743 research outputs found

    Clones of common carp, Cyprinus carpio = New perspectives in fish research

    Get PDF
    The absence of well defined inbred lines is an important problem associated with scientific research on fish. Inbred lines can be produced by conventional full-sib mating, but at least 10-15 generations are needed to produce homozygous inbred lines. Using common carp, which reach maturity at 1.5 years, this would last some 15-30 years. Nowadays experimental fishes are usually obtained from commercial fish farms, or bred in the laboratory using a limited number of broodstock fish. In both cases the genetic background and the degree of inbreeding of the experimental animal is unknown.In consequence the results from various laboratories are difficult to compare. Bioassays often show a large variation in the experimental results and a relative low reproducability. Moreover, large numbers of fish are needed to obtain statistically significant results. In order to solve these problems this research project was started with the aim to develop homozygous inbred lines of fish by gynogenetic breeding. Furthermore, in our university there was a high need for inbred lines with specific (mutant) genotypes, which could be used in the ongoing research on the immune system and sex determination of common carp.In gynogenesis, eggs are fertilized with genetically inactivated sperm. The resulting haploid embryo can be made diploid by inhibition of the second meiotic division (retention of the second polar body or 2PB method), or by inhibition of the first mitotic division (endomitosis or EM method). In the first case the gynogenetic offspring will be partly heterozygous due to recombination during the preceeding meiotic prophase. In the second case the haploid genome of the embryo is duplicated while the first cell division is prevented. The resulting diploid offspring will be fully homozygous.In a first series of experiments (chapter 3) the optimal conditions for irradiation and dilution of milt, and for administration of a temperature shock to inhibit the second meiotic division, were investigated. Milt was irradiated with U.V. light (235.7 nm). Dilution (in physiological saline) and irradiation duration were important parameters for the survival of spermatozoa. Sperm, diluted 1:3, could be irradiated for 60 minutes (2200 J/m2,min) without loss of fertilization capacity. This fertilization capacity was considerably reduced when higher dilutions were used, while a shorter irradiation period failed to inactivate all spermatozoa.The effectiveness of genetic inactivation was checked by using sperm from scaled males (a dominant trait) and eggs from scattered females (recessive trait). Gynogenetic offspring turned out to be all scattered. Inhibition of the second meiotic division was achieved by administering eggs, fertilized with genetically inactivated sperm, a temperature shock at various moments after fertilization. Consistent yields of 25-50 % viable fry were obtained when eggs were cold shocked (0°C) for 45 minutes, 1-2 or 7-9 minutes after fertilization (at 24 °C). This bimodal response was typical for common carp, but essentially different from other investigations on common carp gynogenesis, where lower incubation temperatures and degumming of egg was practised.In a second series of experiments (chapter 4) the optimal conditions for inhibition of the first mitotic division were investigated. The occurrence of metaphase of the first mitotic division was histologically determined. Consistent yields of 5 - 15 % viable fry were obtained when eggs were heat shocked at 40 °C). for 2 minutes, 28-30 minutes after fertilization (i.e. at metaphase). Accurate timing of the heat shock, as well as the heat shock temperature and duration, were critical in obtaining an optimal yield of diploid fry. The homozygous nature of the gynogenetic fry was demonstrated by the Mendelian segregation patterns of two recessive colour mutations (chapter 4).An important aspect of the described gynogenetic breeding techniques is the effect of the expected homozygosity in a first generation of gynogenetic offspring. In order to investigate this effect, we compared homozygous carps (EM method) with heterozyous gynogenetic carps (2PB method) and a group obtained by full-sib mating (chapter 5). The three groups were all obtained from the same mother, and allowed a comparison of the effects of increasing levels of homozygosity. Skin grafts were exchanged between animals of the same group and between animals of different groups. Skin allografts exchanged among heterozygous gynogenetic carp exhibited prolonged survival. Furthermore a strong histocompatibility (H) locus was seen to segregate in this group. In contrast skin allografts exchanged among homozygous gynogenetic siblings or among normal full-sibs were all rejected in an acute manner, with homozygous fish showing the most vigorous allograft reactions. These findings were explained by assuming that acute allograft reactions were the result of a single strong H-locus disparity, or of a multiple minor H-loci barrier which mimics a strong H-locus effect (chapter 5).In a follow-up experiment (chapter 6) the effects of increasing levels of homozygosity on sex, gonad development and fertility of carps from these three groups were compared. Surprisingly nearly 50 % males and fishes with intersex gonads were found in the EM group while males were absent in the 2PB group. This excluded a possible contamination with non-irradiated (non-inactivated) sperm. Inbreeding significantly increased the mean gonad weight as well as the variation in gonad weights. Full sib (FS) and heterozygous gynogenetic offspring (2PB) were normal in gonad development, but gonads from homozygous gynogenetic (EM) carp were often retarded in vitellogenesis. The ovulation response was significantly reduced with increasing levels of inbreeding. Eggs from ovulated females of the FS, 2PB and EM groups were fertilized with milt from males of the FS and EM groups. Yields of normal fry were reduced in crosses involving FS and 2PB eggs when compared to crosses with EM eggs or milt. This indicated that homozygous fish were essentially free of recessive lethal genes affecting embryo survival (chapter 6).New inbred lines were produced using a combination of both gynogenetic techniques. Homozygous inbred strains were produced by gynogenetic reproduction (2PB method) of homozygous gynogenctic (EM) females. F 1 hybrid strains were produced by crossing homozygous females with homozygous gynogenetic male siblings. The clonal nature of these strains was unequivocally demonstrated by reciprocally exchanged skin allografts. All grafts exchanged among members of the same strain were permanently accepted. Likewise grafts from homozygous strain members were accepted by fish from the related half-sib F 1 hybrid strains, while the reverse grafts were rejected. These results provided evidence for the idea that in carp, as in other vertebrates studied so far, histocompatibility genes exist as major and minor loci which are codominantly expressed (chapter 5).The inbred strains and F 1 hybrids were comparable in body weight and gonad development (chapter 6), but the F 1 hybrids showed a much lower variation in body weight and gonad development. In contrast the phenotypic variation was considerably enlarged in the homozygous inbred strains. This phenomenon is well known in inbred strains of mice and rats, and are generally attributed to developmental instability. The F 1 hybrids are therefore more suited for use in bioassay's, especially since they might possess an increased viability.One of the advantages of the described gynogenetic inbreeding system is that selection of the most interesting and viable genotypes is required only in the first generation. The selected females can be propagated to produce inbred strains are identical to their parents in overall performance. However, in order to obtain males within a gynogenetic inbred line, some females should be sex-inversed by hormonal treatment. Therefore juvenile, non-inbred carps were treated with various doses of orally administrated 17αmethyltestosterone during different periods after hatching. The treatment periods were 3-8 weeks, 6-11 weeks and 10-15 weeks after hatching. The tested hormone concentrations in the food were 50 and 100 ppm, while a dose of 150 ppm was also applied during 6-11 weeks after hatching. The gonads were inspected at 6 months after hatching. Administration of 50 ppm 17α-MT in the food between 6 and 11 weeks after hatching resulted in 92,7% males. Earlier treatments with 17α-MT in concentrations of 50 and 100 ppm of hormone in the food resulted in high percentages of sterile fish while later treatments produced a high percentage of intersex gonads (chapter 7). Surprisingly a similar experiment using 178 estradiol failed to induce female gonads in any of the periods tested and irrespective of the concentrations of hormone used.The optimal treatment with methyltestosterone was used to induce sex-inversion in the produced homozygous inbred strains and F1 hybrids (chapter 8). The untreated groups contained females and a single fish with intersex gonads. In the treated groups however, mainly intersex gonads were observed. Only one F 1 hybrid group contained significantly more males (60 %) than animals with intersex gonads. These results can only be explained by assuming that the success of hormone induced sex inversion is genetically determined.Maleness in common carp is thought to be determined by dominant sex determining genes, since heterozygous gynogenetic offspring were all female. However, in some homozygous gynogenetic offspring nearly 50 % males and intersexes were found. It was therefore suggested that maleness in these groups might he caused by recessive mutations in sex determining genes. The mother of one offspring group, probably heterozygous for a putative mutation, was crossed with an unrelated gynogenetic male from another experimental group. The offspring of this cross was exclusively female, but crosses of these females with gynogenetic males contained again 50 % males and intersexes. It was concluded that these males and intersexes were homozygous for a recessive mutant sex determining gene termed mas-1. To our knowledge such mutations have not been described in fish before (chapter 8).In conclusion, it can be stated that gynogenesis is a very successful and rapid method for the production of homozygous inbred lines of the common carp, Cyprinus carpio. Such inbred lines have until now only been produced in two small aquarium fish species, zebrafish ( Brachydanio rerio ), and medaka ( Oryzias latipes ). Our new inbred lines of common carp will be very important for future scientific research. The use of F 1 hybrids in endocrinological and immunological bioassays will result in an increased standardisation and thus in a reduction of the number of experimental animals needed. Perhaps the inbred lines can also provide an alternative for the use of other experimental vertebrate animals. The present study also demonstrated the possibilities of gynogenetic breeding in unravelling complex biological processes as graft rejection and sex determination. Moreover, the rapid isolation of specific mutants with an abnormal development may offer important possibilities for future research

    Fostering a bio-economy in eastern Africa: Insights from Bio-Innovate

    Get PDF

    Nile tilapia genetic improvement: achievements and future directions

    Get PDF
    This is a review of the current developmental state of Nile tilapia selective breeding programs, most of which have focused mainly on growth rate and body traits. There is evidence of sustained gains of ~10% per generation, over several generations. To date, selection for growth has not been accompanied by any undesirable correlated response in production traits. We show recent results from reproduction experiments that indicate, with a note of caution, positive genetic correlations between production traits and fertility. We conclude with a discussion of possible future directions for researc

    Radar systems for the water resources mission. Volume 4: Appendices E-I

    Get PDF
    The use of a scanning antenna beam for a synthetic aperture system was examined. When the resolution required was modest, the radar did not use all the time the beam was passing a given point on the ground to build a synthetic aperture, so time was available to scan the beam to other positions and build several images at different ranges. The scanning synthetic-aperture radar (SCANSAR) could achieve swathwidths of well over 100 km with modest antenna size. Design considerations for a SCANSAR for hydrologic parameter observation are presented. Because of the high sensitivity to soil moisture at angles of incidence near vertical, a 7 to 22 deg swath was considered for that application. For snow and ice monitoring, a 22 to 37 deg scan was used. Frequencies from X-band to L-band were used in the design studies, but the proposed system operated in C-band at 4.75 GHz. It achieved an azimuth resolution of about 50 meters at all angles, with a range resolution varying from 150 meters at 7 deg to 31 meters at 37 deg. The antenna required an aperture of 3 x 4.16 meters, and the average transmitter power was under 2 watts

    Radar systems for the water resources mission, volume 2

    Get PDF
    The application of synthetic aperture radar (SAR) in monitoring and managing earth resources was examined. The function of spaceborne radar is to provide maps and map imagery to be used for earth resource and oceanographic applications. Spaceborne radar has the capability of mapping the entire United States regardless of inclement weather; however, the imagery must have a high degree of resolution to be meaningful. Attaining this resolution is possible with the SAR system. Imagery of the required quality must first meet mission parameters in the following areas: antenna patterns, azimuth and range ambiguities, coverage, and angle of incidence

    Radar systems for the water resources mission, volume 1

    Get PDF
    The state of the art determination was made for radar measurement of: soil moisture, snow, standing and flowing water, lake and river ice, determination of required spacecraft radar parameters, study of synthetic-aperture radar systems to meet these parametric requirements, and study of techniques for on-board processing of the radar data. Significant new concepts developed include the following: scanning synthetic-aperture radar to achieve wide-swath coverage; single-sideband radar; and comb-filter range-sequential, range-offset SAR processing. The state of the art in radar measurement of water resources parameters is outlined. The feasibility for immediate development of a spacecraft water resources SAR was established. Numerous candidates for the on-board processor were examined

    Fostering bioscience innovation: lessons from BIO-EARN

    Get PDF
    This paper synthesises the findings of, and distils lessons from a study which has sought to illuminate the process of bioscience innovation in three East African countries: Kenya, Tanzania and Uganda. More specifically, we attempt to trace specific efforts to foster biotechnology innovations in those countries and to determine in what ways and to what extent the innovation system in place impinges on the final outcome of those innovations. The paper concludes with a set of policy recommendations that may enhance bioscience innovations in East Africa
    corecore