus, the Doppler FM slope is

$$\left| f_{d}^{*} \right| = \frac{-2}{\lambda} \left[\frac{v^{2}}{a} - a_{r} \right]$$

For a constant velocity and a side looking radar,

$$f_d = \frac{2 Vg^2}{\lambda R}$$
 Hz/sec

where

Vg = satellite ground velocity

 λ = wavelength

R = range to the swath

To observe the Doppler shifts over the swath, the range R is considered to the swath inner edge, center, and outer edge.

The total change for one look is

$$\Delta f = f_{d}(R) \tau$$

where τ = integration time for one look.

If the total change over the swath is less than the tracking bandwidth

 $\Delta f(R_i) - \Delta f(R_o) \leq \Delta f_d$

where

 $R_i = Range to swath inner edge$

 R_{o} = Range to swath outer edge,

the range elements remain "in focus". If this condition is satisfied, one bank of filters will be able to process the returns. Setting the reference function to vary as Doppler frequency changes in the center of

the swath will enable the inner and outer edges to remain in focus. The reference function could vary on a per-pulse basis tuned to the swath center Δf_{pc} or

$$\Delta f_{pc} = \frac{\Delta f(R_c)}{N}$$

where

N = number of pulses integrated

 $R_c =$ range to swath center.

A summary is given for both swaths in Table 4.

4.4 SYSTEM DESIGN

The radar system will transmit and receive at 4.75 GHz. The incoming signal will be mixed down to 60 MHz and then to 5 MHz for use in the filter channels. Figure 14 shows the frequency translation and the RF bandwidth of the returns.

A better picture of what is to happen can be seen by expanding Figure 14 in the 5 MHz region and showing the comb of spectral components over the 6.8 MHz bandwidth of the near swath as in Figure 15. The 4.8 kHz spread about each spectral line is the Doppler frequency spread. In order to sample the return information properly, the processor sampling frequency must be at least twice the highest frequency over the bandwidth or, at least 16.8 MHz. Expanding this figure about the center frequency as in Figure 16 shows the individual filter positioning over the Doppler band. 198 filters will cover the Doppler returns from both swaths. Only 185 of these are needed for the near swath.

The basic processor for the SCANSAR is shown in Figure 17. The processing system takes the range-offset coherent video signals from the radar system, preprocesses them with a scanning local oscillator, combfilters simultaneously observed banks of azimuth elements and delivers the processed pixels to the telemetry system for transmission back to earth. Examination of the subsystems follows.

TABLE 4.

• - • •

	Near Swath	Far Swath
f [•] _d (R ₁)	3757.32 Hz/sec	3504.20 Hz/sec
f. (R _c)	3656.39 Hz/sec	3273.10 Hz/sec
f (R _o)	3496.58 Hz/sec	3023.15 Hz/sec
Δf (R _c)	140.62 Hz	135.25 Hz
∆f (swath)	10.03 Hz	19.87 Hz
Δf_{pc} (PRF = 7200)	.509 Hz/pulse	.455 Hz/pulse
Δf_{pc} (PRF = 7050)	.519 Hz/pulse	.465 Hz/pulse

 $\Delta f_d^*(R) = Doppler slope to the swath inner edge, center, and outer edge$

 $\Delta f(R_c) = total Doppler frequency change over one look at the swath center range$

 Δf (swath) = change in total Doppler frequency over the swath Δf_{pc} (PRF) = change of reference function on a per-pulse basis tuned to the swath center

Figure 15. RF bandwidth on 5 MHz filter channel carrier showing Doppler spread.

ł

4.4.1 The Scanning Local Oscillator (SLO)

The SLO must provide a signal whose frequency varies at the same rate as the Doppler shift change for a given pixel so the mixer output for each pixel is a constant frequency as in Figure 18. In the figure, the Doppler frequency shifts from three point targets of adjacent along-track pixels are shown to be linearly decreasing functions of time. Mixing with the SLO yields a set of constant frequencies which can be filtered with fixed filters in the channel bank.

The SLO can be implemented by considering that the Doppler slope is known and the change of Doppler frequency has been calculated on a perpulse basis in section 4.3. One method would be phase-shifting the SLO at certain increments after a specified number of pulses has been received to produce the desired frequency shift. Another would be using balanced modulators.

a. SLO by Phase Shifting

Frequency w is defined as the change of phase ϕ with time or,

= Jwdt

Since it is desired to change the frequency with time,

 $\Phi = \int (w + \Delta w) dt$

where Δw is the total change in Doppler frequency during one look. As shown earlier, the total Doppler shift is given by

∆w = at

where

(Same

a = Doppler slope

t = time for one look.

Integrating,

$$=$$
 wt $\frac{1}{2}$ at

where $\frac{1}{2}$ at² is the total phase shift during one look.

2

44

REPRODUCIBILITY

Substituting,

$$\frac{1}{2}$$
 at² = $\frac{1}{2}$ Δwt

 $\phi = \frac{2\pi\Delta ft}{2} \times \frac{180^{\circ}}{\pi} = 180^{\circ} \Delta ft$

Using the numbers from Table 4 of the preceeding section,

 ϕ (Total, Near Swath) = 973° ϕ (Total, Far Swath) = 1006°

The phase shift $\Delta \phi$ between any two returning pulses t_n and t_{n+1} is

$$\Delta \phi = \frac{1}{2} \operatorname{at}_{n+1}^2 - \frac{1}{2} \operatorname{at}_n^2$$
$$= \frac{1}{2} \operatorname{a} (t_{n+1}^2 - t_n^2)$$
$$= \frac{1}{2} \operatorname{a} (t_{n+1} + t_n) (t_{n+1} - t_n)$$

Recognizing the last term as the repetition rate ($\frac{1}{PRF}$),

$$\Delta \phi = \frac{a}{PRF} \left(\frac{t_{n+1} + t_n}{2} \right)$$

where the term in parentheses is the actual average time coordinate for 2 adjacent pulses, T_{avq}

$$\Delta \phi$$
 (degrees) = $\frac{360^\circ a}{PRF}$ T_{avg}

Since there are two PRFs and a Doppler Slope (a) for each swath, this equation can be rewritten as

$$\Delta \phi$$
 (degrees) = K T

where

Values of K for each PRF and swath are listed below.

	PRF = 7200 Hz	7050 Hz
Near Swath	182.81950	186.70928
Far Swath	163.65950	167.14162

A FORTRAN computer program (see Appendix C) was written which calculates the phase shift necessary for each returning pulse. It would be more feasible to introduce a phase shift every X degrees instead of for every pulse. Since it is desired that the frequency decrease with time, the phase shifting process will proceed faster with earlier pulses than with later ones.

Tables 5 A, B, C and D show the results of introducing a phase shift every 20°. These results were obtained by taking the computer output listings in Appendix C, starting from the last pulse, calling it pulse 1 and working backwards. As can be seen, the earlier arriving pulses are grouped in 3s and 4s while later on, 10 pulses are grouped per 20° phase shift. The groupings were keyed on the 7200 Hz PRFs for each swath with these same groupings used for the 7050 Hz PRF.

SLO system operation proceeds as follows. The 60 MHz IF will be mixed with the 55 MHz SLO signal to place the return on a 5 MHz carrier. The counter will count the proper number of pulses and will switch in the proper amount of phase-shift such that after all the pulses for one look have returned, there will have been a cumulative phase-shift of 973° or 1006° depending on the swath. 49 lumped-constant phase shifters are needed for the near swath, 50 for the far, as in Figure 19. The average error over 1 look is essentially zero and the largest error after a given phase-shift is approximately 20° which amounts to about 3 Hz of Doppler shift. Future studies could attempt to optimize the error for each PRF.

b. SLO by Balanced Modulators

The use of balanced modulators is actually a single sideband technique which involves mixing two signals and getting out one of the two sidebands. This method is especially useful where the sidebands are close in frequency to the input signals. This system involves two subsystems: a chirp reference generator and the mixer. The basic configuration is shown in Figure 20.

TABLE 5A	
----------	--

	NEAR SWATH	PRF = 7200	
Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° increments
		20.009	209
1-3	3	20.99	20
4~6	3	41./5	40-
7-9	3	62.28	60°
10-12	3	82.58°	805
13-15	3	102.65°	100*
16-18	3	122.49°	120°
19-21	3	142.11°	140°
22-24	3	161.49°	160°
25-27	3	180.65°	180°
28-30	3	199,58°	200°
31-33	3	218.28°	220°
34-36	3	236.75°	240°
37-39	3	255.00°	260°
40-42	3	273.01°	280°
43-45	3	290.80°	300°
46-48	3	308.36°	320°
49-52	4	331.42°	340°
53-56	4	354.06°	360°
57-60	4	376.30°	380°
61-64	4	398.14°	400°
65-68	4	419.57°	420°
69-72	4	440.59°	440°
73-76	4	461.21°	460°
77-80	4	481.42°	480°
81-84	4	501.50°	500°
85-88	4	520.62°	520°
89-92	4	539.62°	540°
93-96	4	558.20°	560°
97-100	4	576.38°	580°
101-104	4	494.16°	600°

o

	•		
Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments
105-108	4	611.53°	620°
109-112	4	628.49°	640°
113-117	5	649.12°	660°
118-122	5	669.12°	680°
123-127	5	688.48°	700°
128-133	6	710.78°	720°
134-139	6	737.36°	740°
140-145	6	752.92°	760°
146-152	7	775.76°	780°
153-159	7	797.36°	800°
160-166	7	817.71°	820°
167-173	7, .	836.31°	840°
174-180	7	854.68°	860°
181-188	8	873.57°	880°
189-197	9	892.88°	900°
198-207	10	911.93°	920°
208-222	15	935.73°	940°
223-242	20	958.58°	960°
243-276	34	974.12°	973°*

NEAR SWATH PRF = 7200 (CONT.)

1

* 13° increment

:= :

TABLE	5B
-------	----

NEAR SWATH PRF = 7050

Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° increments
1-3	3	21.49°	20°
4-6	3	42.74°	40°
7-9	3	63.76°	60°
10-12	3	84.54°	80°
13-15	3	105.07°	100°
16-18	3	125.37°	120°
19-21	3	145.43°	140°
22-24	3	165.25°	160°
25-27	3	184.84*	180°
28-30	3	204.19°	200°
31-33	~ 3	223.29°	220°
34-36	3	242.16°	240°
37-39	3	260.70°	260°
40-42	3	279.19°	280°
43-45	3	297.34°	300°
46-48	3	315.26°	320°
49-52	4	338.77°	340°
53-56	4	361.87°	360°
57-60	4	384.54°	380°
61-64	4	406.78°	400°
65-68	4	428.61°	420°
69-72	4	450.01°	440°
73-76	4	470.98°	460°
77-80	4	491.53°	480°
81-84	4	511.66°	500°
85-88	4	531.36°	520°
89-92 .	4	500.64°	540°
93-96	4	569.50°	560°
97-100	4	587.93°	580°

Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments
	<u> </u>		
101-104	4	605.94°	600°
105-108	4 :	623.52°	620°
109-112	4	640.69°	640°
113-117	5	661.54°	660°
118-122	5	681.73°	680°
123-127	5	701.27°	700°
128-133	6	723.83°	720°
134-139	6	745.44°	740°
140-145	6	766.10°	760°
146-152	7	788.99°	780°
153-159	7	810.59°	800°
160-166	7	830.89°	820°
167-173	7	849.89°	840°
174-180	· 7	867.60°	860°
181-188	8	886.24°	880°
189-197	9	905.19°	900°
198-207	10	923.73°	920°
208-222	15	946.57°	940°
223-242	20	967.76°	960°
243-271	29	979.67°	973°*

NEAR SWATH PRF = 7050 (CONT.)

* 13° increment

TABLE	5C
-------	----

FAR SWATH PRF = 7200

. . .

Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments
1-3	3	20.22°	20°
4-6	3	40.23°	40°
7-9	3	60.04°	60°
10-12	- 3	79.65°	80°
13-15	3	99.05°	100°
16-18	3	118.24°	120°
19-21	3	137.24°	140°
22-24	3	156.02°	160°
25-27	3	174.60°	180°
28-30	3	192.98°	200°
31-33	3	211.15°	220°
34-36	3	229.12°	240°
37-40	4	252.76°	260°
41-44	4	276.04°	280°
45-48	4	298.95°	300°
49-52	· 4	321.50°	320°
53-56	· 4	343.68°	340°
57~60	4	365.50°	360°
61-64	4	386.96°	380°
65-68	4	408.05°	400°
69-72	4	428.78°	420°
73-76	4 (1	449.15°	440°
77-80	4	469.15°	460°
81-84	4	488.79°	480°
85-88	4	508.07°	500°
89-92	4	526.98°	520°
93-96	4	545.53°	540°
97~100	4	563.53	560°
101-104	4	581.53	580°
105-108	4	598.99	600°

FAR SWATH	PRF	=	7200	(CONT.)
-----------	-----	---	------	---------

Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments	
109-112	4	616.08°	620°	
113-117	5	636.94°	640°	
118-122	5	657.23°	660°	
123-127	5	676.95°	680°	
128-133	6	699.86°	700°	
134-139	6	721.95°	720°	
140-145	6	743.23°	740°	
146-151	6	763.71°	760°	
152-157	6	783.33°	780°	
158-163	6	802.15°	800°	
164-169	6	820.15°	820°	
170-176	7	840.12°	840°	
177-184	8	861.58°	860°	
185-192	8	881.58°	880°	
193-201	9	902.34°	900°	
202-210	9	921.27°	920°	
211-220	10	940.14°	940°	
221-233	13	961.27°	960°	
234-249	16	982.00°	980°	
250-297	48	1009.27°	1006° *	

* 26° Increment

	FAR SWATH F	PRF = 7050	
Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments
1-3	3	20.66°	20°
4-6	3	41.11°	40°
7~9	3	61.34°	60°
10-12	3	81.37°	80°
13-15	3	101.17°	100°
16-18	3	120.77°	120°
19-21	3	140.15°	140°
22-24	3	159.32°	160°
25-27	3	178.27°	180°
28-30	3	197.01°	200°
31-33	3	215.54°	220°
34-36	3	233.86°	240°
37~40	4	257.95°	260°
41-44	4	281.66°	280°
45-48	4	304.98°	300°
49-52	4	327.93°	320°
53-56	4	350.50°	340°
57-60	4	372.69°	360°
61-64	4	394.51°	380°
65-68	4	415.94°	400°
69-72	4	436.99°	420°
73-76	4	457.66°	440°
77-80	4	477.96°	460°
81-84	4	497.87°	480°
85-88	4	517.41°	500° 、
89-92	4	536.56°	520°
93-96	4	555.34°	540°
97-100	4	573.74°	560°
104-108	4	591.76°	580°
109-112	4	609.40°	600°

TABLE 5D

FAR	SWATH	PRF =	7050	(CONT.))
-----	-------	-------	------	---------	---

Returning Pulses	Pulses Shifted	Total Actual Phase Shift	Total Using 20° Increments
113-116	4	626.65°	620°
117-121	5	647.70°	640°
122-126	5	668.14°	660°
127-131	5	688.00°	680°
132-137	6	711.04°	700°
138-143	6	733.23°	720°
144-149	6	754.57°	740°
150-155	6	775.05°	760°
156-161	6	794.68°	780°
162-167	6	813.46°	800°
168-173	б	831.38°	820°
174-181	7	851.21°	840°
182-189	8	872.46°	860°
190-198	8	892.18°	880°
199-207	9	912.56°	900°
208-217	9	931.01°	920°
218-227	10	949.27°	940°
228-240	13	969.46°	960°
241-256	16	988.80°	980°
257-291	42	1010.71°	1006° *

 τ

* 26° Increment

SLO using balanced modulators.

The reference generator supplies a voltage ramp (which varies proportional to the Doppler shifts from the ground) to the voltage controlled crystal oscillator which provides the chirp to the balanced modulators. The VCXO signal is split-into two parts, one of which is phase-shifted by 90°. The VCXO signal is mixed with a 54.9 MHz signal from the frequency synthesizer which is also split with one component undergoing a 90° phase shift. When the mixed signals are recombined at the summing point, the 54.8 MHz component cancels, leaving the chirped 55 MHz component.

The reference function can be generated digitally as in Figure 21. The VCXO requires a control voltage in order to operate. Changing the control voltage in a linear fashion will result in the VCXO generating a chirp. The control voltage is stepped down in the counter on a pulse-bypulse basis corresponding to the desired rate of frequency change. The amplifiers provide the necessary gain to deliver the proper control voltage to the VCXO for the desired swath.

7

4.4.2 Divider Network

1.4

The divider network feeds the SLO mixer output to each filter channel simultaneously. T. E. Sponamore (1976) suggests using passive hybrid networks such as those used in the Bell System L-4 and L-5 carrier systems. However, within the time frame of this report, the author was unable to discern exactly how these networks function and what criteria must be considered in their design. More research must be done in order to find a way to implement a divider network for SCANSAR.

4.4.3 The Filter Channel

A block diagram of a single filter channel is shown in Figure 22. The basic operation of the channel proceeds as follows. The output of the SLO mixer is a set of constant frequencies representing the Doppler shifts from targets on the ground; the frequencies are functions of azimuthal position relative to the spacecraft. The SLO mixer output goes to all 198 (or 185) processor channels simultaneously to be processed for

Figure 22. A comb-filter channel.

- **j**...:

range information. Reticon serial analog memories (SAMs) are used to sample and hold the range information for $\frac{1}{PRF}$ seconds. The maximum clock rate on the Reticon SAM-64 is 12 MHz. Since at least 16.8 MHz is needed to sample the returns, operating two SAM banks in parallel each at 10 MHz will give the desired sampling, plus some oversampling. A 2-phase clock is used to separate the range elements such that SAM bank A handles the odd-numbered elements and bank B the even-numbered elements. After the proper delay, the range elements are recombined, low-pass filtered, and mixed up to 100 MHz to be phase shifted. The channel phase-shifter is selected according to swath, the amount of phase-shift being determined by where the filter is tuned. The comb-filter response is then weighted to reduce sidelobe levels and the signal is mixed down, amplified, and added to the next incoming pulse. After all the pulses for one look have been added, the resulting waveform is demodulated and stored in the buffer bank.

a. Serial Analog Memories

te a ri

The SAM-64 is a 64 bit analog shift register with independent read-in and read-out clocks. Information read-in and read-out functions cannot occur simultaneously in a storage element, hence one element is left vacant, leaving 63 available for storage for this recursive delay line application. To determine the number of SAMs necessary to process the returns, it is necessary to determine the number of pixels per image (scan) cell. Referring to Figure 2, the slant cell length ΔR is given by,

$$\Delta R = B_h R \tan \theta$$
.

This same figure may also be used for a comparable view for a pixel by replacing ΔR with r_s and S with R_r , where r_s is the slant range resolution and R_r is the ground range resolution. r_s is determined by the pulse length τ_p , $r_s = \frac{c\tau_p}{2} = \frac{c}{2B}$

where

 $B = RF \text{ bandwidth} = \frac{1}{\tau_{o}}.$

Therefore the number of pixels P, is given by

$$P = \frac{\Delta R}{r_s} = \frac{\frac{B_h R \tan \theta}{h}}{\frac{c}{2B}} = \frac{\frac{2B B_h R \tan \theta}{c}}{c}$$

The number of SAM cells SC needed is the round-trip time for each cell divided by the sample time T_s . In the slant cell length equation R is only a one-way length therefore, replacing R with $\frac{2R}{C}$,

$$SC = \frac{2 B_h R \tan \theta}{c} \cdot f_s$$

where

 $f_s = sampling frequency = \frac{1}{T_s}$.

For a sampling frequency of 20 MHz, near swath B_h of .059 rad and far swath B_h of .026 rad, the number of SAMs needed is given below as a function of angle.

	<u>Near Swa</u>	Far Swath	
8.4°	9	22.9°	11
20.8"	23	₽ 36.2°	23
22.488° *	25	36.957° *	23

*Farthest look angle due to beamwidth.

Since 25 is the maximum number of SAMs needed to process the returns, the SAM banks referred to earlier can be arranged with 13 SAMS in each bank for a total of 5148 SAMs for all the filter channels.

The SAM banks in Figure 22 actually appear as in Figure 23. SAM's Al and Bl are activated to sample a return pulse. The counter counts range elements and when all 63 positions are filled, the elements are diverted to A2 and B2, etc. until all the range elements are stored. The buffer bank operates in a similar manner. After 138.9 µsec or 141.8 µsec depending on the PRF used, a start pulse from the controller starts the readout clocks and the counter, and the range elements are recombined. It should be noted that this entire process could be implemented digitally. b. Phase-Shifter

Shifting the center frequency of the filter by an amount less than the spacing of the teeth is accomplished by using a frequency-independent (all pass) phase shift, each channel requiring a different phase shift to tune it to a different doppler frequency. Setting the Doppler filter band

Figure 23. Parallel channel SAM banks.

Contrast approximates for the second se

Port Carrie

from 1000 to 5800 Hz (4800 Hz bandwidth) puts the zero Doppler frequency at 3400 Hz. The necessary phase-shift ϕ to tune a channel to a frequency f for a given repetition rate T is

$\phi = 2\pi f T.$

The individual filter bandwidths are 26 Hz (near swath) and 24.2 Hz (far swath). Setting the phase shifts for the center at each band would place filters at 13 Hz, 39 Hz, 65 Hz ... for the near swath and 12.1 Hz, 36.3 Hz, 60.5 Hz ... for the far swath.

Some phase-shifts as functions of frequency for the two PRF's are given in Table 6.

All-pass functions have magnitudes constant for all frequencies and are characterized by their poles and zeroes being images with respect to the origin and with respect to the imaginary axis. A network such as in Figure 24 could be employed.

c. Weighting

Amplitude weighting of the frequency comb is used to suppress the sidelobes of the comb response. The first sidelobe resulting from a uniformly weighted comb is approximately 13.2 dB below the peak. By amplitude weighting, the sidelobes may be reduced to any desired level. Unfortunately, reducing the sidelobes results in widening the main lobe thereby degrading the resolution. For the terrain-mapping function of SCANSAR, the sidelobe levels need not be as low as those for identifying hard targets and as a result, the main lobe will not widen as much and the loss in gain is not as severe.

Table 7 shows the sidelobe levels for several basic distributions. The SCANSAR was designed around the relation $B_h = \lambda/H$ (radians) or 57.3 λ/H (degrees). From the table, it can be seen that this beamwidth can be obtained by using a parabolic weighting with the value for Δ lying between .5 and 0. Using $\Delta = .4$ results in a half power beamwidth of 57.1 λ/H with sidelobes 18.1 dB below the peak and a gain factor of .952. These values are derived in Appendix D. The weighting can be implemented by using a voltage controlled amplifier (VCA) whose gain K is preprogrammed to weight the response as the pulses circulate through the loop.

TABLE	6
-------	---

1, ;

:.

	<u>Near Swath</u>	Far Swath
ф (1000)	50.000°	51.064°
φ (2000)	100.000°	102.128°
φ (3400)	170.000°	173.617°
_ф (4800)	240.000°	245.106°
φ (5800)	290.000°	296.170°

Figure 24. All-pass phase shift network.

S.

the loop; in much the same manner as the SLO balanced modulator reference function generator.

TYPE OF DISTRIBUTION -15 *51	DIRECTIVITY PATTERN E (u)			ANGULAR DISTANCE TO FIRST ZERO	INTENSITY OF Ist Sidelobe (5 Below Max.	GAIN FACTOR
-i 0 +j f(x)=l	e sin u u		50.8 \{	57.3 λ	13.2	1.0
$\left \right\rangle$	Δ=	1.0	50.8 \{ \lambda \}	57.3 \}	13.2	1.0
	<i>L</i> (1+ <i>χ</i>) <u>sin α</u> υ	.8	52.7 \}	60.7순	15,8	, 93 4
	$T_{s(1-\Lambda)} \frac{d^2}{d^2}$.5	55.6 \}	65.3 \}	17.1	,970
f(x)= -(∆)x ²	du ²	0	65.9수	81,9 \}	20.6	.833
	$\frac{\pi z}{2} \frac{\cos u}{\left(\frac{\pi}{z}\right)^2 - u^2}$		68.8).	85.9 <u>\</u>	23	018,
$\frac{1}{100}$	<u>.² sin u = = = = = = = = = = = = = = = = = = </u>		83.2 }	114,6)	32	.657
-i 0 +i f(x)=i-ixi	$\frac{x}{2} \left(\frac{\sin \frac{u}{2}}{\frac{u}{\zeta}} \right)^2$		$73.4\frac{\lambda}{I}$	114.6).	26,4	.75

TABLE 7. LINE SOURCE DISTRIBUTIONS *

x * . .

.

* From Jasik, H., ed., <u>Antenna Engineering Handbook</u>, McGraw-Hill, 1961, p. 2-26.

d. Gain Stabilization

It may be necessary to guarantee that the gain around the loop stay a constant. This may be done by injecting a signal at a known frequency and voltage as shown in Figure 25, recovering it via a frequency trap and comparing the voltages. The difference voltage may be used to drive the weighting amplifier to restore equilibrium.

e. Channel Summing Point

The channel summing point serves to add an incoming signal to one which has circulated the loop. One unfortunate problem with the SAM is that there is a 92.6% loss in signal amplitude in moving a signal through one, due to the fact that a sample is stored on a 2 pf capacitance but is read out through a 25 pf capacitance. This implies the use of an amplifier to compensate for this loss. A circuit such as in Figure 26 could be used to accomplish both tasks by using a summing-inverter op amp network.

For example, let V_A be an incoming signal and let V_B be a signal which has circulated through the loop and has lost 92.6% of its amplitude. The voltage V_A at the output of the summing inverter is given by

$$V_0 = R_F \left(\frac{R_A}{V_A} + \frac{R_B}{V_B} \right)$$

where

 $R_F =$ feedback resistor $R_A, R_B =$ input resistances.

Selecting $R_A = NR_B = R_F$,

$$V_0 = R_F \left(\frac{V_A + NV_B}{NR_B} \right) = NV_B + V_A$$

The gain due to the SAMs is $\frac{2}{27}$ or .07407. Therefore,

 $V_{\rm B}$ = .07407 x (SAM input voltage)

It is desired to have V_B of the same order as V_A . Let V_{IN} = .01 volt.

 $V_{\rm p} = .0007407.$

¥

Since

$$NV_{B} = .01$$

N = 13.5

50

$$V_0 = V_A + 13.5 V_B$$

If $V_{\rm A}$ is at a level of .01V, the following table traces the signal amplitude.

Pulse	٧ _A	۷ _B	v _o	$V'_{\rm B}$ (= $\frac{2}{27}$ V ₀)
1	.01 V	οV	.01 V	.0007407 V
2	.01	.0007407	.02	.0014815
3	.01	.0014815	.03	.0022222
• • •	•	•	:	• •
297	.01	2.97		

The unity-gain inverter just inverts the output from the summing-inverter with no change in gain. It may be desirable to switch in an amplifier with a gain of 13.5 after the last pulse has been summed in and sent through the SAM to be delivered to the buffer, however its location is not critical and could be placed in the circuit directly preceding the buffer itself.

4.5 DETECTION AND BUFFERING

After all the necessary pulses have been integrated and mixed up to 100 MHz, they are full-wave detected to eliminate the carrier, lowpass filtered to yield a composite waveform and stored in the buffer bank. A detection-filter bank configuration such as that of Figure 27 may be used.

The detection process effectively halves the IF bandwidth, therefore the bandwidths are 3.4 MHz and 3.85 MHz for the two swaths. Running the

Figure 27. Detector-low pass_filter_circuit.

Buffer output system.

4

buffer SAMs at 8 MHz will sample both swaths. Computing the number of SAMs needed from the expression in the preceding with $f_s = 8$ MHz, 10 SAMs are required for the buffers. The buffers contain the compressed azimuth data observed by each filter.

While the comb filter is summing the returns for one look the range elements in the buffers from the preceding look can be read into the accumulators. The returns for each look are then added to the appropriate addresses in the accumulators.

The basic buffer-accumulator arrangements is shown in Figure 28 and with more detail in Figure 29. The buffers empty into 16-channel analog multiplexing/demultiplexing switches such as the RCA-CD4067B which gate the range samples into an 8-bit A/D converter. From section 1, the number of bits $N_{\rm h}$ is given by

$$N_{\rm b} = \frac{\sigma^{\circ}(\max) - \sigma^{\circ}(\min)}{3.0103}$$

The maximum number of bits is 7 in the near swath, hence the 8-bit A/D converter.

The conversion time T for reading out the buffer samples is given by

$$T_c = \frac{\tau}{N \cdot S}$$

where

 τ = time for 1 look (.03846 or .04132 sec)

N = number of channels (185 or 198)

S = total number of samples in each channel buffer bank (640).

 T_c is approximately 325 nsec for these values. An A/D converter such as Datel's ADC-UH8B with a 100 nsec conversion time could be employed. The A/D converter output could then be placed on a data bus to be read into the accumulators. RCA-CD4057A 4-bit Arithmetic Logic Units (ALU) could be used to implement the accumulators. These ALUs are capable of performing up to 16 functions although their purpose here is for addition of the looks. Each ALU contains a register and acts as a tri-state device. An enable pulse from the controller can instruct the ALU to

switch into the data bus to retrieve data. The ALUs for accumulators 186-195 could be switched to a high impedance state while the satellite is operating in the near swath. Two ALUs are required to accomodate the 8-bit output from the A/D converter and since there are 640 samples per channel, 1280 ALUs are required for each accumulator.

4.6 TIMING AND CONTROL

There are two major decisions for the master controller. The first decision is which swath the satellite is to observe. From an equipment standpoint, this sets the antenna pointing angle program, the dwell time for each scan cell, and the number of filter channels to be used. It also determines the proper amounts of phase shift (or frequency shift) in the SLO and in the filter channels, and the number of buffer integrations (looks). Once this decision is made, the other is selecting the correct PRF for each scan cell pointing angle. This decision determines the transmit and receive cycles, the read-in and read-out start times on the SAM clocks, and the filter channel delays. Since there is a finite time delay between transmitting a pulse and receiving a return, the transmitter can be shut down after it has sent out the proper number of pulses for all the looks at a scan cell position until all the returns are back. The buffers can then dump their contents into the major summing junction for transmission to earth while the antenna is scanned to its next position.

4.7 ALTERNATIVE PROCESSOR CONFIGURATION

A potential problem exists with the filter channel configuration of Figure 22 in that the dynamic range of the SAMs may not be great enough to accomodate summing 300 pulses. According to Reticon, the spurious level of a SAM is 55 dB below 4 volts or 7 mv. The random noise level is 63 dE below 4 volts or 2.8 mv. This problem can be circumvented by modifying the filter channel arrangement as in Figure 30 and processing the returns in a "pipeline" fashion. A bank of \sqrt{N} filters (where N is the

Figure 30. An alternative filter channel arrangement.

total number of filters) pre-filters the returns, summing 20 pulses. This sum is dumped into a secondary bank of filters set up as before but whose delay is 20 times that of the pre-filters. This scheme prevents the total level in any SAM from exceeding 4 volts. For example, let the input voltage level to the pre-filters be .1 volt. After 20 pulses are summed, 2 volts will be in each pre-filter.

Utilizing the 92.6% SAM amplitude loss as a .074 gain factor to set the level to the secondary bank, then .148 volts will be input to these SAMs. In summing 300 pulses, the pre-filter will dump 15 times so that after one look, the total voltage in each secondary filter SAM will be only 2.22 volts.

Other than the two delay times, the only remaining difference between the pre-filters and the secondary filters is that the pre-filter phase shifts are set to the center of their respective 343 Hz bandwidths. The circuit configurations for the filter channels are the same as before and require no basic changes in system hardware either preceding or following them.

4.8 EDGE EFFECTS

According to the system design, the antenna beam will illuminate 9.23 km in azimuth on the ground and the SCANSAR is able to take 6 looks at a scan cell in the near swath. However, since the satellite is moving along-track at 7200 r sec, the scan cell itself will "slide" along the ground during the time it takes for the 6 looks. Therefore some pixels at the beginning and end of the scan cell will be observed 1 to 5 times instead of the desired 6.

One method of overcoming these "edge effects" would be by broadening the azimuthal beamwidth (B_g) such that the 3 dB point on the antenna pattern would shift down, allowing more coverage. It is also possible to alleviate the problem by making use of the system timing, making the problem one of control.

During each look, the satellite will travel 276 meters and the scan cell will slide by this same amount. After 6 looks, the satellite will

have moved 1656 meters in 0.230 seconds elapsed time. It can be observed from Table 2 that it takes approximately 0.003 seconds (near swath) for the first pulses to return to the radar. Therefore, the amount of time the antenna needs to dwell on any cell is approximately 0.233 seconds (the satellite travelling 1677.6 meters during this time). The SCANSAR computer-design program allows 0.257 seconds of dwell time per cell.

14

1 24

 $\gamma_{\rm e} \sim 1$

Figure 31 shows a scan cell as it slides along the ground during the six looks. The horizontal lines represent the beginning and end of the scan cell after each look and the number of looks at each area of the cell is given for each position. From the reference point (original beginning edge of the cell), the satellite has moved 10886 meters. Figure 32 shows the breakdown of the 1677.6 meter cell slide. The 21.6 meter number comes from the fact that after the radar has looked at ! cell and scans to the next, it has moved .003 sec x 7200 m/sec (21.6 m) before the first pulses return from the ground. Figure 33 shows a 5 scan-cell swath. Figure 34 shows the starting points of each cell in the swath relative to cell 1. As can be observed, the satellite travels a total of 8388 meters with respect to the reference point so that when the antenna beam returns to position 1, there is an 842 meter overlap on the area observed in the preceding position 1. Therefore those areas on the around which have been observed less than 6 times from one cell will be seen again on the next antenna scan.

Figure 35 represents the overlap of two superimposed cells at antenna position 1 of adjacent swath scans (see inset). The left cell (la) was observed in the first scan, the right cell (lb) in the next. The vertical scale is in meters measured from the bottom edge of the left cell. As is apparent from the figure, all ranges except for the 262 meters between the 9506 and 0768 meter marks are seen at least 6 times by 1 cell or the other. The excess looks can be discarded, or may be used to improve graylevel resolution. Since only 5 looks are available in this range from cell la, 1 look can be "borrowed" from cell lb. This should be a relatively simple task for the controller to accomplish.

-77

.

Ω,

IN TOT PAGESBLANK NOT FILKEN

4.9 SUMMING THE LOOKS

į.

÷.,

Independent looks can be summed in the accumulators in 2 ways. The first involves resetting the SLO after each look. The satellite moves 276 meters per look. At the end of look 1, filter 1 stores the contents in accumulator 1, filter 2 in accumulator 2, etc. 276 m is 5.52 pixels in azimuth, so at the beginning of look 2, filter 1 is looking a distance 52% of the way into pixel 6 (whose returns are stored in accumulator 6). In order for look 2 to add correctly to look 1, the SLO must have been shifted down from its reset point by .52 x 26 Hz = 13.52 Hz. Now, filter 1 empties into accumulator 6, filter 2 to accumulator 7, etc. At the beginning of look 3, filter 1 will be at pixel 11.04. Therefore, the SLO must shift down .04 x 26 Hz = 1.04 Hz. At the end of look 3, filter 1 empties into accumulator 11, filter 2 into 12, etc. This can be performed by the controller.

The other method merely involves letting the SLO run continuously for 6 looks (843.72 Hz) and resetting it only to observe a new scan cell. This way, filter 1 will always empty into accumulator 1, filter 2 to accumulator 2, etc. every look. This can be easily implemented by using 6 of the SLO lumped phase-shift networks or stepping the balanced modulator control voltage ramp for 1656 pulses instead of 276. In either case, 34 extra accumulator banks will be needed to accomodate the cell slide.

5.0 MOTION COMPENSATION

Two kinds of spacecraft motion must be taken into account in the operation of the spacecraft SAR, since both can have the effect of displacing the Doppler band relative to the illumination pattern of the antenna: (!) attitude errors can cause the antenna to point in some direction other than along the zero-Doppler line; and (2) vertical veolcity components caused either by non-circularity of the orbit or by the oblateness of the earth cause a net shift in the Doppler frequency and therefore an apparent along-track displacement of the image. Ideally the antenna should be pointed along the zero-Doppler line, but this line is not perpendicular to the orbital plane, since the Doppler frequency is measured in terms of velocity relative to the rotating earth. At the equator a point on the earth has a linear velocity of about 463 m/sec. If the satellite were in a true polar orbit, this would mean that the zero-Doppler line would deviate from perpendicular to the orbit plane by 3.5° at the equator, decreasing to zero at the poles. For other orbits the deviation is less at the equator, but the component along the orbit of the earth-rotation velocity gives a displacement to the image that depends on position in the orbit. With the typical narrow beams, rotation of either the satellite or the antenna to compensate for the rotation of the zero-Doppler line relative to the orbital plane should be included in the design of the satellite-radar system.

Attitude variations of the satellite can also cause errors in the Doppler shift for which compensation must be provided. Yaw rotates the beam position on the ground; pitch moves the entire pattern ahead of or behind the zero-Doppler line. The satellite attitude control system keeps these variations within relatively firm limits, but additional compensation must be provided unless the attitude limits for the vehicle are kept within very small bounds.

Three methods for compensating for these movements are: (1) controlling the frequency of an oscillator to center the signal spectrum in the processor passband, (2) electronically steering the antenna in azimuth to the desired angle to compensate for yaw and earth's rotation, (3)

physically moving the antenna or spacecraft to correct for earth's rotation and yaw and pitch errors. Roll errors may also cause problems, although these are not usually as severe because of the wider vertical beam of the antenna. In some configurations of the SCANSAR, however, the vertical beam is narrow enough so that roll errors can become a problem. For this situation, stabilization of the antenna (mechanically or electronically) is called for, since Doppler shifting cannot make this type of correction. Furthermore, for some situations involving fineresolution radars, the curvature of the off-normal isodops must be considered in the processing, but this problem is not believed to be significant for the modest resolution systems discussed here.

3.

Method (1), use of an offset local oscillator frequency, must be used to compensate for vertical velocity variations, and can be used to compensate for earth's rotation and attitude errors. The earth's rotation error correction frequency can be programmed in advance, but attitude errors must be detected by the satellite control system sensors which can then provide a correction voltage to the radar. The output of the error control oscillator can then be mixed in a single-sideband modulator with the 54.9 GHz stable reference from the frequency synthesizer to produce a signal at 54.9 + f_p MHz. This signal is then mixed in the scanning local oscillator. A diagram of this method is shown in Figure 36.

In practice, some combination of methods (1), (2), and (3) must be used in the radar-satellite system. Detailed design of this system depends on both orbit and satellite attitude control parameters.

84.

Figure 36. Motion compensation circuit using balanced modulations.

6.0 POWER AND SIZE

6.1 POWER CONSUMPTION

. .

The major contributors to the power consumption are the transmitter, the receiver, the frequency synthesizer, the controller, the SAMs and their drivers, and the buffer A/D converter. The average transmitter power is 15 watts but with a 25% efficiency it will use 60 watts. The low noise transistor amplifier used in the receiver can be expected to use 10 watts maximum. Based on presently available units, the frequency synthesizer will use approximately 15 watts continuous power. 25 watts is allotted to the controller on a sheerly intuitive basis. The controller, being the heart of the processor, is an inherently complex device whose specific design was not considered within the context of this report.

The quiescent (DC) power consumption for each SAM is 4 mw. Each filter channel for the single bank configuration contains 36 SAMs (26 in the loop, 10 in the buffer bank) for a 28.51 W DC usage. The DC clock consumption is also 4 mw per SAM, however, only 3 SAMs would be operating in each channel (2 in the loop, 1 in the buffer) for a total of 2.38 W.

The proposed drivers are National Semiconductor MM88C29 CMOS Quad Single-Ended Line Drivers, each package containing 4 drivers. From the National Semiconductor CMOS Data Book, the normalized AC power consumption W_{NAC} for a 10 MHz clock rate at $V_{CC} = 10$ V is 1000 μ W/pf. The power consumption per driver package, W_{D} , is given by

$$W_{D} = W_{NAC} (C_{PD} + C_{L})$$

where

 C_{PD} = no load capacitance. (150 pf for this device). C_{L} = load capacitance.

Allowing the absolute maximum power dissipation per package ($W_D = .5W$), the maximum load capacitance C₁ is 350 pf. The SAM clocks are rated at

20 pf, therefore 17 SAMs can be operated by one driver package at 10 MHz. For the 8 MHz buffers, $W_{NAC} = 800 \ \mu W/pf$ and $C_L = 475 \ pf$ resulting in 1 driver package operating 23 SAMs. The final figure for the single channel configuration is 37 W as compared to 33 W for the pipeline approach. See Appendix E for more detail on the power calculations.

The buffer A/D converter uses approximately 10 W. 10 W is allowed for miscellaneous items such as amplifiers, switches, VCOs, and the SLO D/A converter. Included in this total are the 14 analog multiplexers which use 0.2 μ W quiescent and 1 mW operating power per unit. Also included are the ALUs. Although 253,440 ALUs are needed, they only use 10 μ W apiece quiescent and approximately 1 mW apiece operating power but only 2 operate in each channel at any given time. Power supplies are assumed 85% efficient.

Table 8 shows the power budget for a single-sided SAR with a total power consumption of around 200 watts. One area to be awaited in the near future is the advent of CMOS drivers with lower power consumptions and the ability to accomodate greater load capacitances.

If a longer antenna were used, the number of filter channels would be reduced, although the length of each SAM chain would be increased. Since driver power is proportional to the number of channels, the 37W figure for SAMs and drivers would be less.

Aperture length (AL) and aperture height (AH) are related by

$$AH = \frac{12 V_g R_2 \tan \theta_2 \lambda}{c AL}$$

where

Vg = satellite ground velocity

 R_{o} = slant range at farthest look angle

 θ_{2} = farthest look angle in swath

 λ = operating wavelength

c = speed of light.

For SCANSAR, $V_g = 7.2 \text{ km/sec}$, $R_2 = 465327 \text{ m}$, $\theta_2 = 20.8^\circ$, $\lambda = 0.063 \text{ m}$, and $c = 3 \times 10^8 \text{ m/sec}$ so this relation reduces to

TABLE	8.
-------	----

Ì

į

÷

	<u>l side</u>	<u>2 sides</u>
SAMs (and drivers)	- 37 w	74
Transmitter (25% eff.)	- 60	120
Receiver	- 10	20
Frequency Synthesizer	- 15	Shared
Controller	- 25	Shared
Buffer A/D	- 10	20
Miscellaneous	- 10	20

	167 w	294
Assuming 85% efficient power supplies	- 197	346

$$AH = \frac{3.207}{AL}$$

Aperture length determines the horizontal beamwidth, the azimuthal scan cell width, and the Doppler bandwidth. The horizontal beamwidth B_{g} is given by

$$B_{l} = \frac{\lambda}{AL}$$

The scan cell width GA is given by

$$GA = B_{g}R_{1}$$

where $R_1 = slant$ range to the scan cell nearest the track.

The Doppler bandwidth F_d is

$$F_{d} = \frac{2V_{g}}{AL}$$

Obviously, when the aperture length decreases, B_{l} increases and the scan cells become wider. For a given velocity, the Doppler bandwidth becomes larger. The number of filter channels NFLT needed to process the Doppler bandwidth is

NFLT =
$$\frac{F_d}{\Delta f_d}$$

where Δf_d = tracking bandwidth (fixed by the resolution).

Hence NFLT increases as F_d increases. A plot of the number of filters for various aperture lengths is given in Figure 37.

The power consumption is based on requirements for the filter channel and buffer serial analog memories and their associated clock drivers. The number of SAMs required to process the data is given by

$$S = \frac{2 \lambda R_{max} \tan \theta_{max} f_s}{63 \text{ c AH}}$$

where

 R_{max} = slant range at farthest look angle (470800 m)

- 89

Figure 37. Number of filter channels vs. aperture length.

90

j.

 θ_{max} = farthest look angle coverage in swath (22.488°) f_s = SAM sampling frequency.

Using the above constants,

$$S = \frac{1.299 \times 10^{-6}}{AH}$$
 fs

where $f_s = 20$ MHz in the filter channels, and $f_s = 8$ MHz for the buffers. Table 9 shows the number of SAMs per channel; the number of channels, and the total number of SAMs per processor as functions of aperture height for the near swath. Figure 38 shows the total channel power consumption considering SAMs and CMOS drivers calculated in the same manner as Appendix E. Although the total number of SAMs fluctuates, their AC power consumption, which depends on the number of SAMS operating at a given time in each channel, will decrease with increasing antenna length. Long, thin antennas give the lowest power consumptions.

6.2 <u>SIZE</u>

The physical size of the radar depends mainly on the layout of the electronic components. It is recommended to mount the components for each channel on the same board in order to minimize propagation delays. The drivers for the SAMs could be located together in order to centralize the large amount of heat they can be expected to generate. Heat can be dissipated by radiation into space. The fixed shapes of many off-the-shelf-items such as the microwave plumbing, transmitter tube, and power supplies must be considered in order to package the hardware for minimum volume. Obviously, high voltage leads should be kept to minimal lengths. It would also be advisable to locate the transmitter tube as far away from the antenna as possible so as to reduce thermal effects. The entire radar system could conceivably be enclosed in a 36" x 36" x 18" volume.

TABLE 9.

Aperture Length	SAMs per Channel	No. of <u>Channels</u>	Total No. of SAMs
0.500	8	1108	8864
1.069	14	518	7252
1.604	19	345	6555
1.791	22	309	6798
2.000	25	277	6925 _.
3.000	36	185	6660
4.000	48	138	6624
4.500	53	123	6519
5.000	59	111	6549
6.414	70	86	6278

1.1

Figure 38. Filter channel power consumption vs. aperture length.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The SCANSAR signal processor can effectively be implemented as an analog system; however, there are a few considerations worth mentioning. The stability of the filter channels is a critical factor and must be examined in detail. Obviously, the more complex a processor is, the more difficult it becomes to operate under a given set of constraints. It is hoped that in the near future, the storage capability of the SAM (or similar devices) will be expanded so that fewer of them will be needed. For example, using 1024-bit analog devices would reduce the number of such devices in each channel to 3 and would eliminate much of the switching circuitry presently required. The effect on the total power consumption is an unresolved issue in that although the number of devices has been decreased, chances are that due to the increased number of bits, the quiescent (DC) power would go up and the clock line capacitance would increase, thereby requiring more drivers.

The width of a comb "tooth" in a comb filter is directly proportional to its tracking bandwidth (Δf_d) and is therefore directly proportional to the azimuth resolution. Decreasing the sidelobe levels results in widening the main lobe and decrading the resolution. It is conceivable that more detailed comb response sidelobe weighting studies may require revision of the resolution requirements.

As was noted in Section 2.2, the SCANSAR computer-design program was written such that the angles used in the design were the pointing angles and inter-cell gaps developed. This was compensated for by changing the angles to account for the beamwidth and increasing the number of cells in the swath by 1. A preferable design would take the beamwidth into account initially when calculating the number of cells, thereby skirting the gap problem entirely.

The ideal way to evaluate system performance and to study possible improvements would be to construct an aircraft version of the processor, which would be considerably less complicated than the satellite version, and fly the system. Perfecting its operation on a small-scale basis would lend itself well to expansion to spacecraft operation.

APPENDIX A

This appendix contains the updated FORTRAN program listing of SCANSAR used in designing the processor for this report. The original version of SCANSAR can be found in Claassen (1975). Final output listings are located in section 2.0.

0010CSCANSAR DESIGN OF A SCANNING SAR 00200 THIS PROGRAM WAS PREPARED BY 00300 0040C JOHN P. CLAASSEN 0050C 0060 DIMENSION THETAD(2), THETAR(2), SIGMAX(2), RA(2), 0070% RR(2), CC(2), WT(2), TYPE(4), GR(2), GR(2), R(2), 0800& SIGMIN(2) 0090 REAL NF, KT, LOSS, K 9100 DATA C, DEG, YES, PI, TYPE, THOUS, K, JJ/ & 3.0E08, 0.0174532925, 'YES', 3.141925, 01100120 % 'UNFOCU','SED', 'SEMI-F','OCUSED', 1000.0, 1.386-23, 0130% 0177177077040/ 01400 ARITHMETIC ASSIGNMENT STATEMENT 0150TAN(X) = SIN(X)/COS(X)SPPRESS CARRIAGE RETURNS ON READS 01600 0170 CALL FPARAM(3,JJ) INPUT PARAMETERS(GEDMETRY) 01800 0190WRITE(6,1000) 1.00200 1000 FORMAT(////1X,/DESIGN OF A SCANNING SAR HAVING/, 0210 % / INPUT DESIGN PARAMETERS AS FOLLOWS:/// 0220 & TAPERTURE LENGTH (M) () 0230 READ(5,1001) AL 0240 1001 FORMAT(F8.2) 0250WRITE(6,1002) 0260 1002 FORMAT(1X, OPERATING WAVELENGTH (N) () 0270READ(5,1001) WL 0280WRITE(6,1003) 0290 1003 FORMAT(1X, MIN AND MAX VIEW ANGLES (DEG) () 0300READ(5,1008) THETAD 0310 1008 FORMAT(2F8.2) 0320 WRITE(6,1004) 0330 1004 FORMAT(1X, AZIMUTH RESOLUTION (M) () 0340READ(5,1001) RA(1) 0350 WRITE(6,1005) FORMAT(1X, TRANGE RESOLUTION (1) () 0360 1005 READ(5,1001) RR(1) 03700380WRITE(6,1006) 0390 1006 FORMAT(1X, 'GROUND VELOCITY (KM/SEC) () 0400 READ(5,1001) VGP WRITE(6,1007) 0410 0420 1007 FORMAT(1%, 4SPACECRAFT-ALTITUDE-(KM)--/) 0430READ(5,1001) ZP

> REPRODUCIBILITY OF THE BRIGINAL PAGE IS POOR

į

0440C	SCALE VARIABLES
0450	YG = YGP+THOUS
3460	Z = ZP+THOUS
9479C	UNFOCUSED PRESUMPTION
0480	ITYPE = 1
04900	COMPUTE MAX AND MIN RANGE
0500	DO 20 I=1,2
0510	THETAR(I) = THETAD(I)+DEG
0520	R(I) = Z/COS(THETAR(I))
0530 20	CONTINUE
05400	FULLY FOCUSED LIMITATION
9559	RAFF = AL/2.0
0560	IF(RAFF .LT. RA(1)) 60 TO 30
0570	WRITE(6,2000)
0580 2000	FORMAT(1X) / INADEQUATE APERTURE LENGTH TO/)
0590 &	1 ACHIEVE RESOLUTION. INPUT DATA AGAIN: (//)
0600	GO TO 10
9619C	UNFOCUSED LIMITATION
0620 30	RAUF = SQRT(WL+R(2)/2.0)
96390	ESTRBLISH SYSTEM TYPE
9649	IF(RAUF .LT. RA(1)) GO TO 40
9659C	PARTIALLY DR FULLY FOCUSED SYSTEM REQUIRED
3660	DFD = 2.09769RA(1)/R(1)/WL
9670	RA(2) = DFD+WL+R(2)/2.0/76
0680	ITYPE = 3
0690	GO TO 45
9796 49	RA(1) = RAUF
9719C	UNFOCUSED SYSTEM REQUIRED
9720	DFD = 2.0+7G+RA(1)/R(1)/WL
9739	RA(2) = DFD+WL+R(2)/2.0/76
97490	APERTURE HEIGHT TO SATISFY DOPPLER SAMPLING
97 5 90	REQUIREMENT
9760 45	FD = 2.0+76/AL
9770	NFILA = FD/DFD + 0.5
9789	AH = 6.0+FD+R(2)+TAN(THETAR(2))+WL/C
9790C	CHECK WITH DESIGNER
0800	WRITE(6,3000) AH
9310 3999	FORMAT(1X, THE APERTURE HEIGHT IS', F6.2, M.1,
0820 🐁	<pre>/ DD YOU WISH TO INCREASE THE HEIGHT(/)</pre>
0830	READ(5,3001) ANS
0340 3001	FURMAT(A3)
0850	IF(ANS NE. YES) 6D TO 70
0860 50	READ(5,1001) AHNEW

```
0870
            IF (AHNEW .GT. AH) GD TO 60
 0880
            WRITE(6,3002)
            FORMATKIX, NEW APERTURE HEIGHT MUST BE LARGER THAN ,
 0890 3002
          & ' THE DLD. TRY AGAIN: (/)
 0900
 0910
            68 78 53
 0920
            AH = AHNEW
        69
 0930
        70
            BETAH = WL/AH
 99490
                    COVERAGE PARAMETERS
 0950
            NCELL = (THETAR(2)-THETAR(1))/BETAH + 0.5
 0960
            NCELL = NCELL + 1
 0970
            BETAL = WL/AL
            DD 39 I = 1.2
 0980
 0990
            GA(I) = R(I)+BETAL/THOUS
 1999
            GR(I) = R(I)+BETAH/CDS(THETAR(I))/THOUS
 1919
            CONTINUE
        89.
            SWATH = (R(2)+SIN(THETAR(2))-R(1)+SIN(THETAR(1)))/THOUS +
 1020
 1930
          & (GR(2) + GR(1))/2.0
 19490
                     TIMING
 1050
            TSLEW = GA(1)/VG+THDUS
 1060
            TCELL = TSLEW/NCELL
 1979
            1F(TCELL .GT. 1.9/DFD) GD TD 85
 1989
            WRITE(6,3003)
 1090 3003
            FORMAT(</18, INSUFFICIENT TIME TO ACHIEVE RESOLUTION; (,
 1199
          & 1 TRY AGAIN1///>
1119
            GD TO 10
 11200
                    PULSE REPETITION FREQUENCY
1130
            DELR = BETAH+R(2)+TAN(THETAR(2))
        85
 1140
            PRF = C/(4.0+DELR)
11500
                    RANGE RESOLUTION
1160
            DR = RR(1)+SIN(THETAR(1))
1179
            RR(2) = DR/SIN(THETAR(2))
11800
                    BANDWIDTH REQUIRED
1199
            BW = C/2.0/DR/THOUS++2
12000
                    PROCESSING GAIN
1210
            NGP=PRF/DFD
12200
                     ND. OF CELLS AVAILABLE FOR AVERAGING
            LODKS = TCELL+DFD
1239
12400
                    DEPTH OF FOCUS
1259
            RMIN=Z/COS(THETAR(2)-BETAH/2.0)
1260
            FACT1 = R(1)+R(1)+WL
1279
            FACT2 = 0.6+RA(1)+RA(1)
1280
            NFILR = 0
_1299
            RPLUS = Z/COS(THETAR(2)+BETAH/2.0)
```

1300 86 ·	RMINUS = FACT1+RPLUS/(FACT2+RPLUS+FACT1)
1319	NFILK = NFILK+1
1329	IFARMINUS.L).RMIND GU (U 87
1330	RPLUS = RMINUS
1349	60 TO 36
13590	INPUT POWER PARAMETERS
1360 87	WRITE(6,4000)
1370 4000	FORMAT(1X)/LOSS FACTOR (DB)/)
1389	READ(5,1001) LOSS
1390	WRITE(6,4992)
1400 4002	FORMAT(1X; NOISE FIGURE (DB)/)
1410	READ(5,1001) NF
1429	WRITE(6,4003)
1430 4003	FORMAT(1X,/SIGNAL/NOISE (DB)/)
1440	READ(5,1001) SN
1450	WRITE(6,4004)
1460 4084	FORMAT(1X) (MAX SCATTERING COEFFICIENTS (DB)()
1479	READ(5,1008) SIGMAX
1489	WRITE(6+4007)
1499 4097	FORMAT(1X+1MIN SCATTERING COFFEICLENTS (DB)()
1500	REGD(5+1998) SIGNIN
1510	URITE(6.4995)
1520 4005	FORMAT/18,/GREATURE EEE /REDCENTI/I
1920 4000	PEABYS.1001) AREE
1540	$\Delta EEE = \Delta EEE/100 0$
1550	NETTERA.4006)
1560 4006	EDDMGT/19./DECETUED INDUT TEMDEDOTUDE /DEC /////
1570	PERDISING RECEIVER INTOL LENTERHIURE (DEC N/T) DECD/5.1001\ TEMO
15000	CENDINGIO ICHE CENDITE TRONOMITTER RELIER OND CHONNEL C ROCITY
10000	EQUIDOTE INDIANITIER FLORER NUD CHEMNEL CAPACITY
1390	FILLIER = 0.0000100L00C010.0000(LESSON-050)/10.00000000000
10000	NDITE - (DICHOU(I) CICHIN(C)) / CICH - C C
1610	M3115 = 1516MMAX12=516M1M122223.0103 + 0.5
1629	108 70 1 7 1 2 NTATA A ANTONIO DATA ANALANA ANALANGKAMANAN ANA ANALANAN
1639	WI(1) = 4.00FHU(UR0R(1)0004/(10.000(SIGMIN(1)/10.0)0RR(1)0
1649 %	RR(I)+NGF+(AL+AH+ABEFF)++2)
1659	CC(I) = GR(I)+GH(I)/(RH(I)+RR(I))+NBITS/ICELL
1668 90	CONTINUE
1670C	LIST SYSTEM DESIGN PARAMETERS
1680	WRITE(6,5000) THETAD, WL, AL, RA(1), RR(1),
1690 &	YGP, ZP, AEFF≁100.0, LOSS, NF, SN, TEMP, SIGMAX, SIGMIN
1709 5000	FORMAT(///20X; SUMMARY TABLE///; 1X; TRAW DESIGN PARAMETERS///
1719 &	1X; / PARAMETERS/17X; / VALUES/;10X; / UNITS///
1720 &	1X; ANGLE SPAN1;4X; 2(F10,2;5X); DEG1/
1730 🏔	1X;/LAMBDA/;8X;F10.3;20X;/M//

1749	Ċ.	1X, APER LENGTH ASX; F10, 1, 20X, MAA
1750	Ċ.	1X, AZ RES1, 8X, F19.2, 20X, M//
1760	0,	1X, 'RA RES', 8X, F10.2, 20X, 'M'/
1770	Ċ,	1N+/GRD VEL/+7N+F10.1+20X+/KM/SEC//
1789	Ċ,	1X;/ALTITUDE/;6X;F10.1;20X;/KM//
1799	<u>0</u> ,	1X; APER EFF1;6X;F10,1;20X; PERCENT1/
1899	Ĉ.	1X;/LOSS FACTOR/;3X;F19.1;20X;/DP//
1819	Ö :	1X, (NDISE FIG(,5X,F10.1,20X,(2B)//
1829	0,	1X;/SIG/NUISE/;5X;F10.2;20X;/DB//
1830	2,	1X, TREC TEMP1, 6X, F10.1, 20X, TDEG K1/
1849	0.	1X,/SIGMAX/,8X,2(F10.2,5X),/D3//
1859	Q.	1X*/SIGMIN/*8X*2(F19.2/3X)*/DB///)
18600	2	COMPUTED PARAMETERS
1879		WRITE(6,5001) TYPE(ITYPE),TYPE(ITYPE+1),AH, WT,
1880	8.	PRF/THOUS, FD/THOUS, BW, NGP, LOOKS, NFILR, NFILA, CC
1890	5001	FORMAT(1X, COMPUTED SYSTEM PARAMETERS///
1900	ê	1M, SYSTEM TYPE: 1,2X,2A6/
1919	С,	1X, APER HEIGHT/3X, F10.2, 20X, M//
1920	8	1X**/XMIT_PWR**6X*2(F10.2*5X)*/WATTS*/
1930	ů,	1X, (PRF(,11X,F10,2,20X) (KHZ)/
1940	<u>&</u>	1X; 1FD1; 12X; F10, 2; 20X; 1KH21/
1959	3.	1X***RF_BW**9X*F10.1*20X**MHZ*/
1969	<u>c.</u>	1X, PROC GAIN1, 5X, 110/
1970	3 .	1X**LOOKS**9X*I10*
1980	ĝ.	1X+/FILTER BANKS/+2X+I10/
1990	<u>0</u> ,	1X; /FILTERS/BANK/;2X; I19/
2000	G.	1X, CHAN CAP1, 6X, 2(F10, 2, 5X), MBITS/SEC(////)
2010		WRITE(6,5002) SWATH, NCELL, GA, GR, TSLEW, TCELL, RA, RR
2020	5992	FORMAT(1X; COVERAGE AND RESOLUTION ///
5030	6.	1X, 1SWATH1,9X, F10,2,20X, 1KM1/
2040	Ĉ.	1X, CELLS/SCAN(, 4X, I10/
2050	ŝ.	1X, (CELL WIDTH(,4X,2(F10.2,5X))(KM)/
5060	S.	1X, *CELL LENGTH*, 3X, 2(F10.2, 5X), *KM*/
2070	Q.	1X,/SCAN_TIME/,5X,F10.2,20X,/SEC//
5080	ŝ	1X, TIME/CELL/, 5X, F10.3, 20X, TSEC//
2090	Ç,	1X, AZ RESA, 8X, 2(F10.2, 5X), MAA
2199	6	1X,/RA_RES1,8X,2(F10.2,5X),/M1///
2119	8.	1X/WANT TO DESIGN ANOTHER DNE//>
2129		READ(5,3001) ANS
2139		IF(ANS .EQ. YES) OD TO 10
2149		WRITE(6,9000)
2159	9000	FORMAT(//1X, 'VERY INTERESTING: ', AUFWIEDERSEHEN'/)
2160		STOP
2170		END

ţ

APPENDIX B

This appendix contains a program used on a Hewlett-Packard HP-25 scientific calculator to figure the round-trip times to the inner and outer edges of an image cell and the length of the return pulse. The input data required is inner look angle, outer look angle, and altitude. The round-trip time from the inner angle is displayed first, for approximately 4 seconds, followed by the round-trip time from the outer angle for the same display time, followed by the pulse length. In the final design, this must be modified to use spherical-earth geometry.

HP-25 Program To Calculate Round-Trip Times To The Image Cell Inner and Outer Edges.

<u>STEP</u>	INSTRUCTION	STEP	INSTRUCTION
01	RCL 1	18	COS
02	COS	19	ENTER
03	. ENTER	20	RCL 3
04	RCL 3	21	<u>*</u>
05	÷	22	1/X
06	1/X	23	2
07	2	24	x
08	Х	25	RCL 4
09	RCL 4	26	÷
10	÷	27	PAUSE
11	PAUSE	28	PAUSE
12	PAUSE	29	PAUSE
13	PAUSE	30	PAUSE
14	PAUSE	31	PAUSE
15	PAUSE	32	RCL 5
16	STO 5	33	-
17	RCL 2	34	GO TO 00

INPUT

STO 1 - INNER ANGLE (DEG) STO 2 - OUTER ANGLE (DEG) STO 3 - ALTITUDE (m) STO 4 - 3 x 10⁸ (m/sec)

APPENDIX C

This appendix contains the Fortran program and output listings which generated the incremental phase shifts for the scanning local oscillator discussed in section 4.4.1. Data was input in the following format:

7200., 7050., 0., A, B, NPULSE

where A and B are the swath constants for 7200 Hz and 7050 Hz PRFs (respectively) shown on page 46. NPULSE is the maximum number of pulses per look.

9919C	THIS PROGRAM CALCULATES THE INCREMENTAL
00200	PHRSE SHIFTS FOR THE SLO SUBSYSTEM
00300	
0040C	INPUT PARAMETERS
00500	BPRF(K) = PRF
00600	A = CONSTANT FOR DPRF(1)
9979C	3 = CONSTANT FOR UPRE(2)
0080C	NPULSE = NUMBER OF PULSES PER LOOK
00900	
91990	OUTPUT PARAMETERS
91190	I = PULSE NUMBER
01200	T = TIME (SEC)
91300	TRVG = RVERAGE TIME (SEC)
3149C	UPHI = INCREMENTAL PHASE SHIFT (DEG)
91590	PHIT = CUMULATIVE PHASE SHIFT (DEG)
0169C	
9179	DIMENSION DPRF(3)
9189	READ(5,1000) (DPRF(K),K#1,3),A,B,NPULSE
0190	1000 FDRMAT(3F6.0,2F10.5,15)
0200	K=1
9219	5 IF(DPRF(K) .EQ. 0.0) 60 TO 99
0220	PHIT=0.
9239	WRITE(6,2000) DPRF(K)
0240	2000 FORMAT(2%, PRF = 1,F6.044/4X, PULSE1,4X, TIME(SEC)4,
9259	\$4X, TAVE TIME(SEC) 1,4X, TPHRSE SHIFT(DEG) 1,4X, TPHI TOTAL 1,77
9260	RR=1.0/DPRF(K)
9279	DEG=B
9280	IF(DPRF(K) .EQ. 7200.) BEG#A
3290	DD 10 I=1,NPULSE
9399	XI=I
9319	THXIARR
0320	TRV6=(XI+RR+(XI+1.0)+RR)/2.0
9339	DPHI=DE6+TAV6
0343	PHIT=PHIT+DPHI
0350	WRITE(6,3000) I,T,TAVG,DPHI,PHIT
9369	3000 FORMAT(5X,13,2(4X,E11.5),9X,F8.5,7X,F9.5)
9379	10 CONTINUE
0380	WRITE(6,4000)
0390	4000 FORMAT(////)
9499	K=K+1
0410	I=1
9429 .	.GD TO 5 ,
9439	99 STOP
9440	END

104

REPRODUCIBILITY OF THE ORIGINAL PAGE IS PCCE 7200.,7050.,0.,182.81950,186.70928,00277

PRF = 7200.

PULSE	TIME(SEC)	AVG TIME(SEC)	PHASE SHIFT (DEG)	PHI TOTAL
1	0.13889E-03	0.20833E-03	0.03809	0.03809
2	0.27778E-03	3.347226-03	9,96348	9.19157
3	9.41667E-93	9.43611E-03	0.03887	0.19044
4	0.55556E~03	0.625008-03	0.11426	0.30470
5	0.69444E-03	9.76389E-03	9.13965	0.44435
6	0.83333E03	0.90270E-03	0.16505	0.60940
. 7	9.97222E-93	0.19417E-92	0.19944	0.79984
8	0.11111E-02	0.11306E-02	0.21583	1.01566
, , , 9	9.12539E-92	9.13194E-02	3,24122	1.25689
13	0.13889E-02	0.14583E-92	9.26661	1.52350
11	3.15278E-02	9.15972E-92	0.29209	1.81559
12	0.16667E-92	0.17361E-92	9.31739	2.13289
13	0.18056E-02	0.18750E-02	9.34279	2.47568
14	0.19444E-92	0.20139E-02	0.36318	2.84386
15	0.20833E-02	9.21528E-92	9.39357	3.23743
16	3.22222E-02	0.22917E-02	9.41896	3.65639
17	0.23611E-02	0.24306E-92	3.44435	4.19974
18	0.25000E-02	0.25694E-02	3.46974	4.57049
19	0.26389E-02	9.27983E-92	0.49514	5.96562
20	0.27778E-02	31.28472E-92	9.52053	5,58615
21	3.29167E-02	9.29861E-02	9.54592	6.13297
22	3.30556E-02	9.31250E-02	9.57131	6.79338
23	3.31944E-02	0.32639E-02	3.59673	7.30008
24	0.33333E-02	0.34028E-02	0.62209	7.92218
25	0.34722E-02	0.35417E-02	0.64749	8.56966
26	0.36111E-02	0.36806E-02	9.67288	9.24254
27	0.37500E-02	0.38194E-92	0.69827	9.94081
- 28	2.38839E-02	0.39583E-02	9.72366	19.66447
29	0742278E-02	3.40972E-02	9.74995	11.41352
30	0.4166ZE-02	9.42361E-92	3.77444	12.18797
31	2.43056E-02	0.43750E-02	0.79984	12.96780
32	0.44444E-02	0.45139E-02	0.82523	13.81303
33	3.458336-92	0.46528E-02	3.85362	14.66365
34	9.47222E-92	9.47917E-92	9.87691	15.53966
35	3.48611E-32	9.49336E-32	0.99149	16.44106
30	9-59399E-92	3.53694E52	9.92679	17.36785
37	J.51389E-92	0.52083E-92	3.95218	18,32994
33	0.52778E-92	9.53472E-52	9.97758	19.23761
59	0.041678-02	0.54961E-92	1.00297	29.39996
40	0.000066-02	9.56259E-92	1.32336	21.32394
41	0.369446-92	0.576396-02	1.35375	22.38269
46	1.083336-72	0.599286-92	1.57914	23.46134
93	0.07/222-02	J.5341/E-32	1.10453	29.06637
	0.011116-02	J.618962-92	1.12993	23.67639
- 140 - 140	0.060006-02	3.631746-702	1.10032	20.00101
40	0.650572-72	J.64383E-32	1.18971	25.03232
41	0.600/02-02	0.607726-VE	1.20610	27.13391 30.46967
40	9 609565-02	0.007501 <u>C-0C</u>	1.23147	50.96572 01.70400
50	0.00000E-02	0.00100ETUC	1.20555	31.12000 70 00000
99	0+07444E-02	J.7 J1376-76	1.49449	33.03908
			n An an an an an an an an an Anna	그는 것 같은 것 같은 것 같은 것 같은 것 같은 것이다.

		and the second			
51	9.798336-92	9.71528E-92	1.39767	34.31674	
52	1.722225-12	9.729176-92	1.33316	25 64981	
53	9.736116-92	9.742966-92	1 25245	27 00225	
54	1 759496-02	0 75604E-00	1 202040	37.JUSEU 30.30300	
55	0 762005-02	0 77000500	1,30307		
50	0.70007E-02	0.770832-02	1.40363	39.80133	
00 57	0.777766-02	0.784726-02	1.43463	41.23595	
37	0.79167E-02	0./98616-02	1.46332	42.69597	
. 30 50	3.800066-02	9.81250E-02	1.43541	44.13136	
23	0.31944E-02	J.32639E 95	1.51080	45.69218	
69	J.33333E-32	J.84 328E-32	1.53619	47.22337	
61	0.84722E-02	9.35417E-92	1.56158	48.78995	
62	9.86111E-92	9.86836E-32	1.58697	50.37693	
63	0.87500E-02	9.33194E-92	1.61237	51.98929	
64	0.83889E-02	9.39583E-92	1.63776	53.62705	t.
65	9.90278E-02	0.90972E-02	1.66315	55.29020	
66	0.91667E-02	0.92361E-02	1.68054	56.97874	
67	3.93956E-92	9.937536-92	1.71393	58.69268	
68	9.944445-02	0.95139E-02	1.73932	60.43200	
69	1 958335-12	1.965296-12	1 76472	62.19672	
70	9 972225-02	0.070175-02	1 70011	62 90602	14. 14
71	1 996115-02	0 000045-00	1 01550	65.000E	
72	9 1000000000	0.100606-06	1 04000	67 64221	
70	0.100002-01	A 100076-01	1.04J07 1 02600	20 50051 20 50050	
7 Q 1	0.107705.01	0.102002-01	1.00028		
75	0.102782701	0.10347E**01	1.37167		
72.	0.104176-01	0.10486E-01	1.91/9/	73.31824	
10	0.100066-01	3.136256-91	1.94246	75.26069	10 C
11	0.105946-01	9.13/64E-31	1.96785	77.22854	
<u> </u>	J.19833E-91	3.19993E-91	1.99324	79.22178	
- 79	3.13972E-31	9.11942E-91	2.31863	81.24941	
89	3.11111E-91	9.11181E-91	2.04492	83.28444	
31	9.11253E-01	0.11319E-01	2.06942	85.35385	
32	0.11339E-01	0.11458E-01	2,09481	87.44866	
83 -	9.11528E-01	9.11597E-01	2.12020	89.56886	
64	9.11667E-91	0.11736E-01	2.14559	91.71445	
35	9.11896E-91	0.11875E-01	2.17998	93.88543	
36	0.11944E-01	9.12014E-01	2.19637	96.03130	E ser t
37	3.12983E-91	0.12153E-01	2.22176	98.30357	
33	9.12222E-91	9.12292E-01	2.24716	199.55972	
89	9.12361E01	9.12431E-01	2.27255	102.82327	
30	9.12599E-91	9.12569E-01	2.29794	195.12121	
91	9.126395-91	0.12708E-01	2.32333	197.44454	
40	1.12778E-01	9.128476-91	2 34872	199.79326	·
42	0.129176-01	1 129865-01	2.37411	112.16738	
94	0.13056E-01	9.131255-01	2,39951	114.56688	
QE.	1 131946-01	3 132646-01	2.42499	116.99178	
96	1 10000E-01	1 1 24 125-11	2,45029	119.44297	N. 12
- 70 197	0.1000000-01	0.12540C-At	0 47560	121-91775	
90	0.10414EL01	0.10201E=01	5 TT 000	194 41999	1
20	1 1275 0E-01	1-12010E-01	D ROAAA	126 94528	
100	9 10000E-04	0 100175701	し、JEU19 今 日本102	100 40714	2
144 1	J.10067E-JI	J • 10 700E''' 01	2.00100		

106

Seattle state to space the seattle state of the state of the seattle state of the state of the

이 같은 것은 같은 것은 것을 알려요. 이 것을 많은 것이 것 같은 것은 것이 것 같은 것이 같이 많이 있는 것이 것이 같이 많이 있는 것이 같이 많이 있는 것이 없다.

the second states of the second s

	•				
191	9.14928E-91	3.14397E-31	2.57725	132.07439	
192	9.141675-91	9.14236E-91	2.69264	134.67793	
102	1 142965-91	1.142756-01	2 62893	137.30506	
104	0 14444E-01	0 145146-01	2 65342	139.95848	
1.05	0.145025-01	9 146525-91	2.67881	142.63729	
100		0 14703C-01	2 20421	145 24150	
136	0.14/22E-01	0,147928-01	C./ UTCI	140 07100	
197	3.14361E-31	3.14931E-01	2.72700	198.07107	
198	9.15999E-01	J.15069E-01	2.70477	153.82638	
139	3.15139E-31	3.15233E-31	2.73038	153.63646	
119	3.15273E-31	0.15347E-51	2.89577	196.41223	
111	0.15417E-01	3.15486E-31	2.33116	159.24340	
112	0.15556E91	9.15625E-01	2.85655	162.39995	
113	9 .15 694 E -91	0.15764E-01	2.33195	164.98199	
114	0.15833E-01	3.15903E-01	2.99734	167.88923	a da ser en el composition de la composition de
115	0.15972E-01	0.16042E-01	2.93273	179.32196	•
116	9.16111E-91	0.16181E-01	2.95812	173.78998	ant ing
117	0.16250E-01	0.16319E-01	2.98351	176.76360	
113	9.16389E-01	9.16458E-91	3.00890	179.77259	
119	0.165285-01	9.16597E-91	3,03430	182.89689	
120	0.16667E-91	0.16736E-01	3.05969	185.86648	
121	9.16806E-01	0.16875E-91	3,08508	188.95156	
122	0.16944F-91	0.17014E-01	3.11947	192-96293	
123	9.17983F-91	9.171536-91	3 13586	195 19790	ma dina sa
124	0 170000 01	9 172925-01	3 16125	100 25015	
125	0 17961E-01	0 174018-01	9 1044K	170-00710 001 EAE70	
100	0 175005-01	0.179312701	3.13663	201.04077	•
140	0 176005-01	0.177005-01	3.21234	204./0/63	anto ta Solutione
100	0.4770396-01	0.177082-01	3.23(93	20(.99526	
123	3.17778E-01	9.1/84/E-91	3.20232	211.25636	
129	3.17917E-01	9.17986E-31	3.23321	214.54629	
130	9.13356E-31	5.13125E-31	3.31369	217.85989	te e de l'anne e
131	3.18194E-91	0.18264E-01	3.33900	221.19889	
132	3.13333E-91	9.18403E-01	3.36439	224.56328	e sa meri
133	0.18472E-01	0.18542E-01	3.32978	227.95305	· · · · ·
134	0.18611E-91	9.18681E-01	3.41517	231.36823	
135	0.18750E-01	9.18819E-91	3.44056	234.30879	···. ··· · ··
136	0.18889E-01	0.18958E-91	3.46595	238.27474	.
137	0.19028E-01	0.19097E-01	3.49134	241.76608	
138	0.19167E-01	0.19236E-91	3.51674	245.28282	· . ·
139	0.19306E-01	0,19375E-01	3.54213	248.82495	a de la composition de la comp
140	0.19444E-01	0.19514E-91	3.56752	252.39247	
141	9.19583E-01	9-196536-91	3.59291	255.98538	
142	0.19722E-91	3.197925-01	3.61830	259.63368	
143	0.19861F-01	0.199316-01	3 64369	263 24738	
144	0.200005-01	0.200696-01	3.669.19	266.91647	
145	0.20139E-01	1.212125-01	3 69448	279.61094	
146	<u>0.000705.01</u>	9 999475-91	2 71997	274.22021	
147	0.004175-01	0 00402E-01	G. (170) G. 74ROZ	978 17617	
4.60	なるにいてよるにできた。 り、つら数数の方につき	0 202255 01	91740E0 97766E	001 04670	
140	0.20000000000	0.00000001		601.040(0 005 24077	
180	0.20074E"UI 0.00000E.04	0.207092-01	0.79004	200.04217 200.x2420	· · · · ·
193	J.2 J535E-JI	u.cupuse-ui	5. 5%19 7	207.90923	
	ter e ter			an a	na san sa

en en service en en en service per el service de la 107 version de la service de la service de la service de la

ne dekon pri ingili kena dalak basi kena kena dan dalah dipan kena kena kena kena kena di kena dalah sebah di

en en linear hat dan wang bahar dan dari kata dari

					• • • • • • • •
151	0.20972E-01	0.21042E-01	3.84683	293.31103	jin na je
152	9.21111E-01	0.21131E-01	3.87222	297.18325	
153	0.21250E-01	0.21319E-01	3.89761	301.03086	
154	0.21389E-01	0.21458E-01	3.92300	305.00386	
155	0.21528E-01	3.21597E-01	3.94839	308,95226	· · · ·
156	9.21667E-91	0.21736E-01	3.97373	312.92604	
157	0.21806E-01	3.21875E-01	3.99918	316.92522	
158	9.21944E-01	9.22914E-91	4.02457	329.94978	
159	0.22033E-01	0.22153E-01	4.34996	324.99974	
169	9.22222E-91	9.22292E-01	4.07535	329.07510	
161	9.22361E-91	0.22431E-91	4.19974	333.17584	e de la composition
162	0.22500E-01	0.22569E-01	4.12613	337.30197	
163	9.22639E-01	9.22738E-31	4.15153	341.45353	
164	3.22778E-01	0.22847E-91	4.17692	345.63942	
165	0.22917E-01	9.22986E-91	4.20231	349.83273	
166	9.23956E-91	0.23125E-01	4.22770	354.96942	
167	9.23194E-01	0.23264E-01	4.25339	358.31352	
163	0.23333E-01	0.23403E-01	4.27848	362.59200	
169	9.23472E-91	0.23542E-01	4.30388	366.89588	
170	9.23611E-01	9.23681E-01	4.32927	371.22514	
171	9.23750E-01	9.23819E-01	4.35466	375.57989	
172	0.23889E-01	9.23958E-01	4.38095	379.95985	
173	0.24928E-01	0.24097E-01	4.49544	384.36530	en de la compañía de
174	0.24167E-01	9.24236E-91	4.43083	388.79613	na na internetto di l
175	9.24396E-91	0.24375E-01	4.45623	393.25235	
176	9.24444E-91	9.24514E-91	4.48162	397.73397	···· ·
177	0.24583E-01	0.24653E-01	4.50701	402.24098	
178	9.24722E-01	0.24792E-01	4.53240	406,77338	in the second states of the second
179	0.24861E-01	9.24931E-91	4.55779	411.33117	
189	0.25000E-01	0.25069E-91	4.58318	415.91435	n i takutut ing
131	0.25139E-01	0.25208E-01	4.63857	420.52293	
132	9.25278E-91	9.25347E-01	4.63397	425.15689	
133	9.25417E-91	9.25486E-91	4.65936	429.81625	
134	9.25556E-01	9.25625E-91	4.68475	434.50100	i strata dat.
185	0.25694E-01	0.25764E-01	4.71914	439.21114	
186	0.25833E-01	9.25993E-01	4.73553	443.94668	a se table As
197	0,25972E-01	9.26942E-91	4.76092	448.79769	
133	0.26111E-91	9.26181E-91	4.78632	453.49392	
139	9.26259E-91	0.26319E-01	4.81171	458.33563	
190	0.26389E91	9.26458E-01	4.83710	463.14273	
191	0.26528E01	0.26597E-91	4.86249	468.00522	
192	9.26667E-91	0.26736E-91	4.88788	472.89310	그는 요구 도구 같은
193	9.26836E-01	0.26375E-01	4.91327	477.80637	tan ing sa
194	9.26944E-01	0.27914E-91	4.93867	482.74594	
195	0.27083E-01	0.27153E-01	4.96496	487.70910	n an an gynger fan Arras
196	0.27222E-01	0.27292E-91	4.98945	492.69855	e stiker offe
197	0.27361E91	0.27431E-01	5.01484	497.71339	n an
198	0.27500E-01	0.27569E-01	5.04023	502.75362	and and 4
199	0.27639E-91	0.27708E-01	5.06562	507.81924	en e
290	0.27778E-01	0.27847E-91	5.09102	512.91926	Leught () 옷을

는 동안에서 같은 도망한 수많은 것이 같이 가지 않는 것을 했다. 이렇게 한 것은 것은 것은 것을 알았는 것을 하는 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 하는 것을 하는 것을 하는 것

na bankan mengenakan ang kanalakan pana na bahara kana kana mengenakan kana kana kana kana kana 🖡

201	9.27917E-91	7.27986E-01	5.11641	518.02667	
202	0.28056E-01	0.28125E-01	5.14189	523.16847	
233	0.28194E-91	0.28264E-01	5.16719	528.33566	
204	9.28333E-01	0.28403E-01	5.19258	533.52824	
205	0.28472E-01	9.28542E-01	5.21797	538.74622	and the spin of the
296	9.28611E-91	9.28681E-91	5.24336	543.98958	
297	0.23753E-31	0.28819E-01	5.26876	549.25833	
203	0.28889E01	0.28958E-01	5.29415	554.55248	
209	0.29028E-01	9.29397E-31	5.31954	559.87202	
219	0.29167E-01	9.29236E-01	5.34493	565.21696	
211	0.29306E-01	0.29375E-01	5.37932	570.58728	
212	0.29444E-01	0.29514E-01	5.39571	575.98299	
213	0.29583E-01	0.29653E-01	5.42111	581.49410	
214	0.297226-01	0.29792E-01	5.44650	586.05059	
215	9.29861E-01	9.29931E-01	5.47189	592.32248	
216	0.30000E-01	0.30069E-01	5.49728	597.81976	
217	0.33139E-01	0.30208E-01	5.52267	603.34244	
218	9.39278E-01	0.39347E-91	5.54806	608.89050	
219	9.39417E-91	9.30486E-01	5.57346	614.46396	
550	0.30556E-01	0.30625E-01	5.59885	620.06281	
221	0.33694E-31	9.39764E-91	5.62424	625.68704	
222	9.30833E-01	0.30903E-01	5.64963	631.33667	
223	0.30972E-01	0.31042E-01	5.67592	637.01169	
224	3.31111E-01	0.31181E-01	5.70041	642.71210	· .
225	0.31250E-01	9.31319E-91	5.72581	648.43791	
226	0.31389E-01	0.31458E-01	5.75120	654.18911	
227	0.31528E-01	9.31597E-01	5.77659	659.96570	
228	9.31667E-91	3.31736E-01	5.80198	665.76768	
୍ 229	3.31896E-91	3.31375E-31	5.82737	671.59595	al d'an an des
230	0.31944E-01	0.32014E-01	5.85276	677.44781	
231	9.32983E-91	3.32153E-91	5.87815	683.32596	
232	0.32222E-01	0.32292E-01	5,90355	689.22951	
533	3.32361E-01	9.32431E-01	5.92894	695.15845	
234	0.32503E-91	0.32569E~01	5.95433	701.11278	
235	3.32639E-01	0.32708E-01	5.97972	707.09259	
236	0.32778E91	0.32847E-01	6.00511	713.09761	
237	3.32917E-01	9.32986E-01	6.03050	719.12811	
- 238	0.33956E≁91	J.33125E-91	6.05590	725.18491	
al e te er					

109 TO

수는 아니는 것은 것은 것은 것은 것은 것은 것은 것을 것을 수 있는 것은 것은 것은 것은 것을 수 있는 것을 수 있는 것을 수 있다. 것은 것은 것은 것은 것은 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것은 것은 것은 것은 것은 것을 수 있는 것을 수 있다. 것은 것은 것은 것은 것은 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있는 것을 수 있다. 것은 것은 것은 것은 것은 것을 수 있는 것을 수 있다. 것은 것은 것은 것을 수 있는 것을 것을 수 있는 것을 수 있는 것을 수 있는 것을 것을 것을 것을 것 같이 같이 없다. 것을 것 같이 같이 같이 같이 같이 같이 없
	· · · · ·			and Antonio antona antona Antona antona antona antona a	
239	J.33194E-01	0.332646-01	6.03129	731.20033	
240	0.004705-01	0.005405-01	0.13000	740 BAAAB	
241	0.334/26401	0.333422-01	5.1320/ 6 15746	748 22151	
696 540	0.000116-01	0.335516-01	0.10740 6 10905	747.00131	șt per la tran
6140 944	0.0000000000000000000000000000000000000	0 000505.01	6 0100K	740 05041	
2444	0.040005-01	0 940075-01	0.CJQCJ 6.00064	760 00605	
240	0.041676-01	0 04006E-01	0.000 2.000 2.000	774 54527	·
240	0.040065-01	0 040755-01	0.60700 2.70449	700 00070	
6147 940	0.044445.01	0 045146.01	2 20001	707 10051	
240	0.045005.01	0.246526-01	6 22529	793 47472	
253	0.247225-01	9 24792E-91	6.36969	799,83531	
200 2001	0.040616-01	0.240215-01	6 32593	816 22139	
252	1 2510012-01	0.35969E-01	6.41138	812.63268	
253	0.35139F-01	1.352386-01	6 43677	819 96944	
254	0.35278E-01	0.35347E-01	6.46216	825.53160	•
255	0.35417E-01	9.35486E-91	6.48755	832,91916	
256	0.355566-01	9.356256-91	6.51294	838.53210	· · · ·
257	0.35694F-01	9-35764E-91	6.53234	845 17144	
258	0.35333E-01	9.359336-91	6.56373	851.63417	
259	3.35972E-91	9.36942E-91	6.58912	858 22229	t, interactor
263	9.36111E-91	9.361816-91	6.61451	864.83789	
261	9.36259E-91	9.36319E-91	6.63990	871.47773	
262	9.36389E-01	9.364588-01	6.66529	878.14299	
263	9.36528E-91	0.36597E-01	6.69069	884 83368	
264	3.36667E-01	0.36736E-01	6.71608	891.54976	
265	0.36806E-01	0.36875E-01	6.74147	898.29123	
266	0.36944E-01	9.37014E-01	6.76686	905.05809	•
267	9.37083E-01	9.37153E-01	6.79225	911.85034	
263	0.37222E-01	0.37292E-01	6.31764	918.66798	
269	9.37361E-01	0.37431E-01	6.84394	925.51102	an an an an Arrana. An an Arrana
273	0.37503E-01	0.37569E-01	6.36343	932.37944	
271	0.37639E-01	9.37708E-91	6.89382	939.27326	
272	0.37778E-91	0.37847E-01	6.91921	946.19247	· · · ·
273	0.37917E-01	9.37986E-91	6.94460	953.13798	
274	9.38356E-91	0.38125E-01	6.96999	960.10707	
275	9.33194E-01	9.38264E-91	6.99538	967.10246	
276	0.38333E-01	9.38493E-91	7.92978	974.12323	
277	9.38472E-91	9,38542E-01	7.94617	981.16940	

i se de la sela parte de la companya de la companya de la sela de la companya de la companya de la companya de

ka karki presirek sikura (dalaran) a kikur (jarab) katala se garanan sahi kara kara sa karki kara kara kara ka

an search and the state of the

PRE 1 - 7959 . Company and a scalar contraction of the state of the st

PULSE	TIME (SEC)	AVG TIME(SEC)	PHASE SHIFT (DEG)	PHI TOTAL	. ·
1	9.14184E-93	9.21277E-93	0.03973	0.03973	
2	0.28369E03	9.35461E-03	9.96621	0.10593	
3	0.42553E-03	0.49645E-03	0.09269	0.19863	
	0.56738E-03	9.638395-93	9.11913	9.31789	
5	0.70922E-03	0.78014E-03	0.14566	9.46346	
G	0.35106E-03	0.92199E-03	9.17214	0.63561	-
7	0.99291E-03	9.19633E-92	0.19863	0.83423	
3 -	9.11348E-92	0.12057E-02	9.22511	1.05934	
- 11 9 1	0.12766E-02	9.13475E-92	9.25159	1.31994	
10	0.14134E-02	0.14894E-02	0.27808	1.58902	
11	3.15603E-02	0.16312E-92	0.30456	1.09353	
12	9.17021E-02	9.17730E-02	9.33194	2.22462	
13	0.18440E-02	9.19149E-02	9.35753	2.58215	
14	0.19858E-32	0.20567E-02	9.38491	2.96616	
15	9.21277E-02	9.21986E-02	0.41050	3.37666	
16	9.22675E-02	0.23404E-02	3.43698	3.81364	
1711	0.24113E-02	0.24823E-02	9.46346	4.27710	
13	9.25532E-92	9.26241E-02	3.439	4.76795	
19	0.26950E-02	9.27669E-92	0.51643	5.28348	
20.	0.28369E-02	9.29378E-92	9.54291	5.82639	
21	0.29787E-02	0.30496E02	9.56940	6.39579	
22	0.31206E-02	9.31915E-02	0.59588	6.99167	
23	0.32624E-92	0.33333E-02	0.62236	7.61403	
24	0.34943E-92	9.34752E-02	0.64885	8.26288	
25	0.354616-02	0.36170E-92	0.67533	3.93821	
26	0.36879E-02	0.37589E-02	9.79162	9.64003	
27	0.38298E-02	0.39007E-02	0.72830	13.36832	
23	-0.39716E-02	9.40426E-02	9.75478	11.12311	
- 29	0.41135E-02	9.41844E-02	9.72127	11.99437	
30	0.42553E-02	0.43262E-02	9.89775	12.71212	
31	0.43972E-02	3.44681E-92	9.83423	13.54635	
35	3.45390E-02	0.46099E-02	0.86072	14.49797	1997 - Barris
33	9.46809E-92	0.47518E-92	0.88720	15.29427	
34	0.48227E-92	0.48936E-02	9.91368	16.20795	
35	0.49645E-92	9.50355E-02	0.94917	17.14812	
36	3.51364E-92	3.51773E-92	0.96665	18.11477	
37	9.52482E-92	0.53191E-92	0.99313	19.10791	
36	0.53991E-02	9.54619E-92	1.01962	23.12753	ant starts
39	9.55319E-92	0.56028E-02	1.04619	21.17363	
49	J.56738E-92	9.57447E-92	1.07259	22.24621	e Antonia A
41	9.53156E-32	0.588655-02	1.09907	23.34528	
42	3.09074E-02	9.63284E-92	1.12555	24.47983	n a ^{na} ar na
2019 (44 65) - 1	0.60993E-92	9.61792E-92	1.15294	25.62287	
44	J.62411E-02	9.63121E-02	1.17852	26.89139	
4⊉		3.64539E-92	1.20500	28.00639	, , , , , , , , , , , , , , , , , , ,
46	J.65243E-32	9.65957E-02	1.23149	29.23788	gele el pl
470.	3.66667E-92	9.67376E-02	1.2577	30.49585	· · · · · · · · · · · · · · · · · · ·
45	J.68J85E-92	J.63794E-92	1.28445	31.78030	
43	. J.69594E-92	0.70213E-02	1.31094	33.99124	n an
53	9.79922E-92	9.71631E-92	1.33742	34,42866	

51	0.72340E-02	0.73050E-02	1.36390	35.79257	
52	0.73759E-02	0.74468E-02	1.39039	37.18295	
53	9.75177E-02	9.75887E-92	1.41637	38.59983	
- 54	0.76596E-02	9.77395E-02	1.44336	40.94318	ta e de la servel
55	3.78014E-92	9.78723E-02	1.46984	41.51392	en altra da tra
56	0.79433E-02	9.891426-92	1.49632	43,99934	a filia de la composición de
57	0.80851E-02	9.81569E-92	1 52281	44.53215	
58	0.82270E-02	9.829796-92	1.54929	46.08144	
52	9.83688E-92	9.84397E-92	1.57577	47.65721	
69	0.85196E-92	0.35316E-02	1 69226	49.25947	
61	9.865256-92	9-87234F-02	1.62874	51-88821	
62	0.879435-92	3-88652F-92	1.65522	52.54343	
63	9.89362E-92	9.99071E-02	1.63171	54.22514	
64	9.997895-92	0.91489E-02	1 70819	55 93333	
65	0.921996-02	1.929186-12	1.73467	57.66301	•
66	3-93617E-92	9.943265-02	1 76116	59.42917	
67	0.950256-02	1 957456 19	1 72' 64	61 91691	
68 .	1 96454E-12	9 971625.00	1 01/12	43 92003 91 - E1001	
69	3 379795-19	0 00500E	1 04961	66.00000 68 97158	
. 70	0 00001E.00	9 10000E-0E	1.047001	64 7006A	
71	0 100716-01	0 10140C-01	4 00050		
72	0 100105-01	0.10146E-01	1.02000	70 85007	
76	0 1005555.01	0.102042-01	1.JEJJO 1.04684		
74	0.102006-01	J.1.0460E"JI 0.1.046775204	1 94999	74 A7104	
75	0.104205-01	0 107085-01	4 00051	76 47196	
10	0.108206-01	0.10707E-01 0.10754E-01	1.27701	10.11/109 70 40705	gaa dar oo ah
70	0.10/0025-01	0.108016-01	C.JCJ77		
70	0.1107222-01	0.109936-01	2.00240	07.04703 00 60070	an a saya t
- (Q) - 70	J.11304E-31	J-111332"J1	C.U.676	02.020/77 04 70400	a data daga ter
17	0.112062-01	9.11277E-01	2.10040	04.70463	
50	0.113466-01	0.11418E-01	2.13193	36.36616	
31	J.11489E-J1	J.11563E-31	2.13841	87.02407	
5 <u>5</u>	J.11631E-JI	9.11732E-01	2.18499	21.20347	
ాభాతా -	0.11773E-01	3.118446-31	2.21138	93.42080	e su la pas por
34	J.11910E-01	J.11986E-01	2.23/66	73.600/1	
30	0.12057E-01	J.12128E-01	2.26430	97.92306	
50	0.12199E-01	J.122/JE-JI	2.29083	133.61239	्रा स्थान संयुक्त व
57. 	J.1234 JE- J1	0.124116-01	2.31/31	102.03120	
55	0.12482E-01	J.12553E-01	2.34380	104.8/000	
39	J.12624E-J1	J.12695E-01	2.3/028	107.24028	and so carter
30	J.12/66E-91	J.1283/E-01	2.39676	103.64200	
91	9.12908E-91	0.12979E-01	2.42325	112.36529	
98 98	0.13050E-91	5.13121E-91	2.44973	114.51593	
93	J.13191E-91	3.13262E-01	2.47622	116.99124	
94	J.13333E-31	U.13434E-31	2.50279	119.49394	
32	3.13475E-91	9.13546E-01	2.52918	122.02312	
26	J.13617E-91	U.13688E-01	2.55567	124.57879	
27	- 3.13759E-91	3.13839E-91	2.58215	127.16094	
.48	J.13991E-91	J.13972E-01	2.69363	129.76957	a da ang ang ang ang ang ang ang ang ang an
	······································	J.14113E-31	2.63512	132.49469	ارد. محر الأمو الأسانية العالية
100	J.14184E-J1	J.14255E-01	2.66163	135.36629	
and the second second			그는 그는 가지 않는 것 같은 것 같은 것 같이 있는 것 같이 있는 것 같이 있다.	and the second	· .

REPRODUCIBILITY OF THE BRIGINAL PAGE IS POOR

112

y Alfan Indonesia (na artis) Ny INSEE dia mampina ma Ny INSEE dia mampina ma

191	9.14326E-91	9.14397E-91	2.68833	137.75437	
192	3.14468E-91	0.14539E-01	2.71457	149 46994	
103	9.14619E-01	9.146816-91	2.741.95	142 20000	e e jiliye
194	3.14752E-01	9.149235-01		140 16 J777	
195	9-14894E-01	9.149456-01	S 70400	143.77736	
1.96	9.150256-01	0 15106E-01	C .7 94 02	193.//139	н ^т
1 27	0 151775-01		2.32000	101.09204	
100	0 1501072-01	0.102466401	2.84699	154.43993	
100	9 184616 01	3.1337JE~31	2.3/347	157.31259	
110	0 15600501	0.100322-01	2.39995	169.21245	
44. 44.	J.13633E-01	0.106/4E-01	2.92644	163.13888	y. A sign
3-1 L 	0.12/406-01	3.13816E-01	2.95292	166.09180	
112	9.15337E-01	0.15957E-01	2.97940	169.07121	
113	3.163236-31	9.16039E-01	3.00509	172.07709	
114	9.16173E-91	9.16241E-91	3.03237	175.10946	uun gridee
115	0.16312E-91	2.16383E-01	3.05685	178.16832	
116	0.16454E-01	0.16525E-01	3.98534	131.25366	
117	0.16596E-01	9.16667E91	3.11182	184.36548	
113	9.16738E-91	0.16809E-01	3.13839	187.59378	
119	9.16879E91	9.16950E-01	3.16479	199.66857	1 - E E X
120	9.17021E-01	0.17092E-01	3,19127	193.85985	
121	9.17163E-91	0.17234E-01	3.21776	197.97769	
122	0.17305E-01	9.17376E-91	3.24424	299.32184	
123	9.17447E-01	9.17518E-01	3.27972	233.59257	신다 왜 없다.
124	9.17539E-01	9.17669E-91	3.29721	206 38977	
125	9.17733E-91	9.17801E-01	3.32369	219.21346	
126	9.17872E91	9.17943E-01	3.35917	213.56364	2
127	9.18014E-91	0.18085E-91	3.37666	216.94929	
123	9.18156E-91	0.18227E-01	3.49314	229.34344	
129	9.13298E-01	9.183696-91	3.42962	223.77396	
139	3.18440E-01	9.135116-91	3.45611	227.22917	•
131	9.18582E-01	9.186526-01	3 49259	239 71176	
132	0.18723E-01	9.13794E-91	3.50908	234.22983	
133	9.18865E-91	1.189366-01	2 52556	227 75629	
134	3.199976-91	0.19978E-91	3.56204	241.21844	
135	9.191496-91	9.192296-91	3 50652	244 99696	
136	0-192916-01	9.193626-01	2 61501	249 52197	
137	1.19483E-91	1.19594E-01	2 64149	252 16246	
138	0.13574F-01	9.196456-01	2 66799	25': 221 <i>44</i>	
129	0.19716F-01	9 197975-91	0.00, 70 3 60446	050 5050A	e por el digere
140	1 199505-01	A 100005-01	3 79 00 <i>4</i>	540 04400 540 04400	
1.4.1	0.200000-01	0.000715-01	3116J77 374743	203.24000 266 00427	
142 	0 00140E01	0 00010E_01	0 7700+	200 - 77427 970 - 76010	
142	0.000045-01	o cossector ol	3.11371	277.70010 074 50050	a, da se partes
4 M	0 204265.01	0.204065-01	3.00007	070 00544	가게 나는 것 :
1.7414 1.48	0.005675-01	3.204966-01	3.02600	278.37040	
1 46	0 2020052-01	0.200356-01	5.03000		1111년 11년 11년 음일 11년 - 1111년 111년 음일 11년 - 1111년 1111년 음일 11년 11년 11년 11년 11년 11년 11년 11년 11년 11
1740) 1747	J-CJ/J/22-01	J.CJ/83E JI	5.05700	236.1236. 380.07500	ji Nativi
	0 20001E-01	0.010245 04	3.73633	273.03330	stre trækt
190	Jac J7752"Ul	J.CI J04E-J1	3.73231		
147	0.010776-04	J.21296E-91	3.95930	297.92719	
199	J.CIEFTE"JI	- U.C.I.C.A.C	3.93373	301.91288	
		rek de tub forske tobeu Bulkreiko	a se de la sector de la deserva en la compañía de la sector de la sector de la compañía de la sector de la comp	la directo contra en estructura de la contra d	

e na je konstrukcio se kara esta da sejen di Patrice i se sugar no provincia se se su da se se se se segura 🗞

ge de la section de la plante de la company de la geo

151	9.21418E-01	0.214395-01	4.01226	305.92515
102	J.2156JE-JI	J.21631E-31	4.93375	307.96389
153	9.21792E-91	0.21773E-01	4.96523	314.02913
154	0.21844E-01	0.21915E-01	4.09171	318.12084
155	0.21986E-01	0.22957E-31	4.11829	322.23904
156	9.22128E-91	3.22199E-0!	4.14468	326.38372
157	9.222798-91	0.22340E-01	4.17116	330.55488
153	0.22411E-01	0.22482E-01	4.19765	334.75253
159	9.22553E-01	0.22624E-01	4.22413	338.97666
169	0.22695E-01	0.22766E-01	4.25062	343.22728
161	0.22837E-01	0.22908E-01	4.27719	347.50438
162	0.22979E-31	0.23050E-01	4.30358	351.80796
163	0.23121E-01	9.23191E-91	4.33907	356.13892
164	9.23262E-01	9.23333E01	4.35655	363.49457
165	0.23404E-01	0.234756-01	4.38303	364.87761
166	0.23546E-01	9.23617E-01	4.40952	369.28712
167	0.23688E-01	3.23759E-01	4.43603	373.72312
168	0.23839E-91	9.23991E-01	4.46248	378.18560
169	0.23972E-01	9.24943E-91	4.48897	382.67457
179	0.24113E-01	0.24184E-01	4.51545	387.19002
171	9.24255E-01	9.24326E-91	4.54193	391.73196
172	0.24397E-01	9.24468E-91	4.56842	396.30936
173	0.24539E-91	0.24610E-01	4.59490	409.89528
174	9.24681E-91	9.24752E-01	4.62139	405.51667
175	9.24323E-01	9.24894E-01	4.64787	419.16454
176	9.24965E-01	9.25935E-91	4.67435	414.83889
177	0.25106E-01	9.25177E-91	4.79984	419.53973
178	9.25248E-91	0.25319E-01	4.72732	424.26795
179	9.25399E-01	0.25461E-91	4.75389	429.02085
139	9.25532E-91	9.25603E-01	4.78029	433.80114
181	9.25674E-91	9.25745E-91	4.89677	438.69791
182	9.25816E-91	0.25887E-01	4.83325	443.44117
183	0.25957E-01	0.26028E-01	4.85974	448.33999
184	9.26099E-01	9.26170E-01	4.88622	453.18713
185	0.26241E-01	9.26312E-91	4.91271	458.09983
186	9.26383E-01	9.26454E-91	4,93919	463.03902
187	9.26525E01	9.26596E-01	4.96567	468 . 00469
183	0.26667E-01	3.26738E-91	4.99216	472 99685
189	9.26809E-01	3.268790-01	5.31864	478.01549
193	0.26959E-91	9.279216-91	5,04512	483,06061
191	9.27092E-01	3.271635-91	5,07161	488,13222
192	9.27234E-91	3.273956-91	5.09809	493 23131
193	0.27376E-01	9.274475-91	5,12457	498 35488
194	0.27518E-01	2.27583E-01	5.15116	513.51594
195	9.276695-91	9.277306-01	5,17754	518.68848
196.00	0.27801E-01	0.878725-01	5 21412	512 22751
197	9.279425-91	0 22012E-01	5 00451	519 11001
198	0.022925F-01	0.5001565.01	C.EC.UI	
199	- 1 2022F VI	1 20200E 01	U-LUD77 K 60540	
A.4.4. 0.991	0 1 202000 - 01 0 202000 - 00	O DOMADE TOL	U.L.QOHD E. GAAGA	ECA GCOAA
	V1203072701		0.30770	UO'+ , 700'+'+

201	9.285116-91	1.225226-11	5.22644	840 20400	
242	0 006505-01	0.007005-01	K 36305	545.30400 645.22700	
202	0.007045-01		0.00270	UNU-00700	
204	0 000065-01	0.200025.01	J.30741	- 331.33721 EEC 43044	
	0.207362~01	0.290072-01	3.41369	000.47311	e Al de la constante de la constante
200 	0.290/82-01	7.29149E-01	3.44238	561.91348	er en santes
506	0.29220E-01	3.29291E-01	5.46836	567.38434	a generation of the second
537	0.29362E-91	3.29433E-31	5.49534	572.87968	
503	0.29504E-01	0.29574E-01	5.52183	578.40151	
209 .	9.29645E-01	0.29716E-01	5.54831	583.94982	
210	0.29787E-01	0.29858E-01	5.57479	589.52462	
211	0.29929E-01	9.30039E-01	5.69128	595.12590	
212	3.39971E-91	9.391422-91	5.62776	600.75366	
213	0.33213E-01	0.30284E-01	5.65425	606.40791	
214	0.303555-01	0.30426E-01	5.68073	612.08864	
215	3.33496E-91	9.30567E-01	5.79721	617.79585	
216	0.30638E-91	9.30709E-01	5.73370	623.52955	
217	3.39789E-91	9.398546-91	5 76918	629.28973	e y and definite
213	9.30922E-01	0.309936-01	5.78666	635.07639	
219	9.31064E-01	9.31135E-31	5.81315	640.88954	* 1 ^{- 1}
229	3.31296E-91	9-312776-91	5.83963	646.72917	1
221	9.31348E-91	- 3-31418F-91	5.86611	652.59528	
222	9.314895-01	9.315696-91	5.29261	658.48788	
223	9.316315-91	9.317926-91	5 91902	664 49697	and the second second
224	9.31773E-01	1.212446-01	5 94556	A71 25250	
225	9.31915E-91	0.319965-91	5 97905		ang de lanende A
226	9 220575-01	0.301005-01	E QQOEO	600 00011	
227	0 201995-01	0.000705.01	0.27000 6.00500	200.34019	n na sa sa t
220	9 322496-01	9 224116-01	C 125075	664 36663	그는 가는 말을
222	0.0000000000	0 0055005.01	0.0100 0.07700	- 200 A7761	n a sha an ann
220	0.00000000000	0.002000C-01	0 107 70 2 10447	706 50000	
221	0.0000040701 0.007666.01	0,000076.01***	した。 1000日 10	7 JO 1JOE JO 710 -71000	
	0.300.005.01	0.0000705.00	12 - 10970 A 16740	1 1 1 1 1 1 1 1 2 2 3 - 7 1 1 1 1 1 2 2 3 - 7 1 1 1 1 1 1 2 2 3 -	
696 999	0 220557005701 0 220565701	J.367/72701	U.10743	710.07V95 · Doe: Arian	
- E00 - 224	0.00000000101	0.00121E-01	6.18372		
- EO't -	0.00000E 01	0.332622-01	6.21040	/31.26478	1
೭೮೮	0.33335E-UI	U.33494E+91	6.23688	737.59166	
et en la secta de	see a second a state of a second second second				1

enter d'alegge alegge geblegge en statistique de la company alle de la company alege statistique de la company Alegne de la company alegne

erek zu det bestere engerenne af ninn zu niederen eren byte niedert die gescher ingeniet. Batel #

236	0.33475E91	0.33546E-01	6.26337	743.76533	
237	0.33617E-01	0.336826-01	6.28985	759.05488	
238	0.33759E-01	9.338396-91	6.31634	756.37122	· · · · · · · · · · · ·
239	3.33901E-01	9.339726-91	6.34282	762.71404	
240	0.34043E-01	9.34113E-91	6.36933	769.98334	
241	9.34184E-01	9.342556-91	6.39579	775.47912	
242	9:34326E-01	9.34397E-01	6.42227	781.99139	
243	0.34468E01	0.34539E-01	6.44875	788.35914	
244	9.34610E-01	9.34681E-01	6.47524	794 82538	
245	9.34752E-91	0.348236-01	6.59172	891.32719	
246	0.34894E-01	0.34965E-01	6.52829	207.05539	
247	9.35035E-91	9.35196E-91	6.55469	814 40999	
248	0.35177E-91	0.35248E-01	6.58117	829.99116	
249	0.35319E-01	9.35390E-01	6.69765	827.59882	
259	9.35461E-01	0.35532E-01	6.63414	834.23296	
251	3.35633E-91	0.35674E-01	6.66062	840.89358	
252	0.35745E-01	0.35816E-91	6.63711	847.58068	
253	0.35887E-01	0.35957E-01	6.71359	854.29427	
254	0.36028E-01	0.360998-01	6.74397	861.03435	
255	0.36179E-91	0.36241E-01	6.76656	867.80090	;
256	9.36312 E -91	0.36383E01	6.79394	874.59394	
257	3.36454E-01	0.365256-01	6.81952	881.41347	
258	0.365968-01	9.36667E-91	6.84601	888.25948	
259	9.36733E-91	9.36309E-01	6.87249	895.13197	
260	0.36879E-01	0.36950E-01	6.89897	902.03094	
261	3.37921E-91	0.37392E-91	6.92546	908.95640	
262	9.37163E-01	3.37234E-01	6.95194	915.90834	
263	9.37395E-91	3.37376E-01	6.97842	922.88676	
264	0.37447E-91	9.37518E-91	7.00491	929.89167	
265	0.37589E-01	9.376696~91	7.03139	736.92307	
266	9.37730E-91	0.37891E-91	7.95788	943.98094	
267	0.37872E-01	0.279432-01	7.03436	951.96539	
263	0.38914E-91	0.38985E-91	7.11984	958.17614	
269	0.38156E-91	0.38227E-91	7.13732	965.31347	
279	0.38298E-01	0.38369E-01	7.16381	972.47728	
271	0.38440E-01	0.38511E-01	7.19929	979.66757	
-					

116 - Alexandre Marken, and a state of the state of the

7200.,7050.,0.,163.65950,167.14162,00297 PRF = 7200.

PULSE	TIME(SEC)	RVG TIME(SEC)	PHASE SHIFT(BEG)	PHI TOTAL
1	0.13889E-03	0.20833E-03	0.03419	9.03410
2	0.27778E+03	0.34722E-93	9.05683	0.09092
3	0.41667E-93	9.48611E-03	3.07956	0.17048
4	0.55556E-03	9.62509E-93	9.10229	0.27277
5.1	0.69444E-03	0.76389E-03	0.12502	3.39778
6	0.83333E-03	9.90278E-03	9.14775	0.54553
7	0.97222E-03	3.19417E-92	3.17948	0.71601
8	0.11111E-02	0.11806E-02	0.19321	0.90922
9	9.12599E-92	0.13194E-02	9.21594	1.12516
1.9	0.13889E-92	0.14583E-02	9.23867	1.36383
11	0.15278E-02	0.15972E-02	9.26140	1.62523
. 12	9.16667E-02	0.17361E-92	0.28413	1.90936
13	9.18956E-92	9.18759E-92	9.30686	2.21622
14	0.19444E-32	0.29139E-92	9.32959	2.54581
15	0.20833E-02	9.215286-92	9.35232	2.89814
. 16	0.22222E-02	0.22917E-92	0.37505	3.27319
17	3.23611E-32	0.24306E-02	9.39778	3.67097
18	0.25090E-02	0.25694E-92	0.42051	4.09149
19	0.26389E-92	9.27383E02	9.44324	4.53473
	0.27773E-02	3.28472E-92	9.46597	5,00071
21	0.29167E-02	9.29861E-92	9.48871	5.48941
22	0.30556E-02	0.31250E-92	0.51144	6.00085
23	0.31944E-02	0.32639E-02	0.53417	6.53501
24	0.33333E-02	0.34328E-92	9.55699	7,09191
25	0.34722E32	9.35417E-92	9.57963	7.67154
26	9.36111E-02	0.36806E-02	9.69236	8.27399
27	9.37509E-92	0.38194E-92	0.62509	8.89899
23	0.38889E-02	0.39583E-12	9.64782	9.54680
29 - E	9.49273E-02	0.40972E-92	0.67955	19.21735
30	9.41667E-02	9.42361E-92	9.69328	19.91963
31	0.43056E-02	9.437596-92	9.71691	11.62664
32	0.44444E-02	9.45139E-02	0.73874	12.36538
33	9.45833E-92	0.46528E-02	9.76147	13.12686
34	0.47222E-02	9.47917E-92	3.78420	13.91106
35	0.43611E-02	9.49306E-02	0.80693	14.71799
36	0.50000E-02	0.50694E-02	9.82966	15.54765
37	9.51389E-92	0.52083E~02	9.85239	16,40005
38	0.52778E-02	0.53472E-02	9.87512	17.27517
39	9.54167E-92	9.54861E-92	9.89785	18.17302
40	9.55556E-92	9.56259E-92		19.99361
41	0.56944E-02	0.57639E-92	0.94332	20.03692
42	9.58333E-92	0.59028E-02	9.96695	21.99297
43	0.59722E-02	9.69417E-92	0.98878	21.99175
44	3.61111E-02	0.61806E-02		23.00325
45	9.62509E-92	9.63194E-92	1.93424	24.03749
46	0.63839E-92	0.64583E-02	1.05697	25.09446
47	0.65278E-02	0.65972E-02	1.07970	26.17415
48	0.66667E-02	9.67361E-92	1.19243	27.27658
- jara 49 -10-1	0.68956E-92	0.68759E-92	1.12516	28.40174
59	0.69444E-02	0.70139E-02	1.14789	29.54963

r en la constanta de la

2012/01/01/01/02/01/01

5	1	9.798336-92	3.715286+32	1.17962	30.72025
	- -	0 722225.02	0 700176.00	1 10005	21 01260
	5. 2	0 706116.00	0 74004E-00	1.01000	00.100c0
	କ ଜ	0.736112~02	0.743368-32	1.21606	33716766
2	4	0.123006-05	3.706946-02	1.23661	34.36647
5	5	0.76389E-92	0.77083E-92	1.26154	35.63004
5	6	0.77773E-02	0.78472E-02	1.28427	36.91431
່ 5	7	9.79167E-92	0.79861E-02	1.39799	38.22131
5	8	0.80556E-02	0.81250E-02	1.32973	39.55105
5	9 ° °	0.81944E-02	0.82639E-02	1.35246	40.90351
6	0	0.83333E-92	0.84928E-92	1.37519	42.27870
ß	1	0.847225-02	9.854175-92	1.39792	43 67663
A	5	9 961116-12	1 868166-12	1 42966	45 19728
6	9 (A) 9	0.075005.00	0.001045.00	1 44990	AC 54967
ي ج	ວ 	0.0000000000		1.1""""""""""""""""""""""""""""""""""""	40 00270
6	17 E	0.0000707.00	0.000005-00	1.40016	46.00677
6	0 2	0.902/02-02	0.909726-02	1.46550	47.47363
6	5	3.91667E-02	0.923616-92	1.51158	51.00721
6	7	0.93056E-02	9.93750E-02	1.53431	52.54152
6	8	0.94444E-92	9.95139E-32	1.55794	54.39856
6	9	0.95833E-02	0.96528E-92	1.57977	55.67833
	3, 👘	0.97222E-02	0.97917E-92	1.60250	57.28083
7	1	0.98611E-02	0.99306E-02	1.62523	58.90605
\sim \sim 7	2	0.10000E-01	0.10069E-01	1.64796	60.55402
7 :	3	0.10139E-01	9.19298E-91	1.67969	62.22471
	4	0.10278E-01	9.19347E-91	1.69342	63.91813
7	5	0.10417E-01	9.19486E-91	1.71615	65-63428
7	6	0.19556E-91	9.196256-91	1.73888	67.37316
영 영 이 영구	7 200	0.10694E-01	9.19764E-91	1.76161	69.13477
7	8.	9.10833E-01	9.19903E-91	1 78424	79.91912
	9	0.10972E-01	9.119426-91	1 89797	70 70619
8	9	0.111116-01	9.111816-91	1 22929	74 55500
8	Ť.	0.112596-01	1 112196-01	1 05050	74 40050
Bi	ō.	0.113896-01	0 11450E-01	1 00CC0 1 07507	70 00070 70 00070
	2	9 11500C-01	0 11E07E.01	1 00000	- 75.60377
		0.110000-01	0.1107/E-01	1.07000	63.161/9
ය. ආ		0.1100/2-01	J.11/36E-JI	1.923/3	32.10252
	ی م	0.110066401	0.118/5E-01	1.94346	84.34597
3 	9	J.117992-01	0.12014E-01	1.36619	86.01216
ម		0.12383E-91	J.12103E-31	1.98892	88.33193
8	ଏ -	J.12222E-91	J.12272E-01	2.01165	99.91272
8,	9	0.12361E-91	9.12431E-01	2.03438	92.94719
, ?	3	0.12590E-01	0.12569E01	2.05711	94.19421
- · · · · · · · · • • • • • • • • • • •	1 -	0.12639E-01	0.12708E-01	2.97984	96.18405
93	2	0.12778E-01	9.12847E-91	2.19257	98.28662
9:	3	0.12917E-01	0.12986E-91	2.12530	100.41192
9	4	0.13056E-01	9.13125E-31	2,14893	192.55995
- 9	5	9.13194E-01	9.13264E-91	2.17976	194.73971
	6 .	9.13333E-01	9.13493E-91	2.19349	136.92421
9	7	9.13472E-01	9.135426-91	2.21622	1 39 . 14 943
9	8	9.13611E-91	9.13681E-91	2 2205K	111.37938
á.	9	0-137506-01	9.133195-01	2 26162	112 64196
11	, 1	1 132825-01		E-E0100 3 30441	115.00540
ingga ang sa taon 👘 👘 👘	Terrer (* 1997) Sector (* 1997)	·₩₩₩₩₩₩₩₩₩₽₽₽₽₽₽₽₽ ₩₩₩₩₩₩₩₽₽₽₽₽₽₽₽₽₽	na ca va e craco de la c ial de la compo En la greco de la contraction de la composition	an _{an a} na an a n taon taon taon an	1 2 J 8 7 EU 10
··· · · · · · · · · · · · · · · · · ·		and and a second se		المحمد المحمد والمحمد والمحمد المحمد	승규는 것 같은 것 같
			에너지 않는 것이 있는 것은 것을 가지 않는 것이다. 이 사람에 있는 것은 것이 있는 것이 있는 것이다. 이 사람에 있는 것은 것이 있는 것이 있는 것이 있는 것이다.	이지 그 동안 바람이 가지? 그지만 부탁 분락 문어. 이 사람이 있는 것이 같은 부탁 분락 문어. 이 사람이 있는 것이 같은 부탁 분락 문어.	
and the second second second					(1) I have a set of the set of

ser provide services and the service of the service service service of the service service service service service service services and the service service service service services and the service ser

	101 102 103 104 105 106 107 108 109 110 110 111 112 113 114 115 116 117 118 119 120 121	0.14928E-01 0.14167E-01 0.14306E-01 0.14444E-01 0.14583E-01 0.14722E-01 0.14722E-01 0.15009E-01 0.15139E-01 0.15278E-01 0.15556E-01 0.15694E-01 0.15694E-01 0.15972E-01 0.16250E-01 0.16389E-01 0.16528E-01 0.16667E-01	3.14097E-01 3.14236E-01 3.14375E-01 3.14514E-01 3.14514E-01 3.14653E-01 3.14931E-01 3.15069E-01 3.15069E-01 3.15208E-01 3.15208E-01 3.15625E-01 3.15764E-01 3.15903E-01 3.16319E-01 3.16319E-01 3.16458E-01	2.30714 2.32987 2.35261 2.37534 2.39807 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	118.23262 129.56250 122.91510 125.29044 127.68851 130.10930 132.55283 135.01909 137.50808 149.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	192 193 194 195 196 197 198 199 119 119 119 115 116 117 118 119 129 121	0.14167E-01 0.14306E-01 0.14444E-01 0.14583E-01 0.14722E-01 0.14722E-01 0.15000E-01 0.15139E-01 0.15278E-01 0.15578E-01 0.15694E-01 0.15694E-01 0.15972E-01 0.16250E-01 0.16389E-01 0.16528E-01 0.16667E-01	0.14236E-01 0.14375E-01 0.14514E-01 0.14653E-01 0.14792E-01 0.14792E-01 0.15069E-01 0.15208E-01 0.15247E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16319E-01 0.16319E-01	2.32987 2.35261 2.37534 2.39207 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.55718 2.60264 2.62537 2.64310 2.67083	120.56250 122.91510 125.29044 127.68851 130.10930 132.55283 135.01909 137.50808 149.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	103 104 105 106 107 108 109 110 110 111 112 113 114 115 116 117 118 119 120 121	0.14306E-01 0.14444E-01 0.14583E-01 0.14722E-01 0.15000E-01 0.15139E-01 0.15278E-01 0.15556E-01 0.15556E-01 0.15694E-01 0.15694E-01 0.15972E-01 0.16211E-01 0.16289E-01 0.16528E-01 0.16667E-01	0.14375E-01 0.14514E-91 0.14653E-01 0.14792E-01 0.14792E-01 0.15069E-01 0.15208E-01 0.15347E-01 0.15486E-91 0.15625E-01 0.15764E-01 0.15903E-01 0.16319E-01 0.16319E-01 0.16458E-01	2.35261 2.37534 2.39807 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	122.91510 125.29044 127.68851 130.10930 132.55283 135.01909 137.50808 149.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	104 195 196 197 198 199 119 119 119 112 115 116 117 118 119 129 121	9.14444E-01 9.14583E-01 9.14722E-01 9.14861E-01 9.15000E-01 9.15139E-01 9.15278E-01 9.15417E-01 9.15556E-01 9.15694E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16667E-01	9.14514E-91 9.1453E-91 9.14792E-01 9.14792E-01 9.15969E-91 9.15298E-91 9.15347E-91 9.15486E-91 9.15625E-91 9.15764E-91 9.15993E-91 9.16942E-91 9.16319E-91 9.16319E-91	2.37534 2.39807 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	125.29044 127.68851 130.10930 132.55283 135.01909 137.50808 149.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121	0.14583E-91 0.14722E-91 9.14861E-01 9.15090E-91 9.15139E-91 9.15278E-91 9.15417E-91 9.15556E-91 9.15694E-91 9.15694E-91 9.16111E-91 9.16250E-91 9.16389E-91 9.16528E-91 9.16667E-91	0.14653E-01 0.14792E-01 0.14792E-01 0.15069E-01 0.15203E-01 0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16319E-01 0.16458E-01	2.37807 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	127.68851 130.10930 132.55283 135.01939 137.50808 149.01979 142.55424 145.11142 147.69133 159.29397 152.91935 155.56745 158.32929
	106 197 198 199 119 111 112 112 113 114 115 116 117 118 119 129 121	9.14722E-91 9.14722E-91 9.14361E-91 9.15099E-91 9.15139E-91 9.15273E-91 9.15417E-91 9.15556E-91 9.15694E-91 9.15633E-91 9.16111E-91 9.16259E-91 9.16389E-91 9.16528E-91 9.16667E-91	9.14792E-01 9.14792E-01 9.15069E-01 9.15203E-01 9.15347E-01 9.15625E-01 9.15625E-01 9.15764E-01 9.15903E-01 9.16042E-01 9.16319E-01 9.16319E-01 9.16458E-01	2.39837 2.42080 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	127.00001 130,10930 132.55283 135.01939 137.50808 140.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745 158.52929
	138 197 198 199 119 111 112 112 113 114 115 116 117 118 119 129 121	9.14361E-01 9.15000E-01 9.15139E-01 9.15273E-01 9.15556E-01 9.15556E-01 9.15694E-01 9.15633E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16667E-01	0.14792E-01 0.14931E-01 0.15069E-01 0.15208E-01 0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16319E-01 0.16319E-01 0.16458E-01	2.42030 2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.55718 2.57991 2.60264 2.62537 2.64310 2.67083	130,10930 132,55283 135,01999 137,50808 140,01979 142,55424 145,11142 147,69133 150,29397 152,91935 155,56745 158,529292
	108 109 110 111 112 113 114 115 116 117 118 119 120 121	9.14361E-01 9.15000E-01 9.15139E-01 9.15273E-01 9.15556E-01 9.15694E-01 9.15633E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16667E-01	0.14931E-01 0.15069E-01 0.15208E-01 0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16319E-01 0.16319E-01 0.16458E-01	2.44353 2.46626 2.48899 2.51172 2.53445 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	132.55283 135.01909 137.50808 149.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	1 35 1 09 1 1 0 1 1 1 1 12 1 13 1 14 1 15 1 15 1 15 1 15 1 15 1 15 1 15	9.15030E-31 9.15139E-01 9.15273E-01 9.15417E-01 9.15556E-31 9.15694E-01 9.15633E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16528E-01	0.15069E-01 0.15208E-01 0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16319E-01 0.16319E-01 0.16458E-01	2.46626 2.48899 2.51172 2.53445 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	135.01939 137.50808 140.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	109 110 111 112 113 114 115 115 115 115 117 118 119 120 121	0.15139E-01 0.15278E-01 0.15556E-01 0.15556E-01 0.15694E-01 0.15938E-01 0.15972E-01 0.16111E-01 0.16250E-01 0.16389E-01 0.16528E-01 0.16528E-01 0.16667E-01	0.15203E-01 0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16181E-01 0.16319E-01 0.16358E-01	2.43899 2.51172 2.53445 2.55718 2.57991 2.63264 2.62537 2.64310 2.67383	137.50808 140.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745 158.58745
	115 111 112 113 114 115 115 116 117 118 119 129 121	9.15273E-01 9.15417E-01 9.15556E-01 9.15694E-01 9.15633E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16528E-01	0.15347E-01 0.15486E-01 0.15625E-01 0.15764E-01 0.15903E-01 0.16042E-01 0.16181E-01 0.16319E-01 0.16458E-01	2.51172 2.53445 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	143.01979 142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	111 112 113 114 115 116 117 118 119 129 121	9.15417E-91 9.15556E-91 9.15694E-91 9.15693E-91 9.15972E-91 9.16111E-91 9.16259E-91 9.16389E-91 9.16528E-91 9.16528E-91	0.15486E-01 9.15625E-01 9.15764E-01 9.15903E-01 9.16042E-01 9.16181E-01 9.16319E-01 9.16319E-01	2.53445 2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	142.55424 145.11142 147.69133 150.29397 152.91935 155.56745
	112 113 114 115 116 117 118 117 129 121	0.15556E-91 0.15694E-91 0.15933E-01 0.15972E-01 0.16111E-91 0.16250E-01 0.16389E-91 0.16528E-91 0.16667E-91	9.15625E-91 9.15764E-91 9.15903E-91 9.16942E-91 9.16181E-91 9.16319E-91 9.16319E-91	2.55718 2.57991 2.60264 2.62537 2.64810 2.67083	145.11142 147.69133 150.29397 152.91935 155.56745
	113 114 115 116 117 118 119 129 121	0.15694E-01 0.15933E-01 0.15972E-01 0.16111E-01 0.16250E-01 0.16389E-01 0.16528E-01 0.16528E-01 0.16667E-01	9.15764E-91 9.15993E-91 9.16942E-91 9.16181E-91 9.16319E-91 9.16319E-91	2.57991 2.60264 2.62537 2.64810 2.67083	147.69133 159.29397 152.91935 155.56745 158.32929
	114 115 116 117 118 119 120 121	9.15833E-01 9.15972E-01 9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16528E-01	3.15903E-01 9.16942E-01 9.16181E-01 9.16319E-01 9.16358E-01	2.60264 2.62537 2.64810 2.67083	150.29397 152.91935 155.56745 158.529999
	115 116 117 118 119 129 121	0.15972E-01 0.16111E-01 0.16250E-01 0.16389E-01 0.16528E-01 0.16667E-01	0.16042E-01 0.16181E-01 0.16319E-01 0.16458E-01	2.62537 2.64310 2.67083	152.91935 155.56745
	116 117 118 119 129 121	9.16111E-01 9.16250E-01 9.16389E-01 9.16528E-01 9.16667E-01	9.16181E-91 9.16319E-91 9.16458E-91	2.64810 2.67983	155.56745
	117 118 119 129 121	9.16250E-01 9.16389E-01 9.16528E-01 9.16667E-01	0.16319E01 0.16458E01	2.67983	150 22000
a la grada	118 119 129 121	0.16389E-01 0.16528E-01 0.16667E-01	0.16458E-91		100 100000
	119 129 121	9.16528E-91 9.16667E-91		2.69356	163.93184
	129 121	9.166676-91	U.1607/E-VI	2.71629	163.64814
	121	t v seren verversteller, V ≜gi	9.16736E-91	2.73902	166.38716
		9.16896E-91	9.16875E-91	2.76175	169.14891
	122	3.16944E-01	0.17014E-01	2.78448	171.93340
	123 👘	9.17083E-01	0.17153E-01	2.80722	174.74961
	124	0.17222E-01	9.17292E-01	2.82995	177.57956
	125	0.17361E-01	9.17431E-01	2.85268	189.42323
1	126	0.17500E-01	0.17569E-01	2.87541	183.29864
	127	0.17639E-01	9.17798E-91	2.89814	136.19678
. 1	128	9.17778E-01	9.17847E-91	2.92087	189.11765
	129	0.17917E-01	9.17986E-91	2.94360	192.06124
1	139	0.18056E-01	0.18125E-01	2.96633	195.02757
	131	0.18194E-91	9.18264E-91	2.98906	193.01663
	132	0.18333E-01	0.18403E-01	3.01179	201.02842
	133	0.13472E-91	9.13542E-91	3.03452	294.96294
1	134	3.13611E-91	0.13681E-91	3, 95725	207.12019
	135	0.18750E-01	9.18819E-91	3.07998	219.29917
	136	0.13839E-31	9.18958E-91	3,19271	213.39268
	137	9.19928E-91	9.19997E-91	3.12544	216.42832
	136	9.19167E-91	0.19236E-01	3.14817	219.57653
	139	9.19306E-01	0.19375E-01	3.17999	222.74749
	149	0.19444E-01	0.19514E-01	3.19363	225.94193
	141	0.19583E-01	9.19653E-91	3.21636	229,15740
	142	0.19722E-01	0.19792E-01	3.239.19	232 39649
1	143	0.19861E01	9.19931E01	3.26182	235 65832
	144	0.20000E-01	3.200695-01	3.28456	238 94287
	145	0.20139E-01	9-20208E-01	3.39724	242_25116
	146	0.20278E-01	9.29347E-91	3.330.02	245 58317
	147	0.20417E-01	9.20486E-01	3.35275	242 93292
	143	9.29556E-91	3.236255-91	3.37549	252 20240
	149	9.23694E-01	3.207646-91	3 29221	255 79661
	159	9.29833E91	3.23933E-01	3 42994	259 12754
	To The second	andanananananananananananananananananan		에는 가지 않는 것 <mark>것은 이 것 같다.</mark> 것 같다. 이 가지 않는 것 같다. 이 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있는 것	

en al ser le production de la production de la constituir de la production de la production de la production de

1. Not the second se

152 0.21111E-01 0.2130E-01 0.21319E-01 0.46943 264.32761 153 0.21230E-01 0.21319E-01 3.46913 264.52674 154 0.21339E-01 0.2145E-01 3.51166 270.33860 155 0.2166E-01 0.21375E-01 3.553459 276.57319 156 0.2166E-01 0.21375E-01 3.553459 283.71356 157 0.2106E-01 0.22314E-01 3.662551 290.93886 159 0.2232E-01 0.22431E-01 3.66279 291.93886 160 0.2230E-01 0.22708E-01 3.66279 201.95176 163 0.22630E-01 0.22708E-01 3.76493 301.66621 164 0.22779E-01 0.22396E-01 3.76493 316.5927 166 0.22342E-01 0.237662 322.4416 3.83039 324.59134 165 0.2314E-01 0.23642E-01 3.67555 332.3171 164 0.23342E-01 0.23762E 324.4791 3.65757 165 0.23342E-01	Beecher 131 1997	9.299726-01	0.21042F-01	2 44767	969 57191
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	152	9.211115-01	9.211816-91	2 46649	202.07761
1540.213262-010.21452-010.513122532336511550.215262-010.213972-010.33479276.573191560.216672-010.213962-010.358095203.710561570.213062-010.221572-010.358095203.710561570.22038-010.221572-010.36276277.313351590.22038-010.222582-010.3667097290.328661600.222621-010.2224312-013.67097290.2580181630.225012-010.2227082-013.71643805.666211640.227788-010.3224312-013.73916305.666211650.220362-010.322662-013.7643316.953901650.223788-010.322662-013.7366320.761261660.233561-010.223642-013.67376320.761261670.231942-010.223642-013.63309324.591341680.23332-010.236612-013.67555332.319711710.235612-010.236282322.3444161720.236928-910.239582-013.99208336.617991730.243628-910.239582-013.992191340.399391740.244628-910.239582-013.992191340.399391750.243628-910.243972-013.99647346.99211760.244628-910.243972-013.99647346.99211770.243628-910.243972-013.99647346.99291760.244362-010.243972-0	153	9.212506-01	0 213195-01	2 40612	200.33701
1553.21526E-313.21297E-313.234257 273.65732 293.13351 1563.21667E-313.25732 293.13351 35732 293.13351 1573.21346E-31 3.25732 293.13351 35732 293.13351 159 $3.21344E-31$ $3.25273E-31$ 3.63278 297.31335 160 $3.22222E-31$ $3.262531-239.33866$ 294.55719 161 $3.225361E-31$ 3.63278 294.55719 162 $3.22536E-31$ 3.63279 294.55719 163 $3.22536E-31$ $3.22592E-31$ 3.639797 296.258028 164 $3.22536E-31$ $0.22292E-31$ 3.639797 294.556628 165 $0.222778E-31$ $0.222986E-31$ 3.73916 399.437367 165 $0.223156E-31$ $0.222986E-31$ 3.76190 313.16927 165 $0.223356-31$ $0.232642E-31$ 3.63736 322.76126 167 $0.23194E-31$ $0.232642E-31$ 3.69736 322.76126 168 $0.23356-31$ $0.232542E-31$ 3.69736 322.1799 167 $0.23472E-31$ $0.235612E-31$ 3.69222 322.447114 169 $0.23755E-31$ $0.23562E-31$ 3.693290 326.21799 173 $0.24972E-31$ $0.235926E-31$ 3.96627 326.21799 174 $0.2436E-31$ $0.24392E-31$ 3.96427 346.362372 175 $0.24306E-31$ $0.24392E-31$ 3.96647 346.414239 175 $0.24306E-31$ $0.24392E-31$ 4.39743	154	0.213396-01	1 21452E-01	0 5110A	277 07845
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	155	9.215226-01	9.215976-01	0.01100 0.50 <i>4</i> 80	273.00000 076 57010
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	156	0.216676.01	0.017046-01	しょうしつ キシフ	270.07017 200 12051
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157	9.212966.01	0.51078C_01	3.00/3C	207,10701 300 71054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150	0.219446-01	0.000146.01		203.71330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	150	0.000000.01	0.001F0F-01	3.60278	207.31330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	0 000000-01 0 00000-01	0.222025-01	3.62001	299.93886
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	0.000615.01	J.CCC766-01	3.64824	274.58713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	162	0.005005-01	0.005405.01	3.57097	298.23838
165 $0.22736-01$ $0.227326-01$ 3.73916 395.66821 165 $0.229776-01$ $0.229476-01$ 3.73916 397463 316.927 166 $0.231946-01$ $0.231265-01$ 3.73916 320.76126 167 $0.231946-01$ $0.2324056-01$ 3.80736 320.76126 168 $0.233356-01$ $0.2324056-01$ 3.80736 320.76126 169 $0.234726-01$ $0.2324026-01$ 3.82726 322.31971 171 $0.236116-01$ $0.236216-01$ 3.65262 326.44416 173 $0.236516-01$ $0.239506-01$ 3.99268 336.21799 172 $0.236966-01$ $0.239566-01$ 3.99268 336.21799 173 $0.241676-01$ $0.243956-01$ 3.99620 352.03641 175 $0.243066-01$ $0.243756-01$ 3.99620 352.03641 176 $0.244167-01$ $0.243756-01$ 4.93466 360.99530 177 $0.245636-01$ $0.247926-01$ 4.03273 364.14239 177 $0.245636-01$ $0.247926-01$ 4.05739 364.14239 177 $0.245636-01$ $0.247926-01$ 4.05739 364.14239 189 $0.251096-01$ $0.253696-01$ 4.19285 372.22537 181 $0.251396-01$ $0.253696-01$ 4.19285 372.32537 182 $0.252786-01$ $0.2536626-01$ 4.19285 372.32537 183 $0.25136-01$ $0.257646-01$ 4.16251 393.18059 186 $0.256386-01$ $0.2576626-01$ <t< th=""><th>162</th><th>0.000000001</th><th>J.22007E-JI</th><th>3.693/0</th><th>331.951/8</th></t<>	162	0.000000001	J.22007E-JI	3.693/0	331.951/8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	160	0.007705.01	0.227082*01	3.71643	335.66821
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	164	0.000175.01	0.220972-01	3.73716	309.40738
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100	0.000575-01	J.22986E-01	3.76190	313.16927
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	166	0.20000-01	0.231202-01	3.78463	316.95390
166 $0.23332E-31$ $0.23432E-31$ 3.83039 324.59134 163 $0.23472E-31$ $0.23542E-31$ 3.83039 324.59134 171 $0.23631E-31$ $0.23631E-31$ 3.87555 332.31971 171 $0.23639E-31$ $0.23958E-31$ 3.99268 336.21799 172 $0.23639E-31$ $0.23958E-31$ 3.993268 336.21799 173 $0.24326E-31$ $0.24395E-31$ 3.94374 344.38274 174 $0.24436E-31$ $0.24236E-31$ 3.96477 348.04921 175 $0.24336E-31$ $0.24532E-31$ 3.96477 346.04921 176 $0.244562E-31$ $0.24532E-31$ 4.03193 356.05034 177 $0.24563E-31$ $0.24572E-31$ 4.037739 364.14239 179 $0.24562E-31$ $0.24722E-31$ 4.038012 368.22252 180 $0.25500E-31$ $0.257392E-31$ 4.19265 372.32537 181 $0.25139E-31$ $0.25632E-31$ 4.19265 372.32537 182 $0.25272E-31$ $0.25437E-31$ 4.19265 376.453955 182 $0.25576E-31$ $0.25764E-31$ 4.19377 388.96438 185 $0.25632E-31$ $0.25732E-31$ 4.26197 401.68179 186 $0.25732E-31$ $0.26332E-31$ 4.26197 401.68179 183 $0.2611E-31$ $0.26332E-31$ 4.26197 401.68179 184 $0.25732E-31$ $0.26332E-31$ 4.233316 414.69433 193 $0.26332E-31$ $0.26332E-31$ 4.333316	107	0.231396-01	0.232642-01	3.80/36	323.76126
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	168	U.23333E-01	9.23493E-91	3-83009	324.59134
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	163	0.234/2E-91	9.23542E-91	3.85282	328.44416
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	179	0.23611E-31	9.23681E-31	3.87555	332.31971
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1/1	0.23750E-31	0.23819E-91	3.89828	336.21799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	172	3.23889E-91	0.23958E-01	3.92101	340.13900
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	173	3.24028E-01	9.24097E-01	3.94374	344.98274
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	174	3.24167E-01	9.24236E-91	3.96647	348.04921
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175	0.24306E-01	9.24375E-91	3.98920	352.03841
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	176	0.24444E-01	0.24514E-01	4.01193	356.05034
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177	0.24583E-01	0.24653E-91	4.03466	360.03500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	178	0.24722E-01	0.247926-01	4.95739	364.14239
183 $0.25000E-01$ $0.25069E-01$ 4.10285 372.32537 181 $0.25139E-01$ $0.25208E-01$ 4.12558 376.45095 182 $0.25273E-01$ $0.25347E-01$ 4.14331 380.59927 183 $0.25417E-01$ $0.25436E-01$ 4.17104 384.77031 184 $0.25556E-01$ $0.25625E-01$ 4.17104 384.77031 185 $0.25634E-01$ $0.25632E-01$ 4.21651 393.18059 186 $0.25633E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26042E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26342E-01$ 4.23924 397.41983 188 $0.26111E-01$ $0.26319E-01$ 4.23924 397.41983 189 $0.26250E-01$ $0.2639E-01$ 4.23924 397.41983 199 $0.26250E-01$ $0.2639E-01$ 4.23924 397.41983 199 $0.26250E-01$ $0.2639E-01$ 4.23924 397.41983 199 $0.26250E-01$ $0.2639E-01$ 4.23924 495.96649 199 $0.26259E-01$ $0.26458E-01$ 4.239743 410.27392 190 $0.26528E-01$ $0.26578E-01$ 4.37562 423.33258 192 $0.26667E-01$ $0.26736E-01$ 4.37562 423.33258 193 $0.2694E-01$ $0.27736E-01$ 4.44381 436.59582 194 $0.2693E-01$ $0.27722E-01$ 4.44381 436.59582 196 $0.27222E-01$ $0.27569E-01$ 4.51203 45	179	0.24861E-01	0.24921E-01	4.08012	368.22252
181 $0.25139E-01$ $0.25208E-01$ 4.12558 376.45095 182 $0.25278E-01$ $0.25347E-01$ 4.14331 380.59927 183 $0.25417E-01$ $0.25486E-01$ 4.17104 384.77031 184 $0.2556E-01$ $0.2562E-01$ 4.19377 383.96403 185 $0.25634E-01$ $0.25764E-01$ 4.21651 393.18059 186 $0.25833E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26042E-01$ 4.26197 401.68179 188 $0.26111E-01$ $0.2639E-01$ 4.239743 410.27392 199 $0.26250E-01$ $0.26459E-01$ 4.30743 410.27392 190 $0.26528E-01$ $0.264597E-01$ 4.35289 418.95696 192 $0.26667E-01$ $0.26736E-01$ 4.39635 427.73093 194 $0.26944E-01$ $0.27034E-01$ 4.42108 432.15201 195 $0.2703E-01$ $0.27702E-01$ 4.46554 441.062366 196 $0.27222E-01$ $0.27569E-01$ 4.51200 450.06363 196 $0.27500E-01$ $0.27708E-01$ 4.53473 454.59836 199 $0.27509E-01$ $0.27708E-01$ 4.55746 459.15582	189	0.25000E-01	0.25069E-01	4.10265	372.32537
182 $0.25278E-01$ $9.25347E-01$ 4.14831 380.59927 183 $0.25417E-01$ $0.25486E-01$ 4.17104 384.77031 194 $0.25556E-01$ $0.25562E-01$ 4.19377 388.96408 185 $0.25633E-01$ $0.25764E-01$ 4.21651 393.18059 196 $0.25833E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26942E-01$ 4.26197 401.68179 188 $0.26111E-01$ $0.26319E-01$ 4.28470 405.96649 189 $0.26250E-01$ $0.26319E-01$ 4.39743 419.27392 190 $0.26389E-01$ $0.26597E-01$ 4.35289 418.95696 192 $0.26667E-01$ $0.26736E-01$ 4.37562 423.33258 $193'$ $0.26636E-01$ $0.26934E-01$ 4.37562 423.33258 $193'$ $0.26944E-01$ $0.2714E-01$ 4.42108 432.15201 194 $0.26944E-01$ $0.27153E-01$ 4.44381 436.59562 196 $0.27222E-01$ $0.27792E-01$ 4.46654 441.06236 197 $0.27361E-01$ $0.27569E-01$ 4.53473 454.59236 199 $0.27639E-01$ $0.27792E-01$ 4.53473 454.59236 200 $0.27778E-01$ $0.27947E-01$ 4.55746 459.15582	181	0.25139E-01	0.25208E-01	4.12558	376.45395
183 $0.25417E-01$ $0.25486E-01$ 4.17104 384.77031 184 $0.25556E-01$ $0.25625E-01$ 4.19377 388.96408 185 $0.25694E-01$ $0.25764E-01$ 4.21651 393.18059 186 $0.25833E-01$ $0.2593E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26942E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26042E-01$ 4.23974 401.68179 188 $0.26111E-01$ $0.26131E-01$ 4.23470 405.96649 189 $0.26250E-01$ $0.26319E-01$ 4.39743 410.27392 190 $0.26389E-01$ $0.26597E-01$ 4.33016 414.60408 191 $0.26528E-01$ $0.26597E-01$ 4.35289 418.95696 192 $0.26667E-01$ $0.26736E-01$ 4.37562 423.33258 193 $0.26944E-01$ $0.27734E-01$ 4.42108 432.15201 194 $0.26944E-01$ $0.277153E-01$ 4.46554 441.06236 196 $0.27222E-01$ $0.27431E-01$ 4.46654 441.06236 197 $0.27509E-01$ $0.27509E-01$ 4.53473 454.59836 199 $0.27509E-01$ $0.27647E-01$ 4.55746 459.15582 199 $0.27639E-01$ $0.27736E-01$ 4.55746 459.15582	182	0.25278E-01	0.25347E-01	4.14831	380.59927
184 $0.25556E-01$ $0.25625E-01$ 4.19377 388.96408 185 $0.25694E-01$ $0.25764E-01$ 4.21651 393.18059 186 $0.25833E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26042E-01$ 4.26197 401.68179 188 $0.26111E-01$ $0.26181E-01$ 4.28470 405.96649 189 $0.26250E-01$ $0.2639E-01$ 4.39743 419.27392 190 $0.2639E-01$ $0.26597E-01$ 4.33016 414.60408 191 $0.26528E-01$ $0.26597E-01$ 4.35289 418.95696 192 $0.26667E-01$ $0.26736E-01$ 4.37562 423.33258 193 $0.26096E+01$ $0.26736E-01$ 4.42108 432.15201 194 $0.26944E-01$ $0.27153E-01$ 4.44381 436.59582 196 $0.27222E-01$ $0.27431E-01$ 4.46654 441.06236 197 $0.27361E-01$ $0.27509E-01$ 4.51200 450.0663 196 $0.27509E-01$ $0.27798E-01$ 4.53473 454.59836 200 $0.27738E-01$ $0.27947E-01$ 4.55746 459.15582	133	9.25417E-01	0.25486E-01	4.17104	384.77931
185 $0.25694E-01$ $9.25764E-01$ 4.21651 393.18059 186 $0.25833E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.26972E-01$ $0.26942E-01$ 4.26197 401.68179 188 $0.26111E-01$ $0.26131E-01$ 4.23470 405.96649 189 $0.26250E-01$ $0.26319E-01$ 4.39743 410.27392 190 $0.26389E-01$ $0.26597E-01$ 4.33016 414.60403 191 $0.26528E-01$ $0.26597E-01$ 4.37562 423.33258 192 $0.26667E-01$ $0.26736E-01$ 4.39835 427.73093 193 $0.26396E-01$ $0.26975E-01$ 4.42108 432.15201 192 $0.26306E-01$ $0.277158E-01$ 4.46654 441.06236 194 $0.27222E-01$ $0.27431E-01$ 4.48927 445.55163 196 $0.27500E-01$ $0.27569E-01$ 4.53473 454.59836 199 $0.27639E-01$ $0.27736E-01$ 4.55746 459.1582	184	0.25556E-01	0.25625E-01	4.19377	388.96438
136 $0.25833E-01$ $0.25903E-01$ 4.23924 397.41983 187 $0.25972E-01$ $0.26042E-01$ 4.26197 401.68179 138 $0.26111E-01$ $0.26181E-01$ 4.28470 405.96649 189 $0.26250E+01$ $0.26319E-01$ 4.30743 410.27392 190 $0.26389E+01$ $0.2659E-01$ 4.3016 414.60408 191 $0.26528E-01$ $0.26597E-01$ 4.35289 418.95696 192 $0.26667E-01$ $0.26736E-01$ 4.37562 423.33258 193 $0.26896E+01$ $0.26875E+01$ 4.39835 427.73093 194 $0.26944E-01$ $0.27134E-01$ 4.442103 432.15201 195 $0.27033E-01$ $0.27153E-01$ 4.44654 441.06236 196 $0.27222E-01$ $0.27431E-01$ 4.48927 445.55163 196 $0.27500E-01$ $0.27509E-01$ 4.53473 454.59836 199 $0.27639E-01$ $0.27708E-01$ 4.55746 459.15582	185	0.25694E-01	9.25764E-01	4.21651	393.18059
137 $9.25972E-91$ $9.26942E-91$ 4.26197 491.68179 138 $9.26111E-91$ $9.26131E-91$ 4.23479 495.96649 139 $9.26259E-91$ $9.26319E-91$ 4.39743 419.27392 190 $9.26389E-91$ $9.26538E-91$ 4.39743 419.27392 191 $9.26528E-91$ $9.26597E-91$ 4.33916 414.69493 191 $9.26528E-91$ $9.26597E-91$ 4.35289 418.95696 192 $9.266667E-91$ $9.26578E-91$ 4.37562 423.33258 193 $9.26896E-91$ $9.26875E-91$ 4.39835 427.73093 194 $9.26944E-91$ $9.27914E-91$ 4.42198 432.15291 195 $9.27933E-91$ $9.27153E-91$ 4.44381 436.59582 196 $9.27222E-91$ $9.27431E-91$ 4.48927 445.55163 196 $9.27599E-91$ $9.27569E-91$ 4.53473 454.59836 199 $9.27639E-91$ $9.27647E-91$ 4.55746 459.15582 200 $9.2773E-91$ $9.27647E-91$ 4.55746 459.15582	136	9.25833E-91	0.25903E-01	4.23924	397.41983
188 0.26111E-01 0.26181E-01 4.28470 405.96649 189 0.26250E-01 0.26319E-01 4.30743 410.27392 190 0.26389E-01 0.26458E-01 4.33016 414.60408 191 0.26528E-01 0.26597E-01 4.35289 418.95696 192 0.26667E-01 0.26675E-01 4.37562 423.33258 193 0.26896E-01 0.26875E-01 4.39835 427.73093 194 0.26944E-01 0.27014E-01 4.42108 432.15201 195 0.27083E-01 0.27292E-01 4.46654 441.06236 196 0.27222E-01 0.27431E-01 4.46654 441.06236 197 0.27361E-01 0.27569E-01 4.51200 450.06363 198 0.27500E-01 0.27798E-01 4.53473 454.59836 200 0.27778E-01 0.27647E-01 4.55746 459.15582	187 and	9.25972E-91	9.26942E-01	4.26197	401.68179
189 9.26250E+01 9.26319E+01 4.30743 419.27392 190 9.26389E+01 9.26458E+01 4.33016 414.60403 191 9.26528E+01 9.26597E+01 4.35289 418.95696 192 9.26667E+01 9.26736E+01 4.37562 423.33258 193 9.26306E+01 9.26875E+01 4.39835 427.73093 194 9.26944E+01 9.27153E+01 4.42108 432.15201 195 9.27083E+01 9.27153E+01 4.44381 436.59582 196 9.27222E+01 9.27292E+01 4.46654 441.06236 197 9.27361E+01 9.27509E+01 4.51209 450.06363 198 9.27500E+01 9.27509E+01 4.53473 454.59836 199 9.27639E+01 9.276347E+01 4.55746 459.15582	133	0.26111E-01	0.26181E-01	4.28470	405.96649
1909.26389E-010.26458E-014.33016414.604081919.26528E-019.26597E-014.35289418.956961929.26667E-019.26736E-014.37562423.332581939.26806E-019.26875E-014.39835427.730931949.26944E-019.27014E-014.42108432.152011959.27083E-019.27153E-014.44381436.595821969.27222E-019.27292E-014.46654441.062361979.27361E-019.27569E-014.51200459.063631989.27509E-019.27569E-014.53473454.598361999.27639E-019.27798E-014.55746459.15582	189	3.26259E-91	0.26319E-91	4.39743	419.27392
191 9.26528E-01 9.26597E-01 4.35289 418.95696 192 9.26667E-01 9.26736E-01 4.37562 423.33258 193 9.26836E-01 9.26875E-01 4.39835 427.73093 194 9.26944E-01 9.27014E-01 4.42108 432.15201 195 9.27033E-01 9.27153E-01 4.44381 436.59582 196 9.27222E-01 9.27292E-01 4.46654 441.06236 197 9.27361E-01 9.27569E-01 4.51200 450.06363 198 9.27509E-01 9.27569E-01 4.53473 454.59836 199 9.27639E-01 9.27798E-01 4.55746 459.15582	190	0.26389E-01	0.26458E-01	4.33916	414.69498
192 9.26667E-01 9.26736E-01 4.37562 423.33258 193 0.26306E-01 9.26875E-01 4.39835 427.73093 194 0.26944E-01 0.27014E-01 4.42108 432.15201 195 0.27083E-01 9.27153E-01 4.44381 436.59582 196 0.27222E-01 9.27292E-01 4.46654 441.06236 197 0.27361E-01 9.27431E-01 4.48927 445.55163 198 9.27599E-01 9.27569E-01 4.51200 450.06363 199 9.27639E-01 9.27798E-01 4.55746 459.15582	191	9.26523E-91	0.26597E-01	4.35289	418.95696
193' 0.26806E-01 0.26875E-01 4.39835 427.73093 194 0.26944E-01 0.27014E-01 4.42108 432.15201 195 0.27083E-01 0.27153E-01 4.44381 436.59582 196 0.27222E-01 0.27292E-01 4.46654 441.06236 197 0.27361E-01 0.27431E-01 4.48927 445.55163 198 0.27590E-01 0.27569E-01 4.51200 450.06363 199 0.27639E-01 0.27708E-01 4.55746 459.15582 200 0.2773E-01 0.27847E-01 4.55746 459.15582	192/	0.26667E-01	9.26736E-91	4.37562	423.33258
194 3.26944E-01 3.27014E-01 4.42108 432.15201 195 3.27033E-01 3.27153E-01 4.44381 436.59582 196 3.27222E-01 3.27292E-01 4.46654 441.06236 197 3.27361E-01 3.27431E-01 4.48927 445.55163 198 3.27500E-01 3.27569E-01 4.51200 450.06363 199 3.27639E-01 3.27708E-01 4.53473 454.59836 200 3.27778E-01 3.27847E-01 4.55746 459.15582	193	9.26896E-91	9.26875E-91	4.39835	427.73093
195 9.27083E-91 9.27153E-01 4.44381 436.59582 196 9.27222E-01 9.27292E-01 4.46654 441.06236 197 9.27361E-01 9.27431E-01 4.48927 445.55163 198 9.27500E-01 9.27569E-01 4.51200 450.06363 199 9.27639E-01 9.27708E-01 4.53473 454.59836 200 9.27778E-01 9.27847E-01 4.55746 459.15582	194	3.26944E-31	9.27914E-91	4.421.98	432.15291
196 0.27222E-01 0.27292E-01 4.46654 441.06236 197 0.27361E-01 0.27431E-01 4.48927 445.55163 198 0.27500E-01 0.27569E-01 4.51200 450.06363 199 0.27639E-01 0.27708E-01 4.53473 454.59836 200 0.27778E-01 0.27847E-01 4.55746 459.15582	195	0.27083E-91	9.27153E-91	4.44381	436.59582
197 0.27361E-01 0.27431E-01 4.48927 445.55163 198 0.27500E-01 0.27569E-01 4.51200 450.06363 199 0.27639E-01 0.27708E-01 4.53473 454.59836 200 0.27778E-01 0.27847E-01 4.55746 459.15582	196	0.27222E-01	0.27292E-01	4.46654	441.36236
198 0.27500E-01 0.27569E-01 4.51200 450.06363 199 0.27639E-01 0.27708E-01 4.53473 454.59836 200 0.27738E-01 0.27847E-01 4.55746 459.15582	197	9.27361E-91	9.27431E-91	4.48927	445.55163
199 0.27639E-01 0.27708E-01 4.53473 454.59836 200 0.2773E-01 0.27847E-01 4.55746 459.15582	198	0.27500E-01	9.27569E-01	4.51200	450.06363
200 9.27778E-01 0.27847E-01 4.55746 459.15582	199	0.27639E-01	9.27798E-91	4,53473	454.59836
Na san bana sa san san san san san san san san s	290	9.27778E-91	9.27847E-91	4.55746	459.15582
이 같이 있어, 동네이 집안 수 가지 않는 것 같이 이 귀엽이 있었다. 이 것 해결했던 것은 같은 것은 것은 것은 것 같은 것 같은 것이 같은 것 같이 있는 것 같이 있는 것이 가지 않는 것이 가지 않는 것이 같이 있는 것이 같이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 같이 있는 것이 같이 있는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없다. 것이 있는 것이 없는 것이 없다. 것이 있는 것이 없다. 것이 있는 것이 없다. 것이 없는 것이 없다. 것이 않다. 것이 없다. 않다. 것이 없다. 것이 없다. 것이 없다. 않다. 것이 없다. 않다. 않다. 않다. 않다. 않다. 않 않다. 않다. 않다. 않다.					en en la seconda de la sec Nomenta de la seconda de la

·				440 30400
201	9.27917E-91	9.27986E-91	4.58019	463.73606
202	0.28056E-01	9.23125E-01	4.69292	468.33894
202	0 221945-01	0 282646-01	4.62565	472.96459
204	0.202225-01	0 204025-01	A 64020	477 61298
골간다	0.203332-01	0.204002-01	4.04000	400 00400
532	3.234726-31	9.28542E-91	4.6/111	432.23433
206	0.28611E-91	9.28681E-91	4.69385	486.97794
297	0.28759E-91	0.28819E-01	4.71658	491.69451
208	0.288895-01	0.289586-01	4.73931	496.43382
202	0.200206-01	1 201076-11	4 76294	541 19585
210	0 201676-01	0.000066-01	A 70477	505 00000
	J.6716/6*JI	J.272362~JI	11.101111	
211	0.293066-01	0.293/08-01	4.60/00	010./0012
212	9.29444E-31	9.29514E-31	4.83023	515.61835
213	0.29583E-01	3.29653E-01	4.85296	529.47131
214	0.297228-01	0.29792E-01	4.37569	525.34699
215	0.29861E-01	0.29931E-01	4.89842	539.24541
216	0 200005-01	1 211696-01	4 92115	525,16656
017	0 201205 01	0.000000000	A 64300	
	0.30137E-01	3.302062-01	4 04421	545 0770C
518	0.30278E-01	0.30347E-01	4.96661	345.37736
219	0.30417E-01	0.33486E-01	4.98934	553.36643
220	0.30556E-01	9.396255-91	5.01207	555.07847
221	9.39694E-01	9.39764E-91	5.03489	569.11327
222	1 312336-11	1 313135-01	5.05753	565.17981
 		0 010405-01	5 10126	571.351.97
		0.0104CC 01	E 10200	E7E 25406
224	0.311116-01	J.311312-J1	0.13677	
225	3.31259E-31	J.31319E-91	5.125.2	560.47979
226	0.31389E-01	0.31458E-01	5.14846	565.62824
227	9.31523E91	9.31597E-01	5.17119	590.79943
228	9-31667E-91	9.31736E-91	5.19392	595.99335
229	9.318066-91	0.313756-01	5.21665	601.20999
229	9 219445-01	0 220146-01	5 33630	696 44927
201		0.001505.01	0100000 R 02011	C 1 21140
221	0.320836-01	0.321036~01	0.26211	611.1140
232	3.32222E-91	9.32292E-51	5.23484	616.99632
233	0.32361E-01	9.32431E-91	5.39757	622.30389
234	0.32500E-01	9.32569E-01	5.33030	627.63419
235	0.32639E-01	0.32708E-01	5.35333	632.98721
236	9-32778E-91	9.328475-01	5.37576	638.36298
227	0.229175-01	0.229866-01	5.39849	643.76147
-1224 6666	D DODEZE OF		E 49199	649 10269
230	0.330366-01	0.331202-01	J.46166	047.10007
239	J.33194E-01	3.33264E-31	2.44392	604.62004
243	9.33333E-91	0.33403E-01	5.46668	669.09332
241	9.33472E-91	9.33542E-01	5.48941	665.58273
242	3.33611E-91	9.33681E-01	5.51214	671.09488
242	1.337596-01	9.338196-91	5.53487	676.62975
5.4.4	A 556665	0 000505-01	5 55769	682 18736
近叶叶	0.00076-01	0.007005771		697 76769
290	J. 34 JESE- JI	3.3437/07/07/07	3.00000	200 07072 200 07072
246	3.34167E-91	0.34236E-01	3.60396	073.37070 200 00277
247	0.34306E-01	0.34375E-91	5.62589	6696.4.969
248	9.34444E-91	9.34514E-01	5.64853	704.64508
249	0.34533E91	0.34653E-91	5.67126	710.31634
251	0.34722E-01	0.34792E-01	5_69399	716.91932
. 	a de la companya de l			

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR

•••

121 121 14 - Maria Mari

re ser en la sector de la sector

251	9.34361E-01	0.34931E-01	5.71672	721.72704
252	0.35000E-01	0.35069E-01	5.73945	727.46649
253	0.35139E-91	0.35208E-01	5.76218	733.22867
254	9.35278E-01	3.35347E-01	5.78491	739.01353
255	0.35417E-01	2.35486E-91	5.83764	744.82122
256	9.355566-91	3.356256-01	5.83037	750.65159
257	9.356946-01	0-35764E-01	5.35310	256 .59469
258	0.359338-01	1.359036-01	5.87583	762 32152
250	1 353726-01	1 261426-11	5 00056	762 27990
261	9.361116-01	0.361016-01	5 42129	774 20020
261	1 262516-11	0.962195-01	5 944 92	720 14440
949	0 363895-01	0 26450E-01	5 96675	704 11115
020	0.265295-01	0.048076.01	5.20010	700.11110
- 600 264	0.06000000101	0 047045.04	U.70740 6 04004	796.10009
204 325	0.5000/1701	J.35/352*01	5.JI <u>C</u> I 2.00404	775.11283
200	- 3.30330E"01	0.300702-01	5.33474	304114/83 010 00545
200	0.303446-01	0.370146-01	5. 35/6/	310.2334/
20/ 0/10/	3.37083E-31	U.3/153E-51	6.03040	316.23588
268	J. 37222E-01	0.37292E-31	6.10314	822.38902
269	3.37361E-91	3.37431E-01	6.12587	828.51488
279	9.37599E-91	3.37569E-91	6.14869	334.66343
271	3.37639E-01	9.37798E-01	6.17133	840.83481
272	3.37778E-01	9.37347E91	6.19406	847.02886
273	3.37917E-01	0.37986E-01	6.21679	853.24565
274	0.38056E-01	3.33125E-01	6.23952	859.48517
275	3.38194E-01	0.38264E-01	6.26225	865.74741
276	0.38333E-01	0.38493E-91	6.28498	872,03233
277	9.38472E-01	0.33542E+01	6.39771	878.34919
278	0.38611E-31	9.38681E-91	6.33044	884.67054
279	0.33753E-01	3.38819E-91	6.35317	891.02371
280	0.38889E-01	0.38953E-01	6.37590	897.39961
281	3.39028E-01	0.39097E-01	6.39863	903.79824
282	9.39167E-01	9.39236E01	6.42136	910.21960
283	0.39306E-01	0.39375E-01	6.44409	916.66373
234	0.39444E-01	9.39514E-01	6.46682	923.13052
235	0.39583E-01	9.39653E-01	6.48955	929.62037
286	0.39722E-01	9.39792E-91	6.51228	936 13235
287	0.39861E-01	0.39931E-91	6.53531	942 66737
288	3.40000E-01	0.40069E-01	6 55775	949.22511
289	0.401396-01	3.40208E-01	6 59948	ASE CASED
291	0.40278E-01	9.493475-91	6_69221	960 49279
291	3,49417F-91	0.49486F-01	6 6059A	
242	1.495566-04	0 406055-01	6 6.4067	207800413 Q76 20040
222	9.49694F-91	0.40764E-01	1000100. 2 27140	778.00040 002 05470
294	0 400000 01	0 40000C-04	0.507140 2 20440	201.00% 000 04000
1277 - 1295 -		0.40703E**31 0.41029E**04	0.09413	907.J4052 Oof 74750
204	こうえんけいえきにはつりまう。 ここれ、メリオオメモロニの4		0./103b	773./63/8
E 70	J-410505 04	J.411816-01	6.73707	1002.00036

PULSE	TIME(SEC)	AVG TIME(SEC)	PHASE SHIFT (DEG)	PHI TOTAL	
1	0.14184E-03	9.21277E-03	0.03556	9.03556	
2	0.28369E-03	0.35461E-93	3.05927	0.09483	
· · · ·3 · · ·	0.42553E-03	0.49645E-03	3.08298	9.17781	
4	0.56738E-03	0.63830E03	0.10669	9.23459	
5	0.70922E-03	9.78014E-03	3.13339	3.41489	
6	0.35196E-03	0.92199E-03	9.15419	9.56699	• .
ne n 2 e - 1	0.99291E-03	0.10633E-02	9.17731	3.74683	
. <u>G</u>	3.11348E-02	9.12057E-02	9.29152	9.94832	
5. 9 - 5	9.12766E-92	9.13475E-02	9.22523	1.17355	
10	0.14184E-92	0.14894E-02	0.24893	1.42248	
1994 11 1 - 199	0.15603E-02	9.16312E-32	9.27264	1.69512	
12	9.17921E-92	J.17739E-92	J.2963D	1.99197	
5 13 -5 5	3.13440E-02	0.19149E-32	9.32096	2.31103	
14	J.19858E-92	0.20567E-02	U.343// 0.04747	2.00030 0.00077	
	0.21277E-02	J.21986E-JE	0.00140	0.02077 0.41004	
10	0.226906-02	0.234046-02	U.37110 0.41400	0.111070 0.00005	
17	0.241132-92 0.055005 00	0.243232-02	0 40040	A 06745	1
13	0.20032E-02	0.262416-02	0.46000	17 - EDI 170 A 70075	
- 17	0.207000-02	0.276636-02	0.40601	19.5762700 6 01677	
- 2 9 - 5 9	- 0.20007E-02 - 0.00707E-02	0.270702-02	0.50070	- 5°72549	
	0.010005-00	0 010155-00	0.00276	6 25292	
- 	0.012006-02	012121212 20121212 20121212	U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-U-	··· 6 91696	
23	0.360646-06	0.04750510	0.00014	7.39691	
25	0.340436-02	9.26179F-02	0.00000	8.00146	
26	0.36879F-02	9.37589F-02	3.62826	8.62972	·-
27	0.332985-02	0.390076-02	9.65197	9.28169	
28	0.397166-02	9.40426E-92	9.67568	9.95737	
29	9.411355-92	9.418446-92	9.69939	19.65676	
30	9.42553E-02	9.43262E-92	9.72309	11.37986	
31	0.43972E-02	9.44681E-92	9.74680	12.12666	e e it
32	0.45399E-92	0.46099E-02	9.77951	12.89717	
33	0.46809E-02	9.47518E-92	9.79422	13.69139	
34	9.48227E-02	9.48936E-32	9.81793	14.50932	• •
35	0.49645E-02	0.50355E-02	9.34164	15.35995	
36	0.51064E-02	9.51773E-92	0.86534	16.21629	
37	0.52482E-02	9.53191E-92	0.80905	17.19534	
38	9.53901E-02	9.54619E-92	9.91276	18.01810	
39	0.55319E-92	9.56928E-92	0.93647	18.95457	· · .
40	9.56738E-02	9.57447E-92	0.96018	19.91475	
- 41	0.58156E-02	9.58865E32	9.98388	20.89863	
42	0.59574E-92	0.60204E-02	1.39759	21.90622	
43	3.60993E-02	9.61792E-92		22.93752	
- 44	0.62411E-02	9.63121E-92	1.05501	23.99253	• • • •
45	0.63839E-92	9.64539E-92	1.97872	25.07124	. ¹
46	0.65248E-02	3.65957E-92	1.10242	26.17367	477
47	0.66667E-92	9.67376E-92	1.12613	27.29980	
48	0.68085E-92	9.68794E-92	1.14984	28.44964	• • • •
49	-9-69594E-92-	9.70213E02	1.17355 states and	29.62319	1
50,00	0.79922E-32	9.71631E-02	1.19726	30,32044	

here in file haarde reger gebrek na gebrek na gebrek en de sterre in de sterre in de server in de server en de

51	0.72340E-02	9.739596-92	1.22396	32.04140	
52	0.737596-02	0.74468E-92	1.24467	33 286 18	
53	9.75177E-02	0.75887E-02	1 26838	RA SEAAG	
54	9.76596E-92	9.773955-92	1.292.03	35.94654	and a second
55	9.78914E-92	0.787235-02	1.31589	37,16234	
56	9.79433E-02	3.89142E-92	1.33950	38.51184	
57	0.898516-92	2-815605-02	1.36321	29.24505	
58	9-822795-92	1-323795-12	1 32692	A1 00107	
59	1.83688F-12	1.843975-12	1 41963	42 66269	
65	9-85196E-92	0.858165-02	1 42434	44 19694	
61	1.865256-02	1.872345-12	1.45234	45.55492	
62	1.879435-12	1.22452F-02	1 49175	47.02673	
63	1.89362F-12	1 311715-12	1 54546	42 54219	
64	1.907806-02	1.91489F-92	1.52917	50 07106	and shares
65	1.921995-92	1 929125-12	1 55200	51 62424	
66	0.936175-02	1 94296E-19	1 57652	52 24482	
67	1 951256-02	9 95745F 12	1 61129	54 20111	
4.2	1 96454E-12	9 971695-09	1 62400	56 40511	et de la tr
. <u>6</u> 9	1 979795- 19	0.00500E.00	1 64771	50 17000	
70	1 332315-12	0.10000EE-0E	1 67140	59 74494	
71	0 100715-01	0 101402-01	1 69519	A1 42926	· · ·
72	0.100126-01	0 1 0 0 0 A C 0 0 1	1 71000	62 15020	
72	1 19255E-91	0.10406E-01	1 74254	64 90073	
	0.10496E-01	0 105676-01	1.1 アムベクボット・	64.20070	
75	1 106226-01	0 10700 E 01	1 79996	63-45694	
76	9 197896-01	0 10051E-01	1.21366	79.27969	an a
77	0 1000000-01	1.100016 01	1 00700	72 10799	
72	0.110645-01	0.1110FC-01	1 26112	72 96996	
79.	9.11296F-01	1 1 2776-11	1 99479	75 85285	
80	1.11348E-11	0.11410E-01	1.0059	77 76224	an an an Araba an Araba. An an Araba an Araba
. Ří	9 11489F-01	9 115695-91	1 42220	79 69455	•
	1 116216-01	0 117026-01	T CERCI	01 65746	
<u>83</u>	0.117726-01	0 11044E-01	1 97962	02 62010	
24	9.119156-01	9 119866-91	2 99333	25 62241	
85	3.120576-01	9.121286-91	2 12714	37.66945	
36	1.121396-11	1.122706-01	2.95974	89.71119	
87	9.12340E-91	9 124115-91	2 17445	31.78564	
88	0.12482F-01	0.12553E-01	2,09316	93,88380	그는 옷을 가 물
89	3.12624F-01	0.126956-01	2 12187	96,09567	
99	9.12766E-91	9.128376-01	2.14558	98.15125	
91	0.12903F-01	9.129795-01	2.16928	100.32053	
92	9.13050E-01	9.131215-91	3,19299	192 51353	
	9.13191E-91	1.132625-01	2.21679	194.73923	
94	9.13333E-91	9.134946-91	2.24941	106.97964	
95	9.13475E-91	1.13546F-01	2 26412	119.23475	
96	9.13617E-91	0.136386-01	2.28783	111.59258	
97	0.13759F-01	1.138396-01	2.21153	113 33411	
38	9.13991E-01	9.13972F-01	2 33524	116.16935	计计算机
	3.14943E-01	9.14113E-91	2,35695	118.52830	
100	9.14184E-01	9.14255E-01	2.38866	129.91996	바이다 가장 훌
					an a
	e da la companya da serie da s Nota				
ingen mit so			물건을 모양을 가 가 다 다.	1997년 1987년 19 1월 1987년 1987년 1월 1987년 1	NALL Construction (All Mart) NALL STATES NALL STATES ALL STATES ALL STATES
lan di sta i					

1'91	0.14326E-91	3.14397E-01	2.49637	123 31732	
192	9.14468E-01	9.145396-01	2 42007	105 74740	
1.93	9.146195-91	9.146816-01	5 AR070	100 00110	
1.94	9.147526-01	9 149226-91	5 A7746	160.67027	
1.05	1 149945-01	0 140655-01	5.4460	130.07807	
1.00	0 150055-01	0.454065.04	2.50120	133.17986	
407	0 184335 01	J.15136E-31	2.32471	135.79477	
1.00	0.101776-01	0.102486-01	2.54861	138.25338	
100	0.103196-01	0,15390E-01	2.57232	140.32570	
107	J.13461E-01	0.10532E-01	2.59693	143.42173	
110	3.15603E-01	3.15674E-91	2.61974	146.04147	an an an
111	9.15745E-91	3.15816E-91	2.64345	143.68492	
112	9.15887E-91	0.15957E-91	2.66715	151,35207	
113	9.16028E-01	3.16099E-01	2.69086	154.04293	e tele di s
114	0.16170E-91	0.16241E-01	2.71457	156.75759	
115	9.16312E-91	0.16333E-01	2.73828	159,49578	
116	9.16454E-91	3.16525E-91	2.76199	162.25776	
117	0.16596E-01	9.16667E-91	2.78569	165.04346	· · ·
113	0.16738E-31	0.16809E-91	2.80940	167.35286	
119	9.16879E-01	0.16953E-01	2.33311	170.68597	
129	9.17021E-01	0.17092E-01	2.85682	173 54279	
121	9.17163E-01	9.17234E01	2.88353	176-42331	· · ·
122	0.17305E-01	9.17376E-91	2.99423	179.32755	
123	0.17447E-01	9.17518E-01	2.92794	182.25549	
124	0.17589E-91	9.17669E-91	2.95165	185.20714	
125	0.177306-01	3-17891E-91	2 97536	188 18259	i shi shi s
126	0.17872E-01	9.179436-01	2,99917	191 18156	
127	0.18914E-91	9.189856-91	2 12277	194 29424	a the second
128	9.18156F-01	0.132275-01	3 34648	197 25922	
129	1.182986-91	0 102696-01	2.07010	200 22101	
120	9 194405-01	0 108118-01	9 00900 9 00900		
.121.	0.10500C.01	0 162R02.01	0 - J 7 3 7 4 5 - 4 + 7 2 4	CJC: 171 171	e e de la
100	9 107075-01	0 102045-01		205.20201	• . •
100	0 10065C01	0 1000/20101	0 1 4 6 5 6 5 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5	237.07303	
100	0 100075-01	0.1007002-01	3.10202	01/ 09 750	
1.019 1.08	0 101405-01	0.170702701	3.100/3	210.02700	
100	J.171475 J1		0.000 A F		
100	0.17271E-01	0.193626-01	3.23613	222.47010	
107	0.194536501	0.19004E-01	3.23983	223.73602	
133	0.190746-01	0.19640E-01	3.28306	229.01908	e a pa
152	3.17716E-J1	0.19787E-01	19.00 3.30 2 .00	232.32600	
140	0.19858E-91	0.199296-01	3.33098	232.02783	e Na ana ang ang
141	0.2000E-01	9.29971E-31	3.35469	239.91251	den dien
142	9.29142E-91	9.29213E-91	3.37839	242.39391	
143	0.20284E-01	0.20355E-01	3.40210	245.79301	
144	9.20426E-01	9.29496E-91	3.42531	249.21882	
145	0.23567E-01	0.20638E-01	3.44952	252.66834	
146	0.20709E-01	9.20789E-91	3.47323	256.14157	
147	0.20851E-01	9.209226-01	3.49693	259.63859	
143	9.20993E-01	9.21964E-91	3.52964	263.15914	
149 _	<u>9.21135E-91</u>	9.21296E-91	3.54435	266.70349	
159	9.21277E-91	9.21349E-01	3.56806	270.27155	
s sur di sur di	المراجع المراجع المراجع المراجع			영양 승규는 것을 가지 않는 것이다.	
	승규는 승규는 그 것을 알려 가지? 지수가 가지?	erentres Manageren Nerffallen als de Pri	an a		

den en en Frankrige

125

•	0 014105-01	0 014005 04		339 04500
1. 5	0.214102401	0.016015-01	3.37177	273,00332
5	0.0170000-01	0.017705-01	2.01241	277.0°77 201.11707
2 (0.217 JEE 01	0.010186.01	3.03713	201.11/7/ 204 70006
•	0.0100405-01	0.000 576 .01	3.60207 3.69667	200 44744
	9 221225-01	0 221225-01	2 71 921	202 17777
7	0.222706-01°	0.222406-01	3.71331	295 91179
,	0.224116-01	0.224825-01	2 75779	299.66951
,	0.225536-01	0.226245-01	3.78143	393.45994
	0.226955-01	9-227665-91	3.89514	397.25698
	0.22837E+91	9.229035-01	3.82885	311,08493
, .	0.22979E-31	9.239596-91	3.85256	314.93748
3	0.23121E-91	9.231916-01	3.87626	318.81374
r. File	9.23262E-91	3.23332E-91	3,89997	322.71371
	9.23494E-91	9.234756-91	3,92363	326 63739
	9.23546E-91	9.23617E-91	3,94739	339.58478
۱.	0.23688E-01	0.23759E-01	3.97110	334.55588
	0.23830E-01	0.23901E-01	3.99480	338.55068
Ι.	0.23972E-01	0.24043E-01	4.91851	342.56919
ľ	9.24113E-91	9.24184E-01	4.94222	346.61142
	0.24255E-01	0.24326E-91	4.36593	359.67734
	0.24397E-01	9.24463E-01	4.38964	354.76698
;	0.24539E-01	9.24619E-91	4.11334	353.38932
la Pre	9.24631E-01	9.24752E-91	4.13705	363.91737
i .	0.24823E-01	9.24894E-01	4.16976	367.17813
	0.24965E-91	9.250356-01	4.13447	371.36259
. 	9.25196E-91	0.25177E-91	4.20818	375.5707?
	0.25248E-91	9.25319E-01	4.23133	379.80265
) 	0.25390E-01	9.25461E-91	4.25559	384.05625
₿ × .	0.25532E-01	0.25603E-01	4.27930	388.33755
	3.25674E-31	3.25745E-91	4.30301	392.64056
	9.25816E-91	0.25337E-91	4.32672	396.96727
i China a	0.20907E-01	0.26028E-01	4.30042	431.31//3
	0.260998-01	9.261/96-91	4.3/413	405.69183
l Marijanj	0.25291E-01	J.26312E-31	4.39784	410.00966
	0.065055-01	0.005005-01	4.44100	414.01121
di i	0.200202701	1 26220E-04	9.44720	415.70647
l de la de L	0.2000.2701	J.CO/JOE-01	4.400/5	463.46043 497 01010
r thirthe	0.260007E-01	J - COU / 22 7 31	しょうしょう サイヤンビロイ しょう	467.71510 Add Addam
r:'	1.074025-01	1 27460E-04	4.31636	456.45445 202 07457
	0.27024F-01	9.97995C01	4 8690n	400.7(40) XA1 50007
1 1	9,272766-01	9 974476-91	7.0000V A 80750	444 19597
	9.275125-01	9.27523E-91		451 72719
·	9.276695-91	3.277306-01	4.62492	455.37201
	9.27801E-01	9.278726-91	4.65863	463.03963
	0.27943E-01	0.289146-91	4.68234	464 71297
	0.28985E91	0.281566-01	4,79694	469.41991
, <u>-</u> 1	9.28227F-01	9.282985-01	4.72975	474 14876
	9.283695-01	9.284495-91	4 75246	478 99222
			TALWY TW	TTTN TV Vielaita

291	0.28511E-01	0.23582E-01	4.77717	483.67939
202	9.28652E-91	0.28723E-01	4.30088	488.48027
203	0.28794E-91	9.28865E-91	4.82453	493.30485
294	3.28936E-01	9.29097E-01	4.34329	498.15314
205	0.29078E-01	3.29149E-91	4.87299	503.02515
206	3.29220E-01	0.292916-01	4.89571	507.92086
207	3.29362E01	9.294336-31	4.91942	512.84927
203	0.29534E+01	9.295746-01	4.94312	517.78339
209	0.296455-01	3-29716F-01	4.96683	522.75023
219	0.297876-01	1.29858F-01	4 99954	527.74977
211	9.299296-01	0.300006-01	5.01425	532.75592
212	9-39971E-91	9.301425-01	5.03796	537.79293
213	3.302135-01	9.392846-91	5,96166	542-35464
214	9.393556-91	9.39426E-91	5 12527	547.94002
215	0.304966-01	1.315676-11	5 1 1919	552.04910
216	0.306386-01	0.307096-01	5 13279	558.18198
217	0.207806-01	0.000516-01	5 15650	562 23222
21.0	0 20225-01	0.00000000	S-10000	548 51859
919	0 21064E-01	0.01105501	5 20201	572.72251
220		0.011000-01	5 22762	578 95112
221	1 212406-01	0 014106-01	5 35122	594 00145
202	0.314395-01	0.01410E-01	5.07504	509 47649
222	0 216215-01	9 217026-01	K 9997K	504 77500
224	9 917796-91	0,017,002-01 0 010446.01	3.670/0	600 00760
225	0 01015501	9 91004E-01	S-94616	200102.02 205 44205
226	0.220576-01	0.012002-01	C.01010 E 04007	219 21271
207	0 22100E-01	0 222706-01	5.0000	216 90799
222	0.002406-01	0 224116-91	J.37000 R.41799	601 604E7
229	1 224826-11	0.225525	S 44000	697 A6557
230	9.326245-91	1.22605E.01	5 ACA70	600 R0007
231	3.32766E-91	2.32837E-01	5 48841	638.01868
232	9.32908E-91	9.329795-91	5.51212	643.53979
233	9.339596-91	9-331216-01	5.52583	643.16662
234	9.33191E-01	9.332625-91	5,55953	654 69615
235	9.33333E-01	9-33404F-01	5.58224	661 20940
236	0.33475E-01	9.33546E-01	5-60695	665.21625
237	9.33617E-91	9.336885-01	5-63066	671 44791
238	9.33759E-01	1.333305-01	5.65437	677 19127
239	9.339315-91	9.339725-01	5 67297	692 77944
249	0.34943E+01	9-34113E-01	5,71178	698 48122
241	9.34184E91	9.342556-01	5.72543	694.29671
242	9-24326E-01	9.343976-01	5 74999	649 95591
243	3-34468E-31	9-34539F-01	5.77291	735.72881
244	9.34619E-91	9.346816-91	5 79661	711 52543
245	9-347526-01	9.349235-91	5 82132	717 34575
246	0.348946-91	9.349655-01	5.844.03	723 18973
247	3.353355-01	9-351 965-91	5.86774	729 . 95752
248	9.351276-91	0.352486-01		734 94997
249	0.353196-01	3.353996-01	5 91515	741-86419
250	9.35461E-01	0.25522F-01		TAC RARAS
				a a a tradem de la companya de la c Companya de la companya de la company
				이 집 수 있는 것 같은 것 같은 것 같이 것 같이 것 같이 것 같이 것 같이 것 같이
		그는 그는 가장에 관리 것이 같아요. 것이	사람은 사람이 가지 있다. 이가 가지 않는 것은 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가 있다. 가지 않는 것을 가 있는 것을 가 있는 것을 가 있다. 가지 않는 것을 가 있는 것을 가 있다. 가지 않는 것을 가 있는 것을 가 있다. 가지 않는 것을 가 있는 것을 수가 있는 것을 가 있다. 가지 않는 것을 가 있는 것을 것을 수가 있는 것을 수가 있는 것을 가 있는 것을 수가 있다. 이 가지 않는 것을 수가 있는 것을 수가 있다. 이 가지 않는 것을 수가 있는 것을 수가 있다. 이 가지 않는 것을 수가 있는 것을 수가 있다. 이 가지 않는 것을 수가 있는 것을 수가 있다. 이 가지 않는 것을 수가 있는 것을 수가 있다. 이 가 있는 것을 수가 있는 것을 수가 있는 것을 것을 수가 있는 것을 수가 있는 것을 수가 있다. 이 가 있는 것을 것을 수가 있는 것을 수가 있다. 이 같이 같	
			(a) A set of the se	

127 - 127 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128 - 128

251	9.35603E-01	9.35674E-01	5.96257	752.76555
252	9.35745E-01	3.35316E-91	5.98628	758.75182
253	0.35337E-01	9.35957E-01	6.00999	764.76131
254	3.36020E-01	0.36099E-01	6.03369	779.79559
255	0.36179E-91	9.36241E91	6.35740	776.85291
256	0.36312E-01	3.36383E-01	6.98111	782.93401
257	0.36454E-01	9.36525E-91	6.10482	789.03883
253	0.36596E01	0.36667E-01	6.12853	795.16736
259	3.36738E01	3.36809E-01	6.15223	801.31960
26.9	0.36379E-01	9.36950E-01	6.17594	807.49554
261	0.37021E-01	9.37992E-91	6.19965	813.69519
262	9.37163E-91	9.37234E-01	6.22336	819.91855
263	0.37395E01	9.37376E-91	6.24797	826.16561
264	0.37447E-01	9.37518E01	6.27977	832.43639
265	0.37589E-01	9.37669E-01	6.29443	838.73087
266	0.37730E-01	0.37601E-01	6.31319	845.04906
267	0.37872E91	0.37943E-01	6.34190	851.39395
268	9.38914E-91	9.38935E-91	6.36561	857.75656
269	9.33156E-01	0.36227E-91	6.33931	864.14587
270	9.33298E-01	0.38369E-01	6.41392	870.55890
271	0.33449E-91	9.38511E-91	6.43673	876.99563
272	0.38582E-01	9.386526-91	6.46044	883.45697
273	0.38723E-01	0.33794E-91	6.43415	889.94022
274	3.388655-91	0.38936E-01	6.59785	896,44897
275	0.39007E-01	0.39378E91	6.53156	902.97964
276	0.39149E-01	9.39220E-01	6.55527	909.53490
277	0.39291E-01	9.39362E-91	6.57898	916.11388
278	9.39433E91	0.39504E-01	6.60269	922.71657
279	0.39574E-91	9.39645E-91	6.62639	929.34296
280	0.39716E-01	0.39787E01	6.65010	935.99306
281	0.39858E91	0.39929E-01	6.67381	942.66682
282	9.40000E-01	0.40971E-01	6.69752	949.36443
233	9.49142E-01	9.49213E91	6.72123	956.08562
284	0.40234E-01	9.43355E-91	6.74493	262.83356
265	9.49426E-91	9.43496E91	6.76864	969.59921
236	9.40567E-01	9.49638E-91	6.79235	976.39156
237	0.49799E-01	9.40789E-01	6.31696	983.29761
233	9.40351E-01	0.40922E-01	6.83977	990.04738
239	9.49993E-91	9.41964E-91	6.86348	396.91085
290	0.41135E-91	0.41296E-91	6.33713	1993.79893
291	0.41277E-01	9.413486-91	6 91 189	1919.79892

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOP -

This appendix derives the power patterns for the parabolic distribution discussed in section 4.4.3.

According to Silver (1965), the parabolic field distribution is given by

$$f(x) = 1 - (1-\Delta)x^2, |x| < 1.$$

its directivity pattern is given by

$$g(u) = \frac{a}{2} \int_{-1}^{1} f(x) e^{jux} dx$$

where

= over-all length of the aperture

$$=\frac{\pi a}{1}$$

= angle measured from the normal to the aperture = normalized distance along the aperture $-1 \le x \le 1$.

integrating,

θ

х

$$g(u) = a \left[\frac{\sin u}{u} + (1-\Delta) \frac{d^2}{du^2} \left(\frac{\sin u}{u} \right) \right]$$

where

$$\frac{d^2}{du^2} \left(\frac{\sin u}{u}\right) = \frac{(2 - u^2)\sin u - 2u\cos u}{u^3}$$

The power pattern g^2 (u) must be normalized to 1. The limit of the first term as u goes to zero is

$$\lim_{u \to 0} \frac{\sin u}{u} = \lim_{u \to 0} \cos u =$$

by L'Hospital's rule. Applying the same rule to the second term

$$(1-\Delta) \lim_{u\to\infty} \left[\frac{(2-u^2)\sin u - 2u\cos u}{u^3} \right] = (1-\Delta) \lim_{u\to\infty} \left(\frac{-u^2\cos u}{3u^2} \right)$$
$$= (1-\Delta) \lim_{u\to\infty} \left(\frac{u^2\sin u - 2u\cos u}{6u} \right)$$
$$= (1-\Delta) \lim_{u\to\infty} \left(\frac{u^2\cos u + 4u\sin u - 2\cos u}{6} \right)$$
$$= -\frac{1}{3}(1-\Delta).$$

Therefore, a normalizing factor must be used at each \triangle such that the magnitude of g^2 (u=o) = 1.

$$g^{2}(u) = 1 = X \left[1 - \frac{1}{3}(1-\Delta)\right]^{2}$$

where X = normalizing factor.

Then X is given by

$$X = \frac{1}{[1-\frac{1}{3}(1-\Delta)]^2}$$

Normalizing factors are listed below for the values of Δ listed in the line source distribution table on page

Δ	X		
1.0	1.9		
0.8	1.15		
0.5	1.44		
0	2.25		

At the end of this appendix is an HP-25 calculator program used to plot g^2 (u) X.

Using $\Delta = 0.4$ results in the distribution falling to its half power point at U = 89.7° (1.566 radians). For $\Delta = 0.4$, the normalizing factor X = 1.563. Since

$$u = \frac{\pi a}{\lambda} \theta$$
$$\theta = \frac{u\lambda}{\pi a}$$
$$B_{h} = 2\theta = (\frac{2u}{\pi}) \frac{\lambda}{a}$$

Substituting u = 1.566 radians,

$$B_{h} = 0.997 \frac{\lambda}{a}$$

which is quite close to the desired value of 1.0 λ/a . The sidelobes are approximately 18.1 dB below the peak. The gain factor G(Δ) is given by

$$G(\Delta) = \frac{(2 + \Delta)^2}{9[1-\frac{2}{3}(1-\Delta) + \frac{1}{5}(1-\Delta)^2]}$$

 $G(\Delta=0.4) = 0.952.$

HP-25 Program To Plot

$$g^{2}(u) = \left[\frac{\sin u}{u} + (1-\Delta) \left[\frac{(2-u^{2})\sin u - 2u\cos u}{u^{3}}\right]\right]^{2}$$

<u>STEP</u>	INSTRUCTION	STEP	INSTRUCTION
01	RCL 1	20	RCL I
02	RCL 2	21	cos
03	x	22	X
04	STO 4	23	CHS
05	ENTER	24	RCL 6
06	3	25	+
07	у ^Х	26	RCL 5
08	STO 5	27	÷
09	2	28	RCL 3
10	RCL 4	29	x
11	x ²	30	STO 7
12	-	31	RCL I
13	RCL I	32	SIN
14	SIN	33	RCL 4
15	x	34	÷
16	STO 6	35	RCL 7
17	2	36	+
18	RCL 4	37	x ²
19	x	38	GO TO OO

INPUT:

STO 1 - INPUT ANGLE (DEG) STO 2 - $\frac{\pi}{180}$ (RAD/DEG) STO 3 - 1 - Δ

.+ 1

ŧ

This appendix shows the power consumption calculations for the two processor configurations discussed in section 6.1.

Duty cycle, D, is defined as

$$D = \frac{\tau}{T}$$

where $\tau =$ length of pulse to be sampled

T = how often a pulse arrives at the sampling device (the repetition rate).

From Table 2, the longest pulse is approximately 69.5 µsec. The repetition rate depends on the actual implementation for each device.

For the loop SAMs in the single channel configuration, the repetition rate is $\frac{1}{7200 \text{ Hz}}$ or 138.9 µsec. D = .5 for this case. The buffers are operated every .03846 sec and the associated duty cycle is .00181.

In the pipeline approach, the pre-filter duty cycle is also .5 and the buffer duty cycle is also .00181. The loop SAMs run 20 times slower than the prefilters, hence, their repetition rate is $\frac{1}{360}$ Hz and their duty cycle is .025.

SINGLE CHANNEL CONFIGURATION

DRIVERS	LOOP SAMS (10 MHz)
	<u>2 SAMs on</u> x 198 chan x <u>1 pkg</u> = 24 drivers chan. 17 SAMs
	24 drivers @ .5W ea = 12 W x D = 6.00 W
	BUFFER SAMS (8 MHz)
	<u>1 SAM on</u> x 198 chan x <u>1 pkg</u> = 9 drivers chan 23 SAMs
	9 drivers @ .5W ea = $4.5 \text{ W x D} = .008 \text{ W}$
SAMs	P _{DC} = $\frac{4\text{mW}}{\text{SAM}}$ × ($\frac{26 \text{ SAMs (loop)} + 10 \text{ SAMs (buffer)}}{\text{chan}}$) × 198 chan
	= 28.51 W
	$P_{\text{DC CLOCK}} = \frac{4\text{mW}}{\text{SAM}} \times \left(\frac{2 \text{ SAMs (loop) on + 1 SAM (buffer) on}}{\text{chan}}\right)$
	x 198 chan
	= 2.38 W
	$P_{TOTAL} = 36.90 \text{ W}$

134

.

٠. · ·

PIPELINE CONFIGURATION

LOOP SAMs (10 MHz) DRIVERS 2 SAMs on x 14 chan (pre-filters) $x \frac{1 \ pkg}{17 \ SAMs} = 2 \ drivers$ 2 drivers @ .5 W ea = 1 W x D = .5 W 2 SAMS on x 196 chan (loop) $x \frac{i \ pkg}{17 \ SAMs} = 24 \ drivers$ 24 drivers @.5W ea = 12 W x D = .3 W BUFFER SAMs (8 MHz) $\frac{1 \text{ SAM}}{\text{chan}} \text{ on } x 196 \text{ chan } x \frac{1 \text{ pkg}}{23 \text{ SAMs}} = 9 \text{ drivers}$ $9 \text{ drivers } @ .5W \text{ ea} = 4.5 \text{ W } \times \text{ D} = .008 \text{ W}$ $P_{DC} = \frac{4mW}{SAM} \times \left(\frac{210 \text{ chan } \times \frac{26 \text{ SAMs}}{chan} + 196 \text{ chan } \times \frac{10 \text{ SAMs}}{chan}}{chan}\right)$ SAMs = 29.68 W $P_{DC \ CLOCK} = \frac{4mW}{SAM} \times \left(\begin{array}{c} 14 \ chan \ x \ \frac{2 \ SAMs}{chan} \ on \ + \ 196 \ chan \ x \ \frac{3 \ SAMs}{chan} \ on \right)$ = 2,46 W $P_{TOTAL} = 32.95 W$

135

x'

REFERENCES

- Claassen, John P., "A Short Study of a Scanning SAR For Hydrological Monitoring on a Global Basis," RSL Technical Report 295-1, Remote Sensing Laboratory, University of Kansas Center for Research, Inc., Lawrence, KS, September, 1975.
- Erickson, Rodney L., "State of the Art Radar System Parameters," RSL Technical Memorandum 291-1, Remote Sensing Laboratory, University of Kansas Center for Research, Inc., Lawrence, KS, September, 1975.
- Fong, Richard K. T., "Methods to Vary Elevation Look Angle Spacecraft SAR," RSL Technical Memorandum 295-4, Remote Sensing Laboratory, University of Kansas Center for Research, Inc., Lawrence, KS, January, 1976.
- 4. Harger, R. O., "Synthetic Aperture Radar Systems, Theory and Design," Academic Press, New York, 1970.
- 5. Jasik, Henry, ed., Antenna Engineering Handbook, McGraw-Hill, 1961.
- Komen, Mark J., "Comb Filter Theory For Use In a Scanning Synthetic Aperture Radar Signal Processor (SCANSAR)," RSL Technical Memorandum 295-7, Remote Sensing Laboratory, University of Kansas Center for Research, Inc., Lawrence, KS, March, 1976.
- 7. Moore, R. K., "SLAR Image Interpretability Tradeoffs Between Picture Element Divisions and Non-Coherent Averaging," RSL Technical Report 287-2, Remote Sensing Laboratory, University of Kansas Center for Research, Inc., Lawrence, KS, January, 1976.
- 8. Nathanson, Fred E., Radar Design Principles, McGraw-Hill, 1969.
- 9. Silver, S., ed., Microwave Antenna Theory and Design, Dover, 1965.
- 10. Skolnik, Merril, ed., Radar Handbook, McGraw-Hill, 1970.
- Sponamore, T. E., Private Communication, Southwestern Bell Telephone Co., Kansas Area Headquarters, Topeka, KS., 1976.
- 12. Ulaby, F. T. and P. Batlivala, "Optimum Radar Parameters for Mapping Soil Moisture," Geoscience Electronics, Vol. GE-14, No. 2, April, 1976.
- Westinghouse Electric Corporation, "Final Report Spaceborne SAR Pilot Study," System Development Division, Baltimore, MD, April 11, 1974.

APPENDIX H

RSL TECHNICAL REPORT 295-3

VOLUME IV

.

.

THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER **Raymond Nichols Hall**

2291 Irving Hill Drive-Campus West Lawrence, Kansas 66045

Telephone:

A REVIEW OF SWATH-WIDENING TECHNIQUES

RSL Technical Memorandum 295-2 **Remote Sensing Laboratory**

Stan McMillan

January, 1976

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

REMOTE SENSING LABORATORY

ABSTRACT

Since snow, surface water and such are extremely changeable quantities, a revisit time of about 6 days is required for the water resources satellite. This short revisit time makes large swath widths necessary, but the swath width, about 400 km, is not attainable using a single antenna because length constraints imposed on a satellite mounted antenna make sufficient ambiguity suppression impossible. Multiple antenna systems are necessary, and the requirement of having non-interfering antenna returns must be considered. Using a technique of implementing a specific sequence of 180° phase shifts of the radar output pulses can effect suppression of ambiguous returns from the terrain adjacent to the imaged terrain, and antenna suppression can now occur in these adjacent regions which allows use of the maximum unambiguous swath, and increases the swath width by about 40%.

A REVIEW OF SWATH-WIDENING TECHNIQUES

Stan McMillan

1.0 Introduction

When considering the necessary parameters of a synthetic aperture radar (SAR) for the water resources mission, we must pay particular attention to the changeableness of the phenomenon we wish to measure, or monitor. Snow, soil moisture, surface water and such are greatly fluctuating quantities, and as such, the imaging of the terrain should be done relatively often.

The requirements of the mission are such that a revisit period of less than or equal to 6 days should be utilized with full coverage of the continental United States and Alaska. This requirement leads to the necessity of using very large swath widths, and this report is concerned with the various techniques of accomplishing large unambiguous swath widths, particularly by using either multiple antennas, an ambiguity suppression technique, or both.

2.0 SAR Theory

It is well known from SAR theory that tradeoffs are required with respect to pulse repetition frequency (PRF), and antenna pattern to minimize range and azimuth ambiguity.

Consider first the difficulty of eliminating ambiguity in the azimuth direction. Figure 1 shows a typical SAR geometry with the half power illumination cell shown. If we assume quadrature detection and processing, then the nyquist sampling theorem shows that sampling must be done at greater than or equal to the doppler bandwidth. Hence,

$$\mathsf{PRF} \geq \frac{2\mathsf{v}}{\mathsf{L}}$$

v = satellite velocity (approximately 7 km/sec)

L = length of the physical antenna in the azimuth direction. where equality would imply a sharp cutoff of the antenna beam at the 3 dB points for no ambiguity. This does not happen, and sampling at a rate of 2V/L would cause image degradation because the ambiguous return is only reduced 10 dB. In report GERA-1985 by Goodyear Aerospace Corporation it is maintained that a better selection would be

6 N - 1

$$PRF = \frac{2.5 v}{L}$$

£ ™

 $\mathbb{K}^{n} \to \mathbb{R}^{n}$

1

4---

house hands have been and been been been been

a'

because the azimuth ambiguity level is reduced about 20 dB after processing. By simply choosing a larger PRF the azimuth ambiguity level is reduced still farther, but unfortunately the sampled nature of azimuth data introduces ambiguity in the range direction.

Clearly, range information is contained in the fact that from a given pulse, different range elements produce returns at different times, but the pulsed nature of the radar signal makes it possible for two different cells sufficiently different radially from the antenna to yield returns at the same time. Hence, the return is ambiguous. The maximum unambiguous slant range that can be imaged is

$$\Delta R_{\rm SMAX} = \frac{C}{2 \ \rm PRF}$$

but again the antenna pattern will not accomodate such a choice because the ambiguity is not sufficiently reduced. The Goodyear report again is referenced, and

$$\Delta R_{\rm S} = \frac{.6 \, \rm c}{2 \, \rm PRF} = \frac{.6 \, \rm cL}{5 \, \rm v} \, .$$

An important point is how this slant range converts to unambiguous ground range, but " this will be investigated in the next section.

<u>c</u> and <u>v</u> are or can be assumed constants, so that the only variable in the expression for unambiguous slant range is <u>L</u> the length of the antenna. This could be extremely important since by increasing <u>L</u> the swath width can be increased, but in space applications <u>L</u> is also constrained, so other techniques for increasing swath width are required.

3.0 Calculation of Ground Swath Width

Figure 2 is a somewhat distorted but diagramatical illustration of the geometry for calculating the unambiguous ground range, ΔR_g . It is easily noted that $\Delta R_g = (\alpha_2 - \alpha_1)r$ where α_2 and α_1 are given in radians. Knowledge of the actual radar should allow us to have some idea of θ_1 and h, r is given, and ΔR_s can be calculated. The only unknowns of consequence are R, α_1 , and α_2 . From the law of sines and cosines the following expressions can be derived:

$$R = (r + h) \cos \theta_{1} \sqrt{r^{2} - (r + h)^{2} (1 - \cos^{2} \theta_{1})}$$

$$\alpha_{1} = \sin^{-1} \left[\frac{R \sin \theta_{1}}{r} \right]$$

$$\alpha_{2} = \cos^{-1} \left[\frac{2r^{2} + 2 rh + h^{2} - (R + R_{5})^{2}}{2r (r + h)} \right]$$

Figure 2. Earth Illumination From a Satellite.

.

The calculation of the ground swath is then completed by substituting into the formula noted earlier, $\Delta R_g = (\alpha_2 - \alpha_1)r$ where α_2 , and α_1 are in radians.

Abother important quantity is the 3dB antenna beam width, β , where $\beta = (\theta_2 - \theta_1)$ and is approximately $\frac{\lambda}{H}$ where λ is the radar wavelength, and H is the vertical aperture height. θ_1 is given, and θ_2 can be easily calculated by the law of sines, and

$$\theta_2 = SIN^{-1} \left[\frac{r \sin \alpha_2}{R + \Delta R_s} \right].$$

Consequently, H can be calculated.

Sometimes the entire unambiguous swath is not required for imaging, and the ground swath is given. By suitable algebraic manipulations the preceding formulae can still be applied.

4.0 Swath Calculations for the Water Resources Mission

Table 1.4 and Table 1B give parameters of interest to the water resource mission. The altitudes specified are various altitudes that correspond to candidate 6 day coverage orbits (R = 83, 85, and 89) as advanced in a memo dated January 30, 1975 by Joseph C. King. The other important parameter is θ antenna length in the azimuth direction as this directly affects the unambiguous slant range, and hence the unambiguous ground swath.

An examination of Table 1B gives some interesting information. With a guard bond to reduce range ambiguity 20 dB or more we cannot attain a 400+ swath width would require an antenna on the order of 30 meters long in the azimuth dimension. Another interesting point is that for a height of 825 km, and a swath width of 254.3 km, we are covering angles from the nadir of 7° to 23.2°.

The point of these calculations and this memo is that 6 day coverage and reasonable antenna length necessitate the use of some sort of swath widening technique. The remainder of this report will delve into these techniques.

r = 5500 km	c = 3X10 ⁰ km/sec	v = 7.5 km/sec		
h (km)	825	725	540	
R (km)	832	731	544.5	
$\alpha_1^{}$ (radians)	.0184	.0162	.0121	
θ ₁ (degrees)	7	7	7	

Table 1A: Relevant Parameters for Swath Width Determination at Different altitudes.

Antenna ₁	Rc	<u>h</u>	<u>= 825 km</u>	<u>h =</u>	725	<u> </u>	540
Length (azimuth)	3 (km)	α2 (rad.)	Swath Width (km)	æ2 (rad.)	Swath Width (km)	a2 (rad.)	Swath Width (km)
4 meters	19.2	.03553	94.2	.0339	92.9	.0281	ö8 km
8 meters	38.4	.04704	157.5	.04433	153.6	.03808	142.9 km
12 meters	57.6	.0564	209.2	.0531	203	.0462	187.6
16 meters	76.8	.0646	254.3	.0610	246.2	.0533	226.6

.

Table 1B: Swath Width Versus Antenna Length and Satellite Altitude.

÷

.

ŝ,

~
5.0 Swath Width Widening

The problem of extending unambiguous swath width is not one with any easy solution, but any solution must be based on either having more than one radar imaging different terrain so that their respective swath widths are additive, or some technique must be implemented to distinguish between the returns from different pulses. Each technique has advantages and disadvantages which must be considered.

6.0 Multiple Antenna Systems

One possible way to extend the swath width is to use multiple antennas imaging different terrain. It is necessary though to have some way to discriminate between returns that are received by both antennas. Therefore, either the antenna patterns can not overlap or the operating frequencies must be slightly different so that the two terrains can be segregated.

First, consider a satellite radar where two antennas are used to image terrain on either side of the satellite track, between angles of 7° and 22° from the nadir. If the satellite altitude were 825 km and antenna lengths 16 meters, the swath width would be over 500 km. What more, since the antenna patterns are non-overlapping considerable savings in hardware can be accomplished because both antennas can operate at the same frequency. This would allow for only one system to generate pulses of high power microwave energy, where the energy would be divided and fed to the two antennas. The first stages of processing would, of course, need to be duplicated but if digital processing were used this technique would lend itself well to time multiplexing and perhaps a reduction in the required processor hardware.

Another interesting sidelight to this first proposed design is that the optimal range of angles for soil moisture and snow cover detection at X-band appear to be 7° to 22° and the radar would be imaging only within these angles. This may or may not be a considerable advantage, but only further research could answer that question.

Aside from the difficulties of satellite alignment and radar alignment that could be expected in any sidelooking radar system, one major problem opposes the use of imaging on both sides of the satellite track. This problem is satellite orbital considerations related to imaging the terrain.

For purposes of illustration consider Figure 3, which at first sight is pretty but meaningless. Certain facts are also required. The distance on the ground between the antenna patterns at -7° and 7° for a satellite at 825 km is about 220 km, and the unambiguous

swath width for each 16 meter antenna on the same satellite is 254 km. If we consider each strip in Figure 3 as 220 km wide, then a satellite track down the middle of strip B would image strips A and C. Figure 3 now becomes an instrument to illustrate the problems of picking the proper orbits to produce full coverage of the United States.

D в С Ε F G н

Figure 3. Earth Swathing Patterns.

Perhaps the most preferred orbital selection for earth sensing satellites is a minimum drift sun-synchronous orbit. This choice attempts to form continuous imaging across the terrain and would be realized by imaging A and C the first day and then B and D the next. Then problems arise since C would again be imaged on the third day effectively halving the swath width and eliminating any gain derived from the swath widening attempt. To image the terrain without repetition requires imaging A and C the first day, E and G the second, B and D the fourth, and F and H the fifth. Such an orbit would be possible, but it suffers from the necessity that 3 days separate the imaging of A and B and considerable changes in that general area could transpire in that time.

Another possible configuration for the SAR (Side-looking aerial radar) is to employ two antennas looking on the same side, or one antenna with dual feeds focussed at different terrains at different frequencies. The swath would add and be effectively continuous. This configuration would allow for the usage of a minimum drift orbit selection, which would provide for imaging adjacent strips on adjacent days. Unfortunately considerably more hardware would be needed to produce and amplify pulses at different frequencies. Another consideration is whether the needed information can be gained from the second radar that is focussed from approximately 22^o to 35^o. Sufficient information does not seem to be available to make an adequate evaluation of this point.

7.0 Ambiguity Suppression Techniques

As seen previously, the unambiguous swath width is directly related to the pulse repetition frequency since ambiguity implies that two different pulses travelling different paths are lending returns to the processor at the same time. Using the antenna beam alone to suppress the ambiguous return has been examined, but this necessitates using only about 60% of the unambiguous swath for imaging and retaining the remaining 40% to effect a guard band for ambiguity suppression. If it were possible to discriminate between the primary return and the first ambiguous return - that is, the return from the terrain adjacent to the unambiguous swath - by coding some sort of information on the radar pulses, then considerably more of the unambiguous swath could be imaged by allowing the antenna suppression bands to be located in the previously ambiguous swath.

Perhaps the simplest technique for effecting this return discrimination is by coding the proper pattern of phase shifts on the sequence of pulses leaving the radar. One workable pattern is as follows:

$$P_{i}(s, \mathcal{O}_{i}) = rect\left(\frac{s}{5}\right) G \cos\left(\omega_{c}s + \mathcal{O}_{i}\right)$$

where

 $P_{i}(s, \emptyset_{i}) = \text{the i th pulse in the sequence of pulses.}$ rect $(\frac{s}{5}) = \begin{cases} 1 \text{ if } -\frac{s}{2} \leq s \leq \frac{s}{2} \\ 0 \text{ if } \left| \frac{s}{2} \right| < |s| \end{cases}$

S = the period of each pulse, a constant. ω_c = the angular radian frequency of the carrier. G = amplitude of the pulse, assumed constant. s = the variable, time

As is easily seen, the only real difference between pulses is the phase function \emptyset_i , and this is cyclical, every 4 pulses. It is important to show that this pattern will truly suppress the ambiguous return.

To illustrate the suppression of the ambiguous signal, the greatly simplified case of the two point targets shown in Figure 1 is used. Also, it is assumed that there is no arbitrary phase shift associated with reflection from the targets, that a single aperture of <u>m</u> pulses, where m is a multiple of 8, is processed by the simple processor of Figure 4, and that the synthetic aperture is processed for a uniformly illuminated aperture. Finally, it is assumed that the doppler phase change, θ_i , of a pulse P_i is the same for both targets across the aperture.

The returned voltage, V_{R} , to the antenna from the two point targets T and A of Figure 1 will be due to pulses P_{i} and P_{i-1} respectively, and be of the form

$$V_{R} = T \cos \left(\omega_{c} t + \theta_{i} + \phi_{i} \right) + A \cos \left(\omega_{c} t + \theta_{i-1} + \phi_{i-1} \right)$$

where

 \vec{w}_{c} and $\vec{\psi}_{i}$ are as defined previously, and θ_{i} = the doppler phase function associated with a pulse P_i T, A = the return amplitude associated with the two point targets.

Figure 4.

If the returned voltage becomes the input to the processor of Figure 4, then after performing the multiplications, the low pass filterings, and the additions over the synthetic aperture, the voltage output, V_{out} , is

$$\bigvee_{\text{out}} = \sum_{i=1}^{m} T + \sum_{i=1}^{m} A \left[\cos \left(\theta_{i-1} - \theta_{i} + \phi_{i-1} - \phi_{i} \right) \right].$$

9 A

An examination of the function, φ_i , shows that there are four different cases for $(\varphi_{i-1} - \varphi_i)$. These are $(0^\circ - 0^\circ)$, $(0^\circ - 180^\circ)$, $(180^\circ - 180^\circ)$, and $(180^\circ - 0^\circ)$. The facts that $\cos(\alpha \pm 180^\circ) = -\cos \alpha$ and that $\sin(\alpha \pm 180^\circ) = -\sin \alpha$ allow us to write

$$V_{out} = \sum_{i=1}^{m} T + \sum_{i=1}^{m/2} A \left[\cos \left(\theta_{2i-2} - \theta_{2i-1} \right) - \cos \left(\theta_{2i-1} - \theta_{2i} \right) + \sin \left(\theta_{2i-2} - \theta_{2i-1} \right) - \sin \left(\theta_{2i-1} - \theta_{2i} \right) \right],$$

It is significant that the phase function is very nearly a linear function across the aperture because then $\theta_i - \theta_{i-1} = \Delta \vartheta = a$ constant. Upon substituting $\Delta \theta$ into the above equation, it is found that

$$\bigvee_{out} = \sum_{i=1}^{m} T + \sum_{i=1}^{m/2} A (\cos \Delta \vartheta - \cos \Delta \theta + \sin \Delta \theta - \sin \Delta \theta) = \sum_{i=1}^{m} T$$

The ambiguous response due to the reflection from point, A, has been suppressed, and only the deviation of the phase function from linearity introduces error in V_{out} due to the point, A.

Using this technique, it is not possible to image more than the calculated maximum unambiguous swath both because returns from imaged terrain would overlap, and because the antenna cannot transmit and receive simultaneously.

The sequence of phase shifts used above is also the simplest sequence possible because a simple alternation of phase gives rise to only negative terms in the summation from the ambiguous terrain rather than alternating terms, and the summation does not tend to zero.

8.0 Conclusions

If sufficiently large antennas could be utilized on a spacecraft, the required 400 km + swath width could be accomplished, but this would require an antenna length of 100 meters or so, which is hardly practical. In fact, an antenna length of about 19 meters is approximately what could be expected.

With an antenna length of 10 meters and using antenna suppression of ambiguous returns alone, 400 km swath widths could not be accomplished even using two antennae, but if a phase shifting ambiguity suppression technique is also implemented, the 10 meter antenna would provide approximately the unambiguous swath widht of a 14 meter antenna, and from extrapolation, two antennas would image the desired terrain with a 6 day revisit time. In fact, two 10 meter antennae looking on the same side of the satellite track at different fre-

• • - c

quencies could be expected to image a swath of approximately 430 km depending on the orbit selected.

It is important to remember that a multiple antenna system must be designed so that the return from one does not add an ambiguous return to the other.

An examination of the problem indicates that the radar would probably consist of two antennae at slightly different frequencies imaging terrain at different depression angles. Also, phase shifting ambiguity suppression would probably be used.

REFERENCES

- 1. Thompson, C. H., "Orbital Earth Resources Radar Program Definition Study," Goodyear report GERA 1985, NASA Contract NAS 5-21956, January, 1974.
- 2. Westinghouse Electric Corp., "Final Report Space-borne Synthetic Aperture Radar Pilot Study," NASA Contract NAS 5–21951, April 11, 1974.
- 3. Gerchberg, Ralph, "Synthetic Aperture Radar and Digital Processing," CRES Technical Report 177–10, University of Kansas Center for Research, Inc., September 1970.
- 4. King, Joseph C., "Water Resources EOS Some Orbit Selection Considerations," January 30, 1975.

APPENDIX I

•

RSL TECHNICAL REPORT 295-3

VOLUME IV

-

.

Ĭ,

• • • •

THE UNIVERSITY OF KANSAS SPACE TECHNOLOGY CENTER Raymond Nichols Hall

2291 Irving Hill Drive—Campus West Lawrence, Kansas 66045

Telephone:

SYNTHETIC APERTURE RADAR AND DIGITAL PROCESSING

RSL Technical Memorandum 295-3 Remote Sensing Laboratory

Stan McMillan

September, 1975

Supported by:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Goddard Space Flight Center Greenbelt, Maryland 20771

CONTRACT NAS 5-22384

INTERNAL WORKING PAPER NOT FOR GENERAL DISTRIBUTION

....

REMOTE SENSING LABORATORY

ABSTRACT

i

. . .

On-board processing for spacecraft synthetic-aperture radars is an important goal for any system intended either for a worldwide mission or for a more restricted mission where telemetry bandwidth is not unlimited. Feasibility of constructing an on-board processor for a water-resources mission with 400 km swath has been considered for 1975 components, using the processor scheme proposed by Gerchberg (1970). With 20 m resolution the memory and speed requirements are so high that power consumption of 650 watts is indicated, but with 50 m resolution only 104 watts is calculated, and 100 m resolution only takes 26 watts. No attempt has been made to examine the improvements possible with more efficient algorithms than Gerchberg proposed.

SYNTHETIC APERTURE RADAR AND DIGITAL PROCESSING

Stan McMillan

1.0 Introduction

Imaging radars for space applications like the water resources mission are typically side looking synthetic operture radars (SAR) because the synthetic aperture radar can achieve resolutions far finer than the actual antenna ground illumination pattern, but the resolution can only be accomplished at the expense of complicated processing of the return signal from the illumination area.

Figure 1 illustrates a typical SAR geometry. The satellite is travelling at a velocity \underline{v} in the direction indicated, and at an altitude, <u>h</u>. The antenna beam is always perpendicular to the flight path at the satellite location, and the beam coverage area is assumed limited to the half-power points on the pattern. At time, t = 0, a point target is located along the line, x = 0, and at a radius from the satellite of r_j , and the radar emits high powered, extremely short pulses of radiation at some pulse repetition frequency (PRF), and at times, t_{-m} , ..., $t_{o'}$, ..., t_{m} .

At time, t = -T/2, the point target enters the beam coverage area due to the motion of the satellite, and it remains in that area until time, t = T/2. That is, the point target contributed to the return to the radar during the period, T, that it was in the beam coverage area. At a time, t_j , a pulse of radiation is emitted; the velocity of light is finite, so the leading edge of the pulse arrives at r_i and starts back considerably before the pulse arrives at $r_j > r_j$. We have a response due to all the elements at a varying range that is spread out in time, and hence we can distinguish between or resolve in range by partitioning the return in time, but there is poor resolution in azimuth.

To accomplish resolution in azimuth we must recognize that there is relative motion in the X-direction between the satellite and ground points, and that the relative velocity of this motion changes from positive (motion toward a point) to negative (motion away from the point). The relative velocity gives rise to a Doppler frequency shift which is different for different ground cells depending on their <u>x</u> coordinate respective to the satellite's position. Some sort of filter could then be used to eliminate returns from all but the desired azimuth cell, and resolution in the azimuth dimension could be accomplished.

I

1.

. .

Figure 1 SAR Geometry

2

The problem of processing is somehow to take the time differences and frequency differences of different cells and obtain a set of numbers proportional to the amplitude of the reflected signal from each cell; or, in a different sense, to somehow effect the time and frequency partitioning.

Gerchberg (1970) approaches the problem of a real-time processor. Real-time implies that terrain can be mapped and images formed at the same rate. Gerchberg concluded that as of 1970 the technology did not exist to construct real-time processors because sufficient memory was not available to process the large amounts of data obtained from a SAR, and that power consumption would be far too great, but he projected that the technology would exist in 1975.

It is now 1975, and this report deals with whether Gerchberg's predictions on the advancement of technology were accurate, and whether his processor is now realizable, and applicable to the water resources mission.

This report deals with:

- 1. Gerchberg's ideas of a general SAR processor
- 2. Gerchberg's proposed processor including dimension estimates
- 3. Sample application of the processor to the water resources mission
- 4. State of the art assessment as of 1975.

After examining these topics the conclusion is reached that Gerchberg's idea of a truly parallel sub-aperture, non-quadrature processor is realizable using today's components, but that the requirements of the water resources mission are so stringent that power consumption and processor size remain problems for on-board processing. Nevertheless, the power required for a 50-meter-resolution processor is only a little over 100 watts, so such a processor can be used in a spacecraft having only modest available power.

2.0 The Generalized Processor

If noise were not a problem in SAR processing, a single filter looking only at each azimuth cell would suffice to image the terrain, but this is not the case. The information is severely effected by multipath fading, and as such, long integration time, look time, or equivalently many looks are required to remove the signal from the noise.

Figure 2, taken from Gerchberg, is a typical algorithm implemented for digital SAR processing. To illustrate the operation of this processor, suppose, first, that the range cells have already been separated by range gating and, second, that a point target is being imaged such as the point target at range, r_i, in figure 1.

÷

- $S(t) = A \cos (w_c t + kt^2 + \phi)$
- S(t) = return from the point target during the aperture period T
- A = amplitude of the response

The return during the illumination period from t = -T/2 to t = T/2 has an angular carrier frequency, the angular frequency from the radar, of w_c and a changing doppler shift, kt, which implies a linear frequency modulation of the carrier frequency. If we restrict the antenna to narrow horizontal beam widths, this is a very good_ approximation to the actual phase history.

The mixers and low pass filters indicated eliminate the carrier frequency, and the following outputs are found after the correlators:

$$A_{1} = A (\overline{cc} \cos \phi - \overline{sc} \sin \phi)$$

$$A_{2} = A (\overline{cs} \cos \phi - \overline{ss} \sin \phi)$$

$$B_{2} = A (\overline{ss} \cos \phi + \overline{cs} \sin \phi)$$

$$B_{1} = A (\overline{sc} \cos \phi + \overline{cc} \sin \phi)$$

where

$$\overline{ss} = \int \sin (kt^2) \sin k (t - \tau)^2 dt$$
$$\overline{cc} = \int \cos (kt^2) \cos k (t - \tau)^2 dt$$
$$\overline{cs} = \overline{sc} = \int \cos (kt^2) \sin k (t - \tau)^2 dt$$

and the integrals are from $-T/2 + \tau$ to T/2. Since the returns are not actually continuous but discrete, the integrals should be replaced by summations, and t by $t_j = \{-m, \dots, m\}$ where m indicates the last return of the aperture and -m the first, but for purposes of illustration the integrals will suffice.

A couple of interesting points are illustrated by the correlation integrals. The variable τ indicates the amount of mismatch between the reference function and the return signal. If the point target is being imaged, then $\tau = 0$, and \overline{ss} and \overline{cc} are maximized while $\overline{cs} = 0$. This corresponds to focusing the aperture on the point target.

Algorithm Employed With Quadrature Detection

Provide the second secon

But, if τ is other than zero, then \overline{ss} and \overline{cc} are reduced and go to zero when $\cos kt^2 = \sin k(t - \tau)^2$.

The correlators act in effect like tracking filters.

Finally, the output,

 $V_{out} = A (\overline{cc} + \overline{ss})$

is of great significance because the phase angle, φ , has been eliminated, and the output is dependent only to the variable τ . Typically this dependence is in a $\frac{\sin x}{x}$ relation. This analysis shows simply that this detection scheme tends to maximize the return from the area of interest, and minimize the effect of targets distant from that area, and noise, since noise will also introduce a mismatch in the correlator. That is the desired effect.

3.0 Gerchberg's processor

The generalized algorithm could be implemented, and an area imaged, but Gerchberg felt that the generalized processor would require too much memory, and too many operations. In a typical space application he envisioned that 2,000 range cells could be required, and also 2,000 returns in an aperture. This would require 4 megacells of memory at the very least, and this would be for azimuth resolutions considerably finer than might be required in a given situation. Gerchberg's next problem was to reduce the amount of memory required while preserving sufficient information for imaging.

First, he considered the effect of just eliminating correlators, A₂, B₂, and B₁ without any compensation. It would have a desirable effect; memory would be halved; and the number of operations needed to perform the correlations would be quartered; but a price must be paid. Gerchberg, and later F. Dickey and J. Holtzman (Technical Memorandum 177-29) investigated this problem, and with the hypothesis of a Rayleigh-distributed target, the loss is a 3dB reduction in the mean-to-standard-deviation ratio. This would imply an increase in clutter level of the image and the image would tend to look grainy.

Another consideration is the fact that fully-focused, full-aperture processing resolves the terrain into azimuth cells considerably finer than required in most applications. This finer resolution can be used, and after processor averaging can reduce graininess and reduce the standard deviation by forming larger cells from the small resolution cells, but Gerchberg thought that it would be possible to process for the

6

.....

1

BUFFER STORE - WORKING OR CORRELATION (FAST) STORES

REFERENCE FUNCTION - CORRELATION TAKES PLACE AS A CUMULATIVE SUMMATION IN THE CUMULATIVE SUMMER

FIGURE 3. FLOW DIAGRAM OF PROCESSOR FOR EACH RANGE BIN

TABLE V

Summary of Cycle Times and Storage Capacities for Sub-Aperture Processing

SYSTEM PARAMETERS:

Doppler Bandwidth of Return Pulse	В
Time for point target in physical antenna beam	Τ -
Radar system velocity	Vo
Finest Along-Track Resolution	v_/ в
Along-Track Resolution Degradation Factor	ทั
Image M/STD improvement factor due to processor	
averaging	√G
The largest number of non-overlapping	
sub-apetures possible in processing	N
Total number of subapertures employed in processing	G
Requantization degradation in M/STD	P (db negative number)
The square root of the range of	
differential scattering	
cross sections to be imaged	R
Logarithmic quantum in the	·
averaging stores	$\delta = 1 + 1.82 \sqrt{e^{23P}} - 1$
Requantization bits	$ \begin{array}{c} B = \log_2 \left[\begin{array}{c} \ln R_v \\ \ln \delta \end{array} \right] \\ raised to the next \\ highest integer \end{array} $
Averaging store counter in bits	C = log ₂ G raised to the next highest integer
Number of bits per word in working stores	L
Number of words in working stores per range bin	TB/N

Number of words in working stores per range bin Number of words in averaging stores per range bin The total number of bits in working stores per range

bin

TBL/N

TBG/N²

4 * .

TABLE V (CONT.)

-
(B+C)TBG/N ²
$2L + \log_2(TB/N)$
· _
N
NL
ING

•

.

_--

Working store word maximum cycle time	
(same as multiplication time)	$N^2/(B^2TG)$
Averaging store word maximum cycle time	N/BG

.

.

9

- -

desired cell size, and still enhance the image. For this purpose he developed a system of sub-aperture processing. The idea was simply to divide the aperture into a group of non-overlapping sub-apertures which could be squinted at each of the resolution cells that contribute to the return in that sub-aperture, and then the outputs of the sub-apertures non-coherently added to form the image of the cell. This would supply resolution to the proper size, and also, due to the non-coherent adding, supply image enhancement.

We now have an idea as to what Gerchberg's processor is like. It is a nonquadrature sub-aperture processor. Figure 3 and Table V taken from Gerchberg show the processor flow diagram and the parameters required for processing.

Referring to Figure 3, after the signal has been range gated, it must be changed to a digital output and stored in buffer storage. The number of bits required in the digital output is highly dependent on the dynamic range of the return. Gerchberg maintains that 5 bits is right for most applications, while John C. Kirk (1975) gives a technique for exactly determining the bit requirements.

When a complete sub-aperture has been entered into buffer memory, it is transferred to active memory and the correlation begins. The elements of the subaperture are multiplied by a set of reference functions corresponding to squinting at each of the resolution cells that the sub-aperture will resolve, and the element, referencefunction products are summed for each squint angle. This number is then added to a number stored in a slow memory corresponding to the proper resolution cell. The cell is imaged when the proper number of sub-apertures have been added together and the resulting number is output to create the full image.

The logarithmic change is an effort to reduce the storage requirements again by reducing the number of bits required to represent a word. Directly performing the multiplications and sums indicated for this processor algorithm results in word lengths considerably longer than required to maintain the prescribed dynamic range. This was of significance to Gerchberg because a large saving in storage could be realized if fewer bits could be used to represent these words in the slow store. The logarithmic, and antilogorithmic changes illustrated in figure 3 are efforts to accomplish this saving.

A careful examination of Table V gives an idea of the parameters and requirements of the processor. Considerable use of this table will be made in the next section.

4.0 Application of Gerchberg's processor to the water resources problem

It is not immediately evident from Table V, whether a non-quadrature, subaperture real time, SAR processor could be constructed using today's technology. An illustrative example using typical numbers drawn from the requirements of the water resources problem can give more readily understandable information.

Typical satellite and radar parameters are as follows:

```
altitude – 900 km

velocity – 7 km/sec

antenna configuration – two antennas imaging terrain on both sides of the satellite

ground track

antenna length – 8 meters

carrier frequency – 10 GHz

pulse repetition frequency – the Doppler bandwidth – 1750 Hz

swath width/each antenna – 200 km*

azimuth beamwidth – 3.38 km

aperture time, T – .483 sec

resolution cell size – 20m, 50m, 100m
```

Since this is an example, completely accurate calculations will not be needed. It is assumed that all resolution cells are square and that the number of range resolution cells is just the swath width devided by the resolution cell size. Other important quantities are shown in Table II.

Resolution cell	20 m	50 m	100 m
No , of azimuth cells across the antenna pattern	169	67	33
No. of range cells/side	10,000	4,000	2,000
No. of sub- apertures, N	5	12.5	25
Pulses per Sub- Aperture, TB N	169	67	33
Sub-Aperture Com- pletion Time	.0966 sec	0.386 sec	.0193 sec

TABL	E	I	I
------	---	---	---

^{*} No attempt is made here to address the radar system problem of achieving this swath width. Ambiguity suppression techniques are the subject of another Technical Memorandum in this series.

(1,1,2,1)

 $\{ f_{i}, f_{i}$

t an a

t .

1.04.55

.

Figure 4

Figure 4 shows the author's conception of Gerchberg's processor as it might be implemented for a single range cell. All range cells are processed in parallel, and each antenna's return is processed separately - effectively here are two separate processors.

Each pulse from the radar gains information on the terrain within the antenna pattern, but each processor like that of Figure 4 can only use a portion of the continuous analog return and the processor must have the information in the form of a digital word. The return from the terrain is partitioned into a group of each signals corresponding to a range element, then converted from analog signals to digital words, and finally each word is assigned to the buffer storage of the processor corresponding to the proper range cell.

When the radar has completed a sub-aperture the buffer storage contains a word for each of the pulses that made up the sub-aperture, and these words are transferred to active storage for processing while another sub-aperture is being completed. From Table V, the number of words in working storage and hence the number of words needed in buffer storage, or the number of pulses per sub-aperture is given as $\frac{TB}{N}$ where <u>T</u> is the period of the complete aperture construction, (the time each ground cell receives illumination by the beam), <u>B</u> is the Doppler bandwidth of the signal, and <u>N</u> is the number of sub-apertures.

Sub-aperture processing requires that the sub-aperture be squinted at each of the azimuth cells within the physical antenna pattern of the sub-aperture, which requires that each word in the active storage be multiplied by a different reference function for each squint, and then that each of the word-reference-function products be summed to obtain a single number for each squint angle. There are $\frac{TB}{N}$ azimuth cells and $\frac{TB}{N}$ squint angles.

Successive sub-apertures are squinted at the same azimuth cell, and the processing of a sub-aperture is completed when the processor word corresponding to squinting at a particular azimuth cell is non-coherently added to a word corresponding to the summation of previous sub-apertures squinted at the same azimuth cell.

The total time, t_T , required to process a sub-aperture is as follows:

$$t_{T} = \frac{TB}{N} \left[\frac{TB}{N} (t_{A} + t_{M} + t_{S1}) + (t_{Q} + t_{X} + t_{S2}) \right] + t_{B}$$

t_A ⁻ time to acquire the word from active memory and also the reference function (assumed simultaneously)

 t_{M} - time for a multiplication

t_{S1} - time for each of the first additions

t_O – acquisition time and storage time

 t_X = time to take the antilog, and the log t_{S2} = time for each of the second additions t_B = time to move data from buffer to active memory.

In the next section we will investigate the state of the art as applies to these times. It is important to remember that all range cells are processed in parallel so this is the time to process a sub-aperture.

The memory requirements must take into account all the range elements, and also the fact that imaging is performed on both sides of the satellite. The buffer storage, and the active memory have been shown to require $\frac{TB}{N}$ words at L bits per word, and the averaging store needs $\frac{TB}{N}$ words at M bits per word. The total storage S_T is then

$$S_{T} = 2\left[\frac{2TB}{N}$$
 (L) + $\frac{TB}{N}$ (M) $\right]$. (Number of range elements).

Gerchberg shows from his studies that for a 40 dB dynamic range in return L=5 is good enough, and that M should then be 9. Table III gives the memory requirements using the different cell sizes.

TABLE III

Res. cell size	20 m	50 m	100 m
Memory size	64 M bits	10.2 M bits	2.5 M bits
Buffer storage	16.9 M bits	2.68 M bits	660 K bits
Active memory	16.9 M bits	2.68 M bits	660 K bits
Averaging Storage	30.2 M bits	4.84 M bits	1.18 M bits

5.0 Device Performance

Gerchberg estimated the requirements for a 4.8 M bit processor in 1970, and decided that the equipment was not yet available to construct a processor but soon would be that would dissipate 10 μ watts/bit and perform real time processing. He looked to the semiconductor memory as the most likely candidate and based his estimate on a 4 K RAM that Texas Instrument was developing at the time. 4 K RAM's are now available, and larger RAM's are in the planning stages, but other innovations such as CCD memories are now available which were not even considered in 1970. One RAM that is available for building memories is a 1 K chip put out by INTERSIL, the IM6508A-1. It is a static RAM using CMOS technology. It has a worst case access time of 100 n sec and typical power dissipation of 9.8 μ watts/bit in the active mode.

On the bulk memory front, INTEL markets a 16 K CCD chip, the INTEL 2416 that has a maximum random access time of 64 microseconds, and power dissipations of 12.2 μ watts/bit, but data can be read in or out serially at a considerably higher rate, approximately 2 M bits/sec.

If we consider multiplication and addition units, then we have a choice of speed, or low power dissipation. From an examination of the requirements low power CMOS components seem to be applicable. As a typical example, the Motorola MC14008AL 4 bit full adder has quiescent power dissipation of 1 microwatt per package, and operation time of 170 n sec, and the Motorola MC14554AL 2 x 2 bit binary multiplier dissipates 100 n watts per package, typically, and performs an operation in 80 n sec.

From an examination of the literature, log and antilog chips do not seem to be available. In fact, they seem little called for, but also there is no doubt that they could be constructed or that memory look-ups could be accomplished if necessary. A conservative estimate of the function time and power dissipation of these chips assuming CMOS construction would be 10 microseconds to perform an operation, and 10 microwatts of power dissipated per package, but simple calculations would show that these times and powers do not greatly affect processor time or power dissipation.

Using these device parameters the total submaperture processing time can be calculated, and the processor power consumption estimated.

 $t_A = 100 \text{ n sec}$ $t_M = 200 \text{ n sec}$ The 2 x 2 bit multipliers must be combined to form a 5 x 5. $t_{S1} = 300 \text{ n sec}$. The adders must be combined to add 10 bits, but times of execution don't increase proportionately. $t_Q = 200 \text{ n sec}$ $t_X = 20 \mu \text{ sec}$ $t_{S2} = 300 \text{ n sec}$

 $t_B = 70 \mu$ sec t_B is the time needed to randomly access one location and serially address the rest. The CCD memory was assumed.

Table IV shows the results of both time calculations and power calculations

٩,

TABLE IV

Resolution cell size	20	50	100
Processing time per aperture	29.6 m sec	4.08 m sec	1.4 m sec
Power required	650 watts	104 watts	26 watts

The power calculations were performed assuming that in combining multipliers and adders to perform the computations necessary, about 10 microwatts per adder or multiplier would be dissipated. Also, the complete processor processing the entire 400 km swath width is considered.

6.0 Improvements in, and conclusions about, Gerchberg's processor

As is easily noticed, Gerchberg's processor is basically a brute strength processor using parallel processing to extremes. The times listed are extremely conservative estimates of processing time, but even from these estimates it is shown that time multiplexing to eliminate hardware could be easily accomplished. The savings of time multiplexing would be that, for a slight increase in control complexity, we would decrease the number of required parallel channels with a proportionate decrease in active memory.

An additional point to be considered is whether it is necessary to preserve all the bits available from the multiplication and addition processes. If little or no information is gained from saving these then additional savings might be possible by reducing the necessary averaging memory.

The important point of this report is that Gerchberg's conception of a real time processor appears realizable using today's technology. Main-frame semiconductor memories incorporating 1 k bit chips to form 1 megabit modules have been introduced, and advances are pushing access times and power consumption down.

The problem, as always, with SAR processing is the vast amount of data that must be used to image a terrain. The water resources mission puts some rather stringent requirements on any processor, and the purpose of much of Gerchberg's work was addressed to reducing the memory requirements. To this effect he proposed a nonquadrature sub-aperture processor, plus the idea that imaging does not require all of the sub-apertures for each resolution cell. The author of this report did not address himself to the last possibility. Still, even with an almost minimal memory requirement, the memory to effect 20 meter resolution was tremendous, 64 megabits. Calculations show that such a processor would be possible but whether it is feasible is a matter for greater consideration. It does not appear feasible for an on board processor both because of size considerations, and because of power dissipation and the difficulty of handling the heat produced. On the other hand, on-board processing for 50 meter resolution seems possible, and it seems completely feasible for a 100 meter resolution cell size.

۰× .

REFERENCES

- Gerchberg, Ralph, "Synthetic Aperture Radar and Digital Processing," Technical Report 177–10 of the Center for Research Inc., Engineering Scinece Division, University of Kansas, September 1970.
- Dickey, F. and J. Holtzman, "A Comparison of Quadrature and Non-Quadrature Imaging Radar Performance," Technical Memorandum 177-29, Center for Research Inc., University of Kansas, June 1972.
- 3. Kirk, John C., "A Discussion of Digital Processing in Synthetic Aperture Radar," <u>IEEE Transactions on Aerospace and Electronic Systems</u>, vol. AES-11, no. 3, May 1975.