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En prononçant le nom du Cyprin que nous allons décrire, on ne rapelle que les contrées privilégiées 
des zones tempérées, un climat doux, une saison heureuse, un jour pur et serein des rivages fleuris, 
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Chapter 1 

GENERAL INTRODUCTION 



Summary 

In this chapter an overview of various genetic aspects of the common carp is given. First 

a description of the zoogeografic distribution of wild common carp populations is 

presented, followed by a section dealing with the history of domestication of these 

populations in Asia and Europe. A synopsis of some current carp strains, used in this 

research or frequently mentioned, is given in section 1.3. The inheritance and 

polymorphism of various marker traits, i.e. scalation, pigmentation, biochemical markers 

(proteins) and histocompatibility antigens, is described in reference to these strains. 

1.1 Zoogeography of the common carp 

The common carp, Cyprinus carpio (Linnaeus 1758), is perhaps the best known teleost 

in the world. Today its natural distribution ranges from Western Europe throughout the 

continent of Eurasia to China, Korea, Japan and South-East Asia and from Siberia south 

of latitude 60 N to the Mediterranean and India (fig. 1). They have also been intro

duced in Africa, Australia and North America (Steffens, 1980; Moyle, 1984; Shearer and 

Mulley, 1978; Wohlfwth, 1984). 

Despite this worldwide distribution little is known about the zoogeography of the 

original wild species. This is partly due to a long history of domestication which resulted 

in a continuous mixing of escaped or released pond carp with local populations. The 

existence today of true wild carp is therefore doubtful, since any wild population might 

include feral carp (Lelek, 1987). The original species Cyprinus carpio is generally 

believed to originate from the great rivers and lakes of pliocene Eurasia, but there are 

several theories concerning their pleistocene and post-glacial distribution. According to 

Berg (cit. in Kirpichnikov 1967) carp originally inhabited an unbroken range in Eurasia 

from the Don and Danube in the West to the Amur drainage basin and China in the 

Far-East. The presence of carp in the Black Sea during the pliocene is partly 

substantiated by fossil remnants in lacustrine strata in that area. 

During the multiple pleistocene glaciations this domain broke up into an eastern and 

Western part which today may constitute three subspecies (Kirpichnikov, 1967): 



Figure 1 Zoogeographie distribution of common carp, Cyprinus carpio 

Legend: • original post glacial distribution 
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1- European-Transcaucausian carp: Cyprinus carpio carpio 

2- Amur-Chinese carp: Cyprinus carpio haematopterus 

3- South-East Asian carp: Cyprinus carpio viridiviolaceus 

This distinction is mainly based on differences in morphometric characters i.e. the 

numbers of dorsal fin rays, lateral line scales, gill rakers on the first gill arch and 

vertebrae (table 1). Thus, the Amur-Chinese carp have lower counts for dorsal fin rays 

and gill rakers compared to wild Danube, Don and Wolga carp or carp from various 

Central-Asian origins. Amur-Chinese carps are also more resistant to low temperatures. 

South-East Asian carp have been described by Tran Dinh-Trong (1967) in Vietnam and 

differ from both the Amur-Chinese and European populations in counts of vertebrae, 

lateral line scales, and gill rakers. 

This subspecies separation has been criticized by Balon (1974) who has doubts about the 

presence of carp in the Danube refuge during the extensive glaciations of the 

pleistocene. According to Balon, the carp originated in the area of the Caspian/Aral seas 

from where it spread West to the Danube and East to Asia during post-glacial times. 

Had carp been present in the Danube during the pleistocene they would certainly have 

penetrated into Europe and the British Isles during the period of interfluvial connections 

(Thienemann, 1950). However, many but not all European Cyprinids penetrated Western 

and Northern Europe after the last (and most extensive) glaciation (Hamilton et al., 

1989), and truly endemic species still occur South of the Alps and in the Danube river 

refuge (Lelek, 1987; Banarescu et. al., 1971). The restriction of carp to the Danube and 

Don rivers before and after the glaciations might be due to its particular ecological 

demands such as extensive flooded river banks during springtime and water temperatures 

well above 15°C (Schaperclaus, 1961; Horvath and Lukowicz, 1982; Lelek, 1987). The 

river Rhine and Rhône do not fulfill these demands since they obtain their water mainly 

from melting snow in the Alps. 

A more important argument against the existence of two separated populations of 

common carp as early as the beginning of the pleistocene is the absence of any clear-cut 

differentiation between the Western and Eastern population. All morphological traits 

(see table 1) show a gradual change from West to East. The differences in counts for 

vertebrae between European and Asian common carp disappear when fish are raised at 

the same temperature (25 C: Moav et al., 1975a; Suzuki and Yamaguchi, 1984) and the 

different values between populations of carp might thus be the result of the different 



ecological conditions, e.g. the higher rearing temperatures. This could particularly be 

true for the Vietnamese carp. It cannot be excluded that these carp were, as in most 

South-East asian countries, imported from China by Bhuddist monks as early as the 18th 

century (Steffens, 1980). 

Furthermore crosses between Amur-Chinese and domesticated European carp are fully 

fertile although gonad abnormalities are noticed in crosses between domesticated 

European and domesticated Amur-Chinese carp (Hulata et al., 1980). Unfortunately any 

data on wild Chinese common carp are lacking to sustain arguments for a possible sub

species status of the wild Amur-Chinese population. Cyprinus carpio is therefore at 

present regarded as a single species with locally adapted subpopulations (Balon, 1974). 

Table 1 Morphometric counts for common carp from different 

geographic origins (range of mean values). 

Population 

European 

Danube, Don, Volga 

Domesticated 

ibid, at 25°C 

Central Asia 

South-East Asia 

Amur river 

Chinese/Japanese 
(domesticated) 

Vietnamese 

Vert. 

36.3-36.8 

(36-38) 

34.1-35.3 

36.0-36.6 

36.6 

33.6-34.3 

32.2-34.0 

D.F. 

19.0-19.4 

(16-21) 

20.7 

18.3-19.4 

17.6-18.2 

18.6 

19.4-20.7 

L.L. 

37.6-38.9 

(35-40) 

36.0-38.0 

36.1-38.9 

37.8-38.1 

34.4-34.7 

31.5-32.9 

G.R. 

23.6-26.5 

(23-26) 

27.4-28.4 

23.5-26.9 

20.6-21.3 

22.4-24.7 

18.1-19.4 

Ref. 

1 

2,3 

4,5 

1 

1 

4,5 

6 

Vert = vertebrae; D.F. = soil dorsal fin rays; L.l. = scales in lateral line; G.R. = gill rakers on outer gill 
arch. References: 1- Kirpichnikov, 1%7; 2- Schaperclaus 1%1; 3- Steffens, 1081); 4- Moav el al„ 1975a; 
5- Suzuki and Yamaguchi, 1984; (>- Tran Dinh-Trong, 1%7. 



1.2 History of domestication 

South East Asia The domestication of common carp undoubtedly started in China. 

Artificial hatching of fish was already in practice in China around 2000 B.C. The 

development of fish culture grew parallel with the culture of silk worms, as the pupea 

of the silkworm and their faeces provided supplementary feeding for fish (Lin, cit. in 

Hickling, 1962). The first treatise on carp culture appeared in 475 B.C. by Fan Li. Carp 

were captured during the flooding of the rivers, and grown to marketable size in 

artificial ponds or lagoons. Usually the smaller carp were left in the ponds after seining 

to spawn and produce new fry the next year. This "broodstock" was supplemented with 

wild carp from the river. Competition in the ponds was very strong due to the high 

density, the presence of several fish species and the wide ranges in sizes. Fry had to 

compete strongly for food and were subject to parasites and infectous diseases. 

According to Mann (1961), Hickling (1962) and Wohlfarth (1984), this type of pond 

culture changed little over the centuries. Buddhist monks were probably responsible for 

some of the early carp introductions in South-East Asia (e.g. Indonesia: Weber and de 

Beaufort, 1916; Steffens, 1980). In Japan carp culture dates back at least 1900 years. The 

centres of carp culture were Nagano, Gunma and Yamagata prefectures (Suzuki, 1979). 

Europe In Europe carp first appear as "Kuprinos" in the works of Aristotle (Historia 

animalium). The name might refer to Kypris or Aphrodite, perhaps because of its high 

fecundity: Aristotle describes how "13 to 14 males chase a female whose eggs they will 

fertilize" (Hist.anim. VI, 14). Another interesting reference to Aphrodite concerns the 

word "epitragiai" or hermafrodite. According to Aristotle, "these carp have neither milt 

nor eggs, are solid and fat, and are considered the best" (Hist.Anim. IV, 11). The passage 

clearly indicates that carp were eaten at that time. Contrary to common belief however, 

it is doubtful whether Romans appreciated this fish and kept them in their Piscinae. 

Balon (1974) reconstructs a possible introduction from the Amber road - Danube 

crossing to the Roman empire but there are no texts to sustain these presumptions. On 

the contrary: Aelianus (2nd century A.D., De Natura animalium XIV, 23 and 26) 

decribes the catch of large numbers of black carp by local inhabitants of the Ister ( = 

Danube). The specific mention of black carp indicates that the Romans knew carp, but 

were not familiar with Danube (black) carp. 

Carp are also notoriously absent in the famous cookbook of Apicius (4th century A.D.), 



and in the Deipnosophistae (Athenaeus, 3th century A.D.), a compilation of text-quota

tions on food presented as a dinertable conversation, carp are only mentioned twice (6 

lines in an entire volume dedicated to fish!). Since both Apicius and Athenaeus describe 

the culinary preferences of the Roman elite, the absence of carp can be taken as cir

cumstantial evidence that they were not a delicacy in ancient Rome. Most assumptions 

of a Roman appreciation of carp stem from Cassiodorus (Variae XII,4; 6th century 

A.D.). In his text carp appear as "carpa". The context indicates that carp from the 

Danube are a "novitatibus", to be part of a King's table (among other things) to show 

his power and wealth. The use of the local name "carpa" instead of the Latin name 

Cyprinus (Plinius, Naturalis Historia IX, 58), suggests that carp were not well known. 

The first reliable references to carp culture and consumption appear as late as the 12th 

century A.D. Albertus Magnus (1193-1280) refers to carp-growing in ponds, while 

Hildegard Von Bingen (1098-1179) from the Bavarian convent of Benedictines 

elaborates on their preparation. However, it is only with the beginning of the Renais

sance in Northern Europe that books solely dedicated to pond culture and carp start to 

appear (Dubravius: on fish ponds, 1547; Strumienski: O Sprâwie, sypâniu, wymiérzâniu, 

i rybieniu, 1573; Taverner: Certain experiments concerning fish and fruit, 1600). It is in 

this period that carp were transported all over Europe, "packed with snow and with a 

piece of bread soaked in gin in their mouth" (Bloch, 1789). Around 1514 carp reach 

England, and in 1560 Holland and Denmark. Bloch also relates of transports by boat 

from Prussia to Sweden. By the end of the 16th century Danube carp had spread 

throughout Europe, and Bohemia had become the centre of pond culture (Berka, 1985). 

Ponds were constructed in Bavaria, Austria, Brandenburg and Prussia where the nobility 

made a living from selling fish (Shaw, 1804). During the 19th and 20th centuries carp 

culture in Germany and Bohemia became more sophisticated, due to the development 

of controlled spawning in separate ponds (Dubisch, 1813-1888), and many carp strains 

were developed. On the other hand, in most Western-European countries a gradually 

improved infrastructure resulted in a more constant supply of fresh and cheap seafish. 

In these countries pond culture became more or less obsolete (Hickling, 1962). However, 

feral populations of carp continued to play a minor role in fisheries and angling. 



1.3 Strains of common carp 

The different intensities of selection in locally adapted wild/feral stocks, Chinese 

extensive pond culture, and European intensive pond culture, had different impacts on 

the genetic structure of these carp populations. In Europe many distinctive races were 

developed, while in China cultured carp remained more or less genetically similar to 

wild carp. Today, the most successful carp strains are almost all crossbreds of different 

groups of inbred European carp, or crossbreds between inbred European carp and wild/-

feral carp or Chinese carp. The strains that are mentioned in this Ph-D study are 

described in the following sections. 

Germany and Bohemia 

During the 19th century many distinctive races of common carp had been developed in 

Germany and Bohemia. They were local strains which were adapted to the local pond 

conditions and climate, and more or less inbred since most farmers used very few (1-10 

!) broodstock animals to produce large numbers of fry. Full-sib matings were therefore 

inevitable (Schaperclaus, 1961). At the turn of the century an attempt to standardise the 

major carp races was made (Walter, 1901; Schaperclaus, 1961; Wunder, 1986). The 

discriminating characters were body shape and scalation: 

Aischgrunder carp were developed in Bavaria during the past 300 years. They are mirror 

carp with very few scales, and are characterised by their high-backed shape, caused by 

an inheritable deformation in the spinal column (Chondrodystrophy: Wunder, 1949). This 

race apparently became extinct in 1956 (Steffens, 1980). Today the Aischgrunder shape 

is still present in some Hungarian and Yugoslavian strains which were produced from 

Aischgrunder x Galician crosses. 

Lausitzer carp are fully scaled stretched carp of a grey colour which were grown in sand 

bottom ponds under unfavourable climatic conditions. 

Bohemian carp are similar to Lausitzer carp but are mainly cultured in mountain areas 

with vulcanic soils and acidic water. After the second world war most local races of 

Bohemian carp disappeared. Today all Czechoslowakian strains are called Bohemian. 

They include both stretched and high-backed carp. 

Galician carp are intermediate in shape between Lausitzer and Aischgrunder carp. They 

were bred by Alfred Gasch (Wunder, 1986) around 1900 and extensively promoted by 



Burda (Schaperclaus, 1961). They have a significantly higher growth rate than most other 

races. As a result Galician carp were crossed with many local strains and eventually 

replaced all other German races. During the two world wars many carp strains disap

peared while the remaining populations became extensively mixed. Post-war carp strains 

were reconstructed using Galician x Lausitzer carp but the original races had disap

peared. The importance of the Galician carp stem from their pre-war export to other 

countries were they were often involved in the development of new strains. 

German mirror carp (Galician x Lausitzer?) from the Harz area were imported by the 

Wageningen Agricultural University in 1981. They are called "D". 

Hungary 

In Hungary, carp breeding programmes are based on inbreeding followed by cross

breeding. In 1962 10 different Hungarian local "landraces" (strains) were collected and 

bred by strict sibmating at the Fisheries Research Institute at Szarvas. Effective 

hybridization was employed within these strains to improve commercially important 

characteristics such as survival rate of fry and fat content at harvest (Bakos, 1979). One 

highly inbred strain, called Tata, shows inbreeding depression and a decreased resistance 

to infections with Aeromonas salmonicida (Sövenyi et al., 1988). Some homozygous 

scaled individuals of this strain were send to the O.V.B. in the sixties to participate in 

the 25% hybrid breeding programme (pers.comm. Bungenberg de Jong). Another strain, 

inbred for 4 generations, arrived via the Fish Culture Experimental Station Golysz 

(Poland) at the Wageningen Agricultural University in 1986. This strain is called R8. 

In 1978 the Hungarian breeding programme was extended with the development of 

gynogenetically inbred lines from different carp strains. Three strains were used: Nasice 

(from Yugoslavia), God, and Dinnyes (both from Hungary) (Nagy et al., 1984). An 

extensive growth test involving these gynogenetic inbred strains and their hybrids showed 

that most genetic variation for growth is non-additive and that the crossbreds display a 

high degree of heterosis (Nagy, 1987). 

The Netherlands 

In the Netherlands self-sustaining populations of feral carp are rare. They are believed 

to be the progeny of fish escaped from ponds in Germany and Holland since the 16th 

century (Hoek, 1895). In Holland, commercial carp culture never has been an important 
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industry. In 1899 the first and only commercial carp farm at Valkenswaard started with 

a mixture of introduced German carp, including Lausitzer, Bohemian and Galician carp 

(Pennekamp, 1899). The progeny of 50 carp produced on this farm and introduced to 

Britain in 1934, today still exist as the famous Redmire population (Clifford and Arbery, 

1984). In 1952 the management of the farm was taken over by the Organisation for 

Improvement of Inland Fisheries (O.V.B.). During the following 20 years this 

organisation developed 3 different strains of carp. Their crossbreds have been stocked 

in most inland waters to enhance sportfishing (Raat, 1983): 

Valkenswaard mirror: in 1956-1957 the original carp stocks at Valkenswaard were culled 

from leather and line carp (see also 1.4). The remaining fish were bred under stringent 

mass-selection for growth rate, stretched body shape (no spinal deformation) and disease 

resistance, to produce the Valkenswaard (VW) mirror carp (Bungenberg de Jong, 1964). 

Some of the scaled carp from this stock were used to produce a group of homozygous 

scaled carp. Samples from the Valkenswaard mirror carp strain were send to Israel in 

1962 (see Israel). 

Hol-B In 1957 a second strain was produced and selected from the offspring of 5 

females and 6 males of Aischgrunder x Galician ancestry (courtesy Dr Wunder). 

Crossbreds between this strain and the VW strain were send to Israel where they became 

known as Hol-B. 

Wild (feral) carp, caught in a Frysian lake near Workum, were used to produce a closed 

line of "wild" carp. They differ from domesticated carp in body shape, musculature and 

swimbladder dimensions (Boddeke, 1966). The Wild carp strain is used in the production 

of 25 '/c wild hybrids for sportfishing purposes. These 25 °/c wild hybrids are crossbred 

progeny of (Wild carp x homozygous scaled carp) x VW mirror carp. For homozygous 

scaled carps both Valkenswaard and Tata carps are used. Extensive angling experiments 

have shown that wild carp are more difficult to catch and have better fighting endurance 

than the domesticated strains. Capture and endurance of the hybrids is intermediate 

(Beukema. 1969; Raat, 1985). The hybrids have successfully been used in studies on the 

optimalization of growth in common carp (Huisman, 1974). In 1978 a number of VW 

mirror carp and 25 (/c wild hybrids were transferred to the Wageningen Agricultural 

University were they are registered as "W" carp. The (D x W) Fl broodstock mentioned 

in this thesis is the progeny of a mirror carp male from the D group (see above) crossed 

with a scaled female from the W group (25 '7c wild hybrid). 

11 



Israel 

In Israel carp farming was initiated in 1939 through a number of introductions, mainly 

from Europe (Tal and Sheluvki, 1952; Yashouf,1955). Today, commercial breeding of 

carp is based on strain crossing, exploiting a high degree of heterosis for growth rate 

(Moav et al., 1975b). During the course of an extensive genetic programme, which 

started in 1960, a number of useful strains and crossbreds were developed and tested. 

A short summary of their characteristics is presented (see also figure 4): 

Hol-A and Hol-B. These strains were imported from Holland in 1962. The Hol-A strain 

is equivalent to the Valkenswaard VW mirror carp. Hol-B is the crossbred of this strain 

with the German strain (see above). A comparison of these strains with local Israeli 

strains revealed that Hol-A carp (VW) were highly inbred (Moav et al., 1964): their 

growth rate was the lowest of all tested groups. A high percentage of these carp had 

skeletal malformations. Hol-A mirror carp progeny were characterised by the possession 

of many large scales (Streuschupper, see 1.4). Hol-B carp grew much better and were 

kept as a closed line for further tests. 

Blue-grey. This inbred strain was developed from local Israeli carp in I960 (W'ohlfarth 

et al., 1964), and was found to be highly susceptible to swim bladder inflammation (see 

1.4; Hines et al., 1974). The individuals in this strain are marked by homozygosity for 

two pigment mutations, grey and transparent (see 1.4 and figure 4.2). 

Gold. Another inbred strain produced from local Israeli carp in 1963. The carp in this 

strain are marked by homozygosity for a recessive mutation producing bright orange 

pigmentation (see 1.4 and figure 4.3). 

Nasice. This strain was imported from Yugoslavia in 1970. It maintains many of the 

characteristics of the Aischgrunder x Galician ancestry, including a high back and 

skeletal deformations. Their performance under less optimal pond conditions is 

considerably reduced. They also showed an high incidence of epidermal epithelioma 

(Hines et al., 1974). Crossbreds of the Blue-grey and Nasice strain are resistant to both 

diseases. 

Dor-70. This strain resulted from a large two-way selection experiment conducted 

between 1965 and 1970. The details of this experiment are described in Moav and 

Wohlfarth (1976). The starting population consisted of 5 different familial lines, collected 

at different fish farms in Israel. During the experiment inbreeding was avoided by using 

large numbers of carp and by crossing between replicate groups within selected lines. 

12 



The results after 5 years suggested that European carp had reached a selection plateau 

for growth while maintaining a large genetic variance (Moav and Wohlfarth, 1976). The 

group with the best growth performance was designated Dor-70. This group shows 

excellent hybrid vigour in crosses with other strains (Gold. Nasice. and Big-belly, see 

below). In Israel the most succesfully used crossbred is Dor-70 x Nasice (Moav et al., 

1975b; Wohlfarth et al., 1975; Wohlfarth et al., 1980). Samples of Dor-70 fish have been 

sent to Hong Kong, Brazil, Panama, and South-Africa (Wohlfarth et al., 1980; Sin, 1982). 

Inbreeding of Dor-70 animals produces reduced growth rate and inbreeding depression, 

manifested by a high incidence of skeletal deformations (Brody et al., 1976). In 1980 2 

males and 2 females were transferred from Dor to the Wageningen Agricultural 

University via the O.V.B. (courtesy Dr. Wohlfarth). 

Table 2 Comparison of relative magnitudes of various traits in common carp from 

European and Chinese origin. 

Trait origin 

Growth rate 
-juvenile (up to 3 months) 
-post juvenile 
(different environments) 

Tolerance to suboptimal 
environment 

Weight difference between 
sexes 

Seine escapability 

General viability 

Body shape 

Onset of sexual maturity 

Gonado-somatic index 

European 

low 

high 

low 

small 

low 

low 

high 

late 

10-15 % 

Chinese 

high 

low 

high 

large 

high 

high 

stretched 

early 

30-40 % 

Adapted from Wohlfarth ct al., 1975; Moav ct al., 1975b; Hulata et al., 1474; 1976; 1982; 1985). 
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China 

As already outlined no specific strains of carp were developed in China. Chinese 

common carp are collectively termed "Big-Belly" because of their high gonado-somatic 

index (30 % or more!; see also figure 4.4). They are distributed over most South-East 

Asian countries (Hickling, 1962; Bardach et al., 1972). Big-belly's from Taiwan and Hong 

Kong were imported to Israel in 1970, where they were tested in crossbreeding experi

ments with European strains (Gold, Blue-grey, Dor-70, Nasice, Hol-B). The crossbreds 

show heterosis under crowded pond conditions with heavy manuring, but occasionally 

have gonad malformations (Hulata et al., 1980). A comparison for various characteristics 

between European strains and Big-belly's is presented in table 2. 
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1.4 Marker traits 

ScalatioD 

The different fenotypes for scalation in carp are well known. Based upon the distribution 

and number of scales, four different types are distinguished (figure 2). Investigations by 

Probst (1953) and various Russian scientists (in Kirpichnikov, 1987) on the inheritance 

of these scale patterns showed that they are induced by mutations in two genes, 'S' and 

'n'. The genes are responsible for wild type scalation. The dominant mutation N is lethal 

in homozygous condition. The fenotypes shown in figure 2 have the following charac

teristics and genotypes: 

scaled carp (fig. 2a.). Wild type. Scales completely cover the body in a 

regular fashion. Genotype S/S;n/n or S/s;n/n. 

mirror carp (fig. 2b). Carp are irregularly scaled. Scales are enlarged. The 

degree in which they cover the body varies from almost complete 

("streuschupper") to almost absent. Genotype s/s;n/n. 

linear carp (fig. 2c). Carp have a regular row of scales along the lateral 

line but are otherwise irregularly scaled. Genotype S/S;N/n or S/s;N/n. 

nude or leather carp (fig.2d). In these carp scales are absent or nearly 

absent. In all cases the line of scales along the entire back from head to 

tail is interrupted. Genotype s/s;N/n. 

The gene S (s) is used in our experiments as a control for sperm irradiation. The males 

are heterozygous scaled (S/s) while the females are s/s. Mirror carp with few scales 

were used in skin grafting experiments (see chapter 5). 

The mutant N has a pronounced pleiotropic effect (Probst, 1953; Wunder, I960; Steffens, 

1980; Kirpichnikov, 1987). Homozygous N/N larvae die during or shortly after hatching 

and have a characteristic "comma" shape, comparable to the haploid syndrome (see 

chapter 3). Heterozygous N/n fish generally have a reduced viability and disease resis

tance, and often show deformed dorsal, caudal and anal fins. Their growth rate is 

reduced due to an increased fat metabolism. All these effects are more pronounced in 

nude carp than in linear carp. Together they suggest that the N/n gene might represent 

a deletion in a chromosomal region involved in mesodermal differentiation. Because of 

the negative effects of N, linear and nude carp have been systematically culled from 

most carp strains (e.g. VW carp, see 1.3). 
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Figure 2 Types of scaling in the common carp 

a) scaled (S/S;n/n or S/s;n/n), b) Mirror (s/s;n/n), c) Linear (S/S;N/n or 

S/s;N/n) and d) Nude (s/s;N/n). from Kirpichnikov, 1987 

Figure 3 "Fingerprint scalation in clones and Fl hybrids of common carp. 

Homozygous clones 11 and 22; Fl hybrids 13, 14, 23 and 24. 
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However, it is well known that even in the absence of N, some carp can have a fenotype 

that is almost like linear or nude (Schaperclaus, 1961; Wunder, 1986). Hol-B carp often 

' display a linear fenotype (Moav et al., 1964), and in our gynogenetic experiments we 

discovered nude carp with a mirror carp genotype. Some of these nudes show all the 

characteristics of true nude carp, including the fin deformations and increased fat 

metabolism (Komen, unpublished results). The inheritance of this fenotype appears to 

be monogenic recessive. These observations support the suggestions of Probst (1953) 

concerning the existence of a multiple allelic system of both "n" and "s" with alleles of 

different strength. Such a system might explain the high heritability of the variable feno

types of scalation found in mirror carp (Wunder, 1986). In our experiments we have used 

the s and n gene complex to produce "fingerprint" fenotypes to mark our clones and Fl 

hybrids (see figure 3 and chapters 5, 6 and 8). 

Pigmentation 

Colour variants are well known in ornamental carp (Koi or Higoi carp), but coloured 

carp also occur in ordinary domesticated strains, both in Europe (figure 4) and Asia 

(Buschkiel, 1938; Tran, 1967). Although the inheritance of some of these colour variants 

has been investigated, it is usually not clear if these studies describe phenotypic 

variations of the same genotype or different genotypes. Colour is a highly variable trait, 

subject to environmental influences and overall genotype (genetic background). The 

interpretation of colour inheritance is therefore difficult and only allelic tests can decide 

whether colour variants are genetically different or not. 

Colour variants in common carp are determined by the relative amount of melan-

ophores, xanthophores and guanophores: 

- absence of melanophores result in yellow or orange fish. 

- absence of guanophores result in transparent fish (Alampia) 

- absence of xanthophores result in grey or "steel" fish 

- absence of both melanophores and xanthophores result in white fish 

Yellow and orange fish have been analysed by Katasonov (1978) in hybrids of ordinary 

common carp with Japanese ornamental common carp. Backcrossing of Fl hybrids to 

parental Japanese carp produce 25 % orange carp. It was concluded that the orange 

pigmentation resulted from homozygosity for mutations in a duplicated gene B (Black), 

involved in melanophore formation. 
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Figure 4 Different types of pigmentation in some strains and crossbreds of 

common carp. 

1) Normal pigmentation (Blue-Grey x Gold). 

2) Transparent (Blue-Grey). Note transparent operculum and blueish hue. 

3) Gold. No melanophores and uniform orange pigmentation. 

4) Normal pigmentation (Big-Belly), note extended abdomen. 

5) Gold crossbred (Gold x Big-Belly). 

6) Blond fingerlings (Polish inbred strain). 

(Photographs 1, 2, 3. 4 and 5 courtesy Dr. G. Hulata; Photograph 6 courtesy Dr. .1. S/umicc) 



Homozygous bl /bl ;b2/b2 fry completely lack melanophores. Mature animals are yellow, 

orange or even red, with a dark streak along the dorsal/posterior trunk, and with 

isolated regions of black pimentation on the lateral sides (see figure 4.6). The mutations 

might affect the migration of melanophores from the neural crest (Shepard, 1961; 

Lamers et. al., 1981). The residual trunk pigmentation apparently has a different origin -

(Shepard, 1961). 

In our experiments a similar set of mutants termed "blond" was found (chapter 4). Blond 

carp were pale yellow, or lemon coloured. Viability of the blond embryos is slightly 

reduced (Katasonov, 1978; Komen, unpublished results). The red carp described by Nagy 

et al, (1979) are also homozygous for a duplicated recessive gene, in his experiment 

termed p and r. They are probably identical to the bl and b2 genes. The high variability 

of the yellow/orange colour depends on the relative contents of red and yellow pigment 

in the xanthophores (Matsumoto et al., 1960), as well as the genetic background: 

homozygous gynogenetic offspring of a single female produced a wide array of blond 

fenotypes (Komen, unpublished results). 

The "gold" mutant used to mark the Gold inbred line (see figure 4.3) is also bright 

orange. Its inheritance is monogenic recessive (g) and is thus different from blond. The 

gene g appears to be dominant in crosses with Big-Belly carp (Hulata, pers. comm.; 

figure 4.5). 

Transparent carp are, in contrast to the afore mentioned colour variants, easily 

recognized, due to the absence of a reflecting layer in the skin. This condition is termed 

alampia and results from an underdevelopment or absence of guanophores. In Germany, 

transparent carp are known as "blaulinge" (Schaperclaus, 1961; Steffens, 1980). The 

inheritance is unequivocal monogenic recessive. The genes bl̂ , blp and bip described by 

resp. Probst (1949), Wlo/dek (1963) and Wohlfarth et al, (1964) are probably all identi

cal. Transparency has been used in our experiments as a marker for gynogenesis 

(chapter 4). In order to avoid confusion with other gene codes, we have termed this 

mutant "tp". 

Grey carp have been less well studied. According to Katasonov (1978) the inheritance 

of grey (also termed "steel" and "blueish") is monogenic recessive. The gene is termed 

R (red) and the mutant r. Grey animals are well known in European carp stocks but a 

genetic analysis has not been performed (Schaperclaus, 1961; Steffens, 1980). Grey carp 

have also been noticed in the VW strain (see 1.3; Bungenberg de Jong, 1964). 
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In Israel grey (= r?) is combined with transparent to mark an inbred line (Blue-Grey, 

see figure 4.2; Wohlfarth et al, 1964). 

White carp are a combination of bl, b2 and r (Katasonov, 1978). White carp have only 

been described in ornamental carp. 

Two dominant mutations, D and L, have also been described only in ornamental carp 

(Katasonov 1973; 1974, 1975). The gene D produces a pattern of light bands 

characteristic for ornamental carp. The gene L is lethal in homozygous condition. In 

heterozygous state it induces a stable contraction of melanophores. Both genes are 

thought to have a pleiotropic effect on body shape, but these observations need more 

research. 

Biochemical markers 

Polymorphic enzymes and other electrophoretically detectable protein variants have had 

few applications in common carp. The major reason for this is the low level of 

polymorphism displayed by most proteins tested, except transferrin. Thus, Brody et 

al.(1979) investigated 33 protein loci in the Nasice, Dor-70 and Big-Belly strains and 

found only 5-6 polymorphic loci. The Nasice strain was highly inbred and showed only 

polymorphism for malate dehydrogenase and transferrin. Five polymorphic protein loci 

out of 29 tested were also found in a comparative study between Italian carp from 

different geografie origins (Cataudella et al., 1987). All other loci tested, both in Brody's 

and Cataudella's study, were fixed for the same allele in all populations. The narrow 

genetic basis of many introduced populations was demonstrated by Shearer and Mulley 

(1978) for Australian carp: only two loci were polymorphic. A summary of polymorphic 

enzymes is presented in table 3. 

Transferrins are coded for by a single locus with polymorphic alleles. According to 

Valenta (1976) more than 7 different alleles with decreasing electrophoretic mobility (A 

to G) can be discerned, while Brody et al., (1979) discern 6 loci (FF, F, I, 2, 1, S). 

According to Brody et al., (1979) their S allele might correspond to the G allele of 

Valenta (1976), but the other alleles are difficult to compare. Despite the large number 

of alleles few differences are found between most European carp strains. In the 

Bohemian carp the most frequent alleles are D, E and G, while B is very rare. In the 

Dor-70 and Nasice strains only S (G?) and F (D?) occur. Chinese Big-belly's are more 

polymorphic with all six alleles present (Brody et al., 1976; ibid. 1979). The Wageningen 
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inbred carp strains (including Dor-70 and R8, see 1.3) are all fixed for the same two 

alleles, D and G. Only the "W" strain (see 1.3) shows polymorphism (Van Muiswinkel 

et al, 1986; Pourreau, 1990), which is in accordance with its hybrid origin. These 

observations indicate that transferrin alleles become rapidly fixed in small non-random 

breeding populations. Their significance in genetic studies involving European carp 

strains is therefore limited. Why D and G were preferably fixed in the European 

population is not clear, but a possible relationship with disease resistance has been 

implicated (Suzumoto et al., 1977). However, preliminary studies on the resistance to 

Aeromonas salmonicida infections in different inbred strains did not show a relationship 

with the transferrin genotype (Pourreau et al., 1990; Houghton et al, in preparation). 

Table 3 Polymorphic enzymes in various tissues of common carp. 

(L = liver, B = blood, M = muscle, Br = Brain) 

Enzyme 

Carbonic anhydrase 

Esterase 

Lactate dehydrogenase 

Malate dehydrogenase 

Phosphoglucomutase 

Locus E.C. nr. 

Ca-1 4.2.1.1. 

Est-1 3.1.1.2. 

Est-3 

Est-4 

LDH-B, 1.1.1.27 

LDH-C, 

MDH-B 1.1.1.37 

PGM 2.7.5.1 

Tissue 

L 

L 

L/B 

L/B 

Br/L 

L 

M/B 

M/B 

Alleles 

2 

2 

3 

2 

2 

2 

2 

3 

Ref. 

2 

1 

1,2,6 

1,2 

2,3,5 

1,4,5 

1,6 

1,2 

(1- Brody ct al.,1979; 2- Cataudella et al.. 1987; 3- Engel et al., 1973; 4- Shearer and Mulley. 1978; 5-

Valenta el al.. 197(>; (>- t herlas and Truveller, 1978). 

Histocompatibility antigens 

Immunogenetic markers, associated with the major histocompatibility complex (MHC), 

are extremely useful tools in mammalian population genetics (Klein, 1982). The gene 

products of the MHC are highly polymorphic cell membrane glycoproteins. At the 

fuctional level they are separated in class 1 and class II histocompatibility antigens. Class 
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I antigens are the classic transplantation antigens which can be identified by acute graft 

rejection, T-lymphocyte mediated cell lysis, or specific allo-antisera. Class II antigens are 

involved in cell-cell interactions and can be identified by mixed leucocyte reactions or 

specific allo-antisera. There is compelling evidence that common carp possesses a MHC 

analogue. Skin grafts are invariably rejected in an acute fashion, with associated specific 

memory formation (Hildemann, 1970; Botham et al., 1980). Carp lymphocytes are 

capable of stimulating and responding in the mixed leucocyte reaction (Caspi and 

Avtalion, 1984; Grondel and Harmsen, 1984). Specific allo-antisera have been raised by 

injecting fish with purified leucocytes (Kaastrup et al, 1989). Finally, in the related 

crucian carp (Carassius auratus langsdorfii), adoptive transfer of immunity by pronephric 

cells is successful in isogenic recipients and some allogeneic recipients with a weak 

histocompatibility (H) disparity, but not in xenogeneic or strong H-disparate allogeneic 

recipients (Nakanishi, 1987a; 1987b). The very fact that carp can mount a specific 

immune response against allogeneic tissue from closely related carp indicate that the 

glycoproteins involved are polymorphic both in their public (interstrain) and private 

(inter-individual) specificities. The immunogenetic tests which have been used to dis

criminate between individuals include: 

allograft exchange. 

mixed leucocyte reaction (one-way and two-way). 

- haemagglutination test with specific allo-antisera. 

Allograft reactions in common carp are discussed and reviewed in chapter 5. The main 

conclusions are that cumulative minor histocompatibility differences can result in acute 

graft rejections which mimic major histocompatibility differences. This phenomenon is 

well known in mammals and amphibia (Hildemann and Cohen, 1967). In the conven

tional inbred strains studied (e.g Dor-70 and R8; Boon, pers. comm.) grafts were all 

rejected in an acute fashion. These results indicate that in an inbred strain minor H loci 

become fixed for different alleles in different individuals. 

Mixed leucocyte reactions (MLR) in carp have been studied by Caspi and Avtalion 

(1984) and in our laboratory (Gloudemans et al., 1987). The results so far are not too 

promising. Primary two way MLR in randomly selected donor-acceptor pairs are highly 

variable. Reciprocal responses of donors in one- way MLR are usually unequal, 

suggesting immunogenetic differences (Caspi and Avtalion, 1984). We hoped that 

heterozygous gynogenetic offspring would show a segregation of alleles of a strong MLR 
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(MHC) locus as it did in allograft reactions (chapter 5). Unfortunately, the highly 

variable responses did not allow for a clear discrimination between responding and non-

responding donor combinations (table 4). 

Haemagglutination tests using specific allo-antisera are more promising for 

immunogenetic studies. Recently Kaastrup et al., (1989) succeeded in raising specific 

antisera against the allelic products of a putative MHC locus. The antisera were 

produced by immunising gynogenetic Dor-70 carp with peripheral blood leucocytes from 

gynogenetic siblings. The obtained antisera were operationally monospecific within the 

Dor-70 gynogenetic progeny. Flow-cytometer analysis of the cellular distribution of these 

histocompatibility antigens demonstrated their presence on erythrocytes, pronephros 

leucocytes and peripheral blood leucocytes (Kaastrup et al., 1989). In view of the 

previously noted fact that Dor-70 carp were homozygous for most biochemical markers, 

it is remarkable that this strain has retained its heterozygosity for a putative MHC locus. 

Table 4 Stimulation indices (S.I.) of mixed leucocyte reactions between 

heterozygous gynogenetic siblings. (Komen, unpublished results). 

responder 

cells 

(fish nr) 

1 

2 

3 

4 

5 

6 

stimulator cells (fish nr) 

1 

-

4.1 

2.3 

0.9 

3.2 

2.7 

2 

23.0 

-

8.5 

3.2 

2.1 

25.8 

3 

17.5 

26.6 

-

3.4 

44.8 

92.5 

4 5 

1.8 1.2 

3.2 0.2 

2.1 2.9 

- 1.1 

2.2 

3.3 2.0 

6 

12.5 

6.1 

10.5 

1.0 

2.8 

-

Lcucocylcs from each fish were Icslcd as responder or stimulator. Stimulator cells were irradiated with Co60 

(M) Gy). Proliferation of responder cells was measured by 'H-Thymidinc incorporation. S.I. values were 
calculated as: ( l m p t2, tm)/(l res |, + !„,„,) (counts per minute). 
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During the course of this Ph-D study attempts were made to raise specific antisera 

within groups of gynogenetic offspring. Homozygous carp (EM group) were immunized 

with leucocytes from heterozygous gynogenetic siblings (2PB group). Three allo-antisera 

were obtained with haemagglutination titers between 2log 4 and 6. 

Table 5 Haemagglutination results of three different antisera on 

erythrocytes from half-sib (CO group), heterozygous gynogenetic 

(2PB group) and homozygous gynogenetic (EM group) siblings. 

alloantisera 

EÜ! anti 2PB! 

EM2 anti 2PB2 

EM3 anti 2PB3 

Co 

+ 

0 

19 

1 

group 

28 

9 

16 

2PB 

+ 

25 

39 

37 

group 

15 

1 

3 

EM group 

+ 

7 14 

16 5 

13 8 

+ = agglutination; - = no agglutination. Antiscra were obtained by repeated immunisations of homozygous 
gynogenetic fish (nrs 1, 2 and 3) with leucocytes from heterozygous gynogenetic siblings (1,2 and 3; Komen, 
unpubl. results). 

The haemagglutination test results are given in table 5. They are not readily interpreted 

in terms of a single locus with two allelic products segregating in homozygous combina

tions in the offspring. All three allo-antisera used were specific for the majority of fish 

from the 2PB group (the donor group), but less so for fish from the EM group (recipient 

group) or fish from a half sib control group. Absorptions with EM erythrocytes removed 

most reactivity. These results can be explained by assuming that the antigens within this 

strain are not polymorphic enough to be discerned by the carp antisera. However, the 

agglutination was not affected by treatment with ß mercapto-ethanol. This indicates that 

substances other than immunoglobulins might have been present in the produced 

antisera. 
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Summary 

In this chapter a brief account of the meiosis and early development in common carp is 

presented, followed by a description of the genetic consequences of induced gynogenetic 

breeding. The chapter is concluded with an outline of the aims and structure of the present 

thesis. For the technical aspects of gynogenesis the reader is referred to reviews by 

Thorgaard ( 1983), Chourrout ( 1987) and Komen et al., ( 1990). 

2.1 Meiosis and early development in common carp 

Central to a discussion on the consequences and benefits of gynogenesis stands a thorough 

understanding of the meiotic processes and their timing in oocyte development and final 

maturation. The literature on this subject is often confusing. 

In female common carp ovarian development starts with proliferation of germ cells or 

oogonia, 7-9 weeks after hatching (23 °C). These germ cells represent a stem cell population 

which gives rise to oogonia througout the life cycle of female carp (Parmentier and 

Timmermans, 1985; Wallace et al., 1987). Between 17 and 25 weeks after hatching the 

primordial gonad developes into an ovary. In this ovary many cysts are found containing 

either individual primary oogonia (16 ^m), groups of secondary oogonia (i.e. after prolife

ration, 8-10 /urn), or groups of early prophase oocytes (8^m). The oogonia contain a nucleus 

with a conspicious nucleolus and weak staining cytoplasma (haemaluin/eosin). The early 

prophase oocytes are characterised by a dense chromatine mass (Parmentier and 

Timmermans, 1985). Larger primary oocytes (pre-vitellogenic oocytes), surrounded by fol

licular cells, are observed in a later phase. In these oocytes numerous nucleoli are located 

along the nuclear periphery (peri-nucleolus stage). The cytoplasma stains distinctly basophil

ic. Meiosis is initiated during the transition from oogonium to primary oocyte. Each 

chromosome is duplicated (replicated) before meiosis. The chromosome and its copy remain 

together as sister-chromatids and behave as one functional unit during the following pro

phase I of meiosis. The first four stages of prophase I are: 

(1) leptotene. (2) zygotene. (3) pachytene and (4) diplotene. The fifth stage of prophase, 

diakinesis, occurs later, after oocyte growth has been accomplished. 
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Leptotene: the chromosomes start to condense. The sister-chromatids appear as a single 

unit. 

Zygotene: this stage is synonymous with the initiation of pairing or synapsis. The two 

homologous chromosomes align side by side. The resulting pair is called a "bivalent", but 

since each homologue consists of two sister-chromatids it is preferably called a tetrad. 

Pachytene: as synapsis is completed, recombination nodules appear at regular intervals on 

the chromatids. At this stage recombination (crossing over) takes place (figure 1). 

Diplotene: during desynapsis at the beginning of this stage, the homologues are pulled apart 

but remain attached at 1 or more recombination sites. These sites are termed chiasmata and 

are the morphological remnants of a cross-over event (Alberts et al., 1983). Meiosis is 

arrested at this stage and the oocytes start to grow. The tetrads décondense to form so 

called "lampbrush" chromosomes, and extensive RNA synthesis is commenced. 

Leptotene, zygotene, and pachytene are collectively called the chromatin nucleolar stage in 

Teleosts (Tokarz, 1978; Wallace et al., 1987). Diplotene is often associated with the 

perinucleolus stage, but probably exists troughout the entire oocyte growth period: the 

characteristic lampbrush chromosomes disappear just before final oocyte maturation 

(Nagahama, 1983). The oocyte growth period is divided in two stages: cortical alveolar stage 

(yolk vesicle stage or endogenous vitellogenesis), and exogenous vitellogenesis (Wallace et 

al., 1987). In our carp stocks, these processes are initiated ± 6-8 months after hatching. 

Maturation and ovulation is first successful at an age of 15 months (25 C; Komen, 

unpublished results). Maturation is histologically visible as germinal vesicle migration 

(GVM) and germinal vesicle dissolution (GVD). During GVM the chromosomes condense 

and proceed from diplotene/diakinesis to metaphase I (Lessman and Kavumpurath, 1984). 

Meiosis I is completed during the following GVD with the extrusion of the first polar body. 

The tetrads are separated in two half-tetrads (sister-chromatid pairs) which are randomly 

divided between oocyte and polar body (Masui and Clarke, 1979; see also figure 1). 

The oocyte immediately proceeds to metaphase II after which meiosis is arrested until 

ovulation and fertilization/activation. Egg activation is characterised by an initial increase 

in cytoplasmic free calcium, followed by a burst of cortical alveoli (Gilkey, 1981), extensive 

cytoplasma movement towards the animal pole, and resumption of meiosis. Fertilized but 

not activated eggs remain quiescent (Lessman and Huver, 1981), while activated but not 
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fertilized eggs do not develop beyond the initial meiotic division: the centrioles carried by 

the spermatozoid are required for mitotic spindle organisation (Alberts et al., 1983). 

In properly fertilized and activated eggs meiosis is completed with the separation of the 

sister-chromatids during anaphase/telophase, and the expulsion of the second polar body. 

Again the sister-chromatids are randomly divided between the oocyte and the polar body 

(figure 1). The remaining chromatids, now called chromosomes, form a female pronucleus 

which fuses with the male pronucleus. The first mitotic division is initiated at 30 minutes 

after fertilization (25 C), and subsequent divisions follow with intervals of 20 minutes 

(Neudecker, 1976; see also chapter 4). 

Figure 1 Chromosome configurations during meiosis. 

TETRADS 
(recombination) 

> MEIOSIS 

HALF TETRADS 
(sister chromatid pairs) 

/ „ v _ _ _ 

GAMETES 
(chromatids) © > MEIOSIS II 

sister chromatids non-sister 
chromatids 

2.2 Artificial gynogenesis 

Gynogenesis requires the fertilization of a diploid egg with genetically inactivated sperm. 

This inactivation of sperm is usually achieved by gamma or U.V. irradiation (see Chourrout, 

1987 and Komen et al., 1990, for details). Diploidy of the egg is achieved by inhibition of 

a meiotic or mitotic division. 
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Figure 2 The genetic consequences of fertilization with genetically inactivated sperm, and 

restoration of diploidy by inhibition of the second meiotic or first mitotic division 

(from Komen et al., 1990). 
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Following the scheme of events from the onset of meiosis to the first mitotic divion, three 

ways are open to intervention (figure 2): 

- inhibition of meiosis I (endomeiosis) 

- inhibition of meiosis II (retention second polar body) 

- inhibition of mitotic division (endomitosis).Inhibition of meiosis I has not yet been induced 

artificially. It is however the most common mode in natural occurring gynogenetically repro

ducing triploid species. The best studied example is Carassius auratus gibelio, or crucian 

carp (In Japan a different subspecies is recognized: C. auratus langsdorfii). Crucian carp 

chromosomes replicate before meiosis, but synapsis and crossing-over does not take place. 

Apparently the entire meiosis I is omitted. The hexaploid oocytes go through one (the 

second) meiotic division after fertilization, in which the sister-chromatids of the three (!) 

homologous half-tetrads are separated and a triploid embryo is produced (Cherfas, 1966; 

Purdom, 1984). Since the sister chromatids are identical due to the absence of cross-overs, 

the resulting embryos are genetically identical (Nakanishi, 1987). The sperm, usually from 

a related species, i.e. common carp, activates the oocyte but does not décondense to form 

a pronucleus. Instead it is expelled from the oocyte (Yashimata et al., 1990). 

Inhibition of meiosis II. This type of intervention is most commonly used to produce 

gynogenetic offspring since it is relatively easy to perform (see Nagy et al., 1978; Chourrout, 

1987 and Komen et al., 1990). The principle is based on a disruption of the meiotic spindle 

by a physical shock administered to the egg. This shock can be a temperature shock (heat 

or cold) or a pressure shock. The microtubuli forming the meiotic spindle are destroyed in 

both cases. Applied just after fertilization and activation of the egg at metaphase II it results 

in an abortive meiotic division (retention of the second polar body). In carp, cold shocks 

can probably also cause a resorption of the polar body after extrusion (see chapter 3). The 

genetic consequences of this type of meiotic inhibition are profound. Since the sister 

chromatids are not divided, the egg is genetically identical to the group of half-tetrads left 

after meiosis I (figures 1 and 2). These half-tetrads will be homozygous (identical sister-

chromatids) if crossing-over has not taken place: the resulting embryo is homozygous. How

ever, if crossing-over does take place (and in most cases it does) then the sister-chromatids 

are not identical and the resulting half-tetrad will be heterozygous (figure 2). For a single 

locus with a normal gene A and a mutant gene a, the consequences are as follows (Nace 
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et al., 1970; Streisinger et al, 1986): 

a) The resulting half-tetrads will become heterozygous if a single (or an uneven number of) 

cross-overs take place between the gene and its centromere. The genotype of the offspring 

is A/a. 

b) the resulting half-tetrads will remain homozygous if no (or an even number of) cross

overs takes place between the gene and its centromere. The genotype of the offspring is 

A/A and a/a. 

The frequency of heterozygous offspring A/a thus reflects the frequency of effective 

crossing-over between non-sister chromatids. This frequency is termed "Y". The frequencies 

of homozygous offspring are ().5(1-Y) for A/A, and 0.5(1-Y) for a/a. The frequency of 

crossing over between gene and centromere diminishes when the gene is located closer to 

the centromere: "Y" is a measure for the gene-centromere distance (Nace et al., 1970). 

Table 1 lists some values of Y for different genes in common carp. The maximum value for 

Y under conditions of unlimited crossing-over between non-sister chromatids is 2/3 or 0.67 

(Streisinger et al., 1986). The occurrence of genes with Y values > 0.67 indicate a high level 

of chiasma interference. Interference is considered a morphological constraint on the 

number of cross-overs and chiasmata that can occur on a chromosome. For common carp 

it means that a number of chromosomes have only one obligatory cross-over and one 

chiasma per meiotic event. The consequences of this phenomenon are extensively discussed 

in the following chapters. 

Inhibition of the first mitotic division produces fully homozygous offspring. The genetic 

consequences of this type of gynogenesis are straightforward (figure 2). The haploid set of 

chromosomes in the ovulated and activated (fertilized) oocyte, are replicated (duplicated) 

prior to the first mitosis. Each chromosome then consists of two identical sister-chromatids 

which become separated during the following cell division. During endomitosis the sister 

chromatids are separated but cell division is skipped: the embryo becomes diploid. 

The genotypes in the offspring are identical to the genotypes of the gametes (eggs). The 

variation in individual genotypes is considerable. 

Let n be the haploid number of chromosomes in a species, then 2" is the number of possible 

diploid genotypes which can be produced in the absence of crossing-over. This number is 

even larger with crossing-over. 
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Table 1 Frequencies of recombination for several genes in gynogenetic offspring of 

common carp. 

Phenotype 

Scalation 

Blond 

Transparent 

"pattern" 

"pigment" 

Esterase 

Transferrin 

Yellow eggs 

"maleness" 

Locus 

S/s 

N/n 

Bl/bl ; B2/b2 

+ /tp 

D/ + 

L/ + 

S 
F 

Tf 

+ /ye 

+ /mas-l 

Recombination 
Frequency 

0.11 0.05 

0.97 

0.12 ; 0.12 
0.42 ; 0.64 

0.006 

0.74 

0.70 

0.09 
0.28 

0.06, 0.05, 
0.06, 0.05, 

>0.90 

>0.9() 

(Y) 

).13 
).14 

Re 

1,4 

1 

4 
5 

5 

1 

1 

2 
2 

2,3 
5 

5 

5 

(1- t herlas. ll)77; 2- Chcrlas and Truvcllcr. 1978; 3- Nagy cl al„ 1978; 4- Nagy ct al.. ll>7>>; 5- Komen, 
unpubl. results). 

The importance of this type of gynogenesis is illustrated by the second gynogenetic 

generation produced from such a homozygous gynogenetic female: this offspring is 

fully homozygous and identical, and can be considered as a clone. Such clones have 

only been produced in two aquarium fish species, Brachydanio rerio (Streisinger et al., 

1981) and Oryzias latipes (Naruse et al.. 1985). 
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2.3 Aim and structure of the present thesis 

An important problem associated with scientific research on fish is the absence of well 

defined inbred strains. Inbred strains can be produced by conventional full-sib mating, 

but at least 10-15 generations are needed to produce homozygous inbred strains. Using 

females of common carp, which reach maturity at 1.5-2 years, this would take some 

15-30 years. In practice experimental fishes are usually obtained from commercial fish 

farms, or bred in the laboratory using only few broodstock fish. In both cases the 

genetic background and the degree of inbreeding of the fishes is unknown. The 

experimental results from different laboratories are therefore sometimes difficult to 

compare. Another problem concerns the large variation in responses of individuals 

measured in endocrinological and immunological bioassay's. In consequence, large 

numbers of fish are usually needed to obtain statistically significant results. 

In order to solve these problems, the aim of the present research was to develop 

homozygous inbred strains of common carp by gynogenetic breeding in only two 

generations. Such inbred strains would be of fundamental importance for ongoing 

basic and applied research on the immune response (Department of Experimental 

Animal morphology and Cell Biology) and sex differentiation and gonad development 

(Department of Fish Culture and Fisheries) of common carp. 

The structure of the present research is shown in figure 3. 

In the first two chapters (3 and 4) the optimum conditions to produce gynogenetic fry 

by inhibition of the second meiotic or first mitotic division are investigated. Chapter 

4 is concluded with the production of homozygous inbred strains by combination of 

both gynogenetic procedures. 

Gynogenesis by inhibition of the first mitotis produces fully homozygous offspring. A 

first generation of homozygous offspring represents an entire library of all possible 

genotype combinations of the mother (if enough animals are kept) and each individual 

in such a library represents a potentially inbred strain. The selection of the 

homozygous individuals for subsequent gynogenetic reproduction should therefore be 

based on a thorough knowledge of the inheritance of various traits. Such knowledge 

includes the number of genes involved in the expression of a trait, their allelic interac

tions, the presence of deleterious récessives, the location of genes on chromosomes 
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and possible linkage associations with other genes. This information can be obtained 

by comparing heterozygous and homozygous gynogenetic sibling offsprings. A 

comparison of skin graft reactions in full-sib, heterozygous and homozygous 

gynogenetic siblings is described in chapter 5. The gonad development and fertility of 

such groups was investigated in chapter 6. 

Figure 3 Thesis structure (numbers refer to thesis chapters) 
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Since gynogenetic inbred strains are expected to be all female, a method for effective 

sex inversion had to be developed to produce inbred strains with functional males. 

The effects of oral administration of testosterone on gonad development of non-

inbred carp are described in chapter 7. The effects of testosterone administration on 

gonad development of fish from two inbred strains and 4 Fl hybrids are described in 

chapter 8. The results are presented in the context of various observations concerning 

atypical sex ratio's in non-inbred and gynogenetic common carp. Experiments, 

designed to elucidate the genetic basis of atypical sex ratio's, are also described in this 

chapter. 
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ABSTRACT 

Komen, J., Duynhouwer, J., Richter, C.J.J, and Huisman, E.A., 1988. Gynogenesis in common 
carp (Cyprinus carpio L. ). I. Effects of genetic manipulation of sexual products and incubation 
conditions of eggs. Aquaculture, 69: 227-239. 

The effects of genetic manipulations of eggs and sperm and incubation conditions of eggs on 
the yields of gynogenetic fry were investigated. Ten ml of sperm (1:3 diluted) was inactivated 
using UV-irradiation at a dose of 2200 J m~2 min - 1 for 1 h. Gynogenesis was achieved by cold-
shocking eggs, fertilized with irradiated sperm, at different times after fertilization. Consistent 
yields of 25-50% viable, gynogenetic fry were obtained when eggs were incubated at 24°C and 
cold-shocked (0°C, 45 min) 1-2 or 7-9 minutes after fertilization. This bimodal response of eggs 
to cold shocks was essentially different from the responses found by other authors who researched 
gynogenesis in carp using NaCl/urea solutions and temperatures below 24 °C for incubation. Al
though the latter conditions proved to delay the first sensitive period, this could not fully account 
for the observed differences. 

INTRODUCTION 

In artificial gynogenesis, eggs are fertilized with irradiated sperm, which is 
genetically inactive, and kept diploid by suppression of the second meiotic di
vision (retention of the second polar body) or of the first mitotic division. In 
the first case the degree of homozygosity depends on the rate of crossing-over 
between non-sister chromatids during the first meiotic division (Nagy et al., 
1979; Thompson, 1983; Chourrout, 1984,1986). In the second case completely 
homozygous diploid offspring are produced (Streisinger et al., 1981; Nagy, 
1986). 

Genetic inactivation of the sperm has been achieved by irradiation with 60Co 
gamma or UV rays (Table 1). Thermal or pressure shocks are used for the 
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suppression of the second meiotic or first mitotic division of the oocytes. In 
common carp, Cyprinus carpio, gynogenesis has been induced using these 
methods but the yields of viable gynogenetic fry were highly variable, ranging 
from 1 to 50% (Table 2). Differences in genetic manipulation techniques and 
incubation conditions of eggs may account for these variable results. 

The establishment of gynogenetic carp inbred broodstock lines in our labo
ratory aims at standardization of endocrinological (Richter et al., 1987) and 
immunological (Van Muiswinkel et al., 1986) bio-assays. In the present paper 
the effects of genetic manipulations and incubation conditions of eggs are in
vestigated to maximize yields of gynogenetic fry under standardized conditions. 

MATERIALS AND METHODS 

Husbandry of broodstock and fry 

Broodstock of common carp was raised from eggs to maturity in the hatchery 
of the Department of Fish Culture and Fisheries at Wageningen Agricultural 
University. The fish were kept in rectangular tanks, containing 800 1 of water 
at 23 ° C. The flow rate was 201/min, maintaining the 0 2 content above 7 ppm. 

The fish had reached an age of about 1.5 years (mean weight 2 kg) at the 
time that they were used for artificially induced breeding. They were fed trout 
pellets (Trouvit, The Netherlands ) at a daily ration of 1% of body weight using 
Scharfflinger conveyerbelt feeders. 

Fry were fed Artemia salina nauplii during the first 2 weeks after hatching, 
followed by trout pellets (Trouvit-00) according to the recommendations of 
Huisman (1976). 

Irradiation of milt, cold shocking of eggs and determination of incidence of 
gynogenetic fry 

Eggs and milt were obtained by artificial reproduction as described by Woy-
narovich (1962). Females, homozygous for a gene determining scalation (mir
ror, ss), received two injections of carp pituitary suspension (cPS) at 0.3 and 
3 mg acetone-dried carp pituitary (Hydroquest International, Rosemont, NY) 
per kg body weight, respectively. 

The time interval between the two injections was 30 h and stripping of eggs 
was carried out 10-11 h after the second injection. Males, heterozygous for 
scalation (scaled, Ss ), received one injection of 1 mg cPS per kg of body weight 
and stripping of milt was carried out 16 h afterwards. The motility of the sperm 
was checked under a microscope (Zeiss, 100 X ) by adding some water to a few 
droplets of milt (control of sperm quality). The milt stock was diluted 1:3 with 
0.85% NaCl solution to prevent sperm motility. Samples of 10 ml were spread 
on a large watch-glass (in order to obtain a thin layer of spermatozoa) and 
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placed in a petri-dish filled with ice. The milt was magnetically stirred during 
irradiation. The lamp (Philips 15 watt germicidal UV tube, 253.7 nm) was 
warmed up 30 min before the onset of irradiation. The distance between the 
lamp and the sperm sample was 2.5 cm and the intensity of irradiation, mea
sured at the sperm surface, 2200 J m - 2 m in - 1 (Photodyne optical power en
ergy meter, model 66XLA with cut-off filter WG 305 and fused-silica neutral 
density filter ). 

Samples of 200-400 eggs were mixed with 100 //l of irradiated sperm ( control 
of sperm irradiation) or with untreated sperm (control of egg quality). The 
moment of water addition ( at 24 ° C ) to the mixture of eggs and milt was taken 
as the fertilization time ( t=0 ). The eggs were spread on a screen bottom ( mesh 
size 0.5 mm ) of a basket ( PVC, diameter 10 cm ), which was placed in a thermo-
regulated (24°C) water recirculation system. 

Cold shocking was done at different times after fertilization and for various 
lengths of time by transferring the basket to a tank with pre-cooled water at 
the desired temperature. 

The gynogenetic effects of the manipulations were checked by fertilizing 
untreated and cold-shocked eggs with irradiated sperm. When there were non
viable fry in the first and normal viable fry in the second treatment, the ma
nipulations were considered to have been effective. Four weeks after hatching, 
scalation of fry originating from cold-shocked eggs fertilized with irradiated 
sperm was also assessed. A complete absence of scalation was considered to be 
a reliable second check that no paternal transmission of genes had occurred. 

Experimental design-

All experiments except the last were carried out in duplicate. One male and 

one female broodfish were used per experiment. 
In the first experiment the effects of dilution ( 1:3 and 1:9 with physiological 

saline solution) and duration of irradiation (0, 5,10, 20, 30, 40, 50 and 60 min) 
on genetic inactivation and mortality of sperm were examined. 

The second experiment concerned the effects of cold shocking eggs at var
ious times after fertilization. Eggs were incubated at 24 °C and cold shocked 
(0°C, 45 min) 0, 0.5,1, 2, 3, 5, 7, 9,12 and 15 min after fertilization. Time and 
duration of the cold shock were based on the results of Gervai et al. (1980a) 
and Nagy et al. (1978). Sperm (dilution 1:3) was irradiated for 60 min (see 
first experiment ). 

In the third experiment the effects of different cold shock temperatures (0, 
4 and 8°C) and durations (15, 45 and 90 min) were examined. Eggs were in
cubated at 24 °C and exposed to a cold shock given 1 min after fertilization. 
One minute was chosen because of the high yields obtained in the second ex
periment. All nine combinations were tested at the same time. For inactivation 
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of sperm (see second experiment ) a dilution of 1:3 and an irradiation duration 
of 60 min was applied. 

In the fourth experiment the influence of incubation temperature prior to 
the onset of the cold shock was investigated. Eggs were incubated at three 
different temperatures (24, 22 and 20°C) and cold shocked (0°C, 45 min) at 
various times (1,2,3,4, and 5 min ) after fertilization. After cold shocking they 
were incubated at 24 °C. Sperm was diluted 1:3 and irradiated for 60 min. 

In the fifth experiment the effects of an NaCl/urea-solution (commonly 
used to remove the sticky layer of carp eggs ) on the yields of viable gynogenetic 
fry were investigated. According to Woynarovich (1962), this solution in
creases the fertilizing capacity of sperm and extends the period during which 
the eggs can be fertilized. Eggs were fertilized and incubated using either a 0.4% 
urea/0.3% NaCl solution or normal water, both at 24 °C. The eggs were then 
cold shocked (0°C, 45 min) at various times (1, 2, 3, 5, 7, and 9 min) after 
fertilization. Sperm was diluted 1:3 and irradiated for 60 min. 

Parameters and statistical analysis 

The survival of developing eggs ( % ) at t = 24 h and £=48 h (only in the first 
experiment) and of viable fry at £=96 h were used as parameters to study the 
effects of genetic manipulation and incubation conditions. All data, except 
those from the fifth experiment, including the controls of sperm irradiation 
and egg quality, were transformed using an arcsin transformation (Sokal and 
Rohlf, 1969) and analysed with Duncan's multiple range test (P = 0.05) using 
an SPSS computer program (Nie et al., 1975). 

RESULTS 

The controls for egg quality in all experiments had high rates of normal 
viable fry (85-95% ), indicating a good quality of eggs and sperm. No scaled 
individuals were found amongst the presumed gynogenetic fry in any of the 
experimental groups 4 weeks after hatching, indicating the absence of trans
mission of paternal genes in the fry. 

First experiment (Fig. 1) 

At t=24 h there was no statistically significant effect of irradiation duration 
of sperm diluted 1:3 (compare t=0 and 60 min ) on the survival rate of embryos 
(P=0.05). At £ = 48 h, however, the survival rate decreased significantly dur
ing the first 20 min of irradiation and remained fairly constant in the following 
30 to 60 min. The yield of normal fry at t=96 h decreased significantly with 
increasing duration of irradiation. The lowest values were found at durations 
of 50 and 60 min. 
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Fig. 1. Effects of dilution (1:3, and 1:9) and duration of irradiation (min) on genetic inactivation 
of carp sperm, expressed by survival rate of developing eggs and yield of normal fry. Irradiation 
dose 2200 J m~ 2 m i n - 1 . Incubation temperature 24°C. Means with a common superscript are not 
significantly different by Duncan's multiple range test ( P=0 . 05 ) . 

At a sperm dilution of 1:9 and at £=24 and 48 h, a significant decrease of 
survival of embryos was found between 20 and 40 min of irradiation. Complete 
mortality was observed at durations of 50 and 60 min. The additional control 
for sperm quality at t = 0 revealed that at these irradiation durations the sperm 
became immotile. At t=96 h a very high mortality occurred irrespective of the 
duration of irradiation. 

52 



233 

In the following experiments a dilution of 1:3 and an irradiation duration of 
60 min was applied. 

Second experiment (Fig. 2) 

At t=24 h the survival of embryos from eggs cold shocked at t = 1, 7 and 9 
min was significantly higher than that from eggs cold shocked at t=0.5, 2, 5, 
12 and 15 min. (P=0.05). Shocks administered at £ = 0 and 3 min resulted in 
100% mortality. 

At £ = 96 h the yield of normal fry from eggs cold shocked at t — 1, 2, 7 and 9 
min was significantly higher than that from eggs cold shocked at £ = 0.5 and 5 
min. Shocks administered at t=0, 3,12 and 15 min resulted in 100% mortality. 
There was a low survival in the sperm irradiation control (2% ) indicating that 
almost all fry can be considered to be of gynogenetic origin. 

SURVIVAL % 

100r 

50 

0 

t - 2 4 H (EMBRYOS) 

0"fe1 2 3 
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100r 
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7 9 12 15 A B 
MIN AFTER FERTIL IZATION 

t - 9 6 H (NORMAL FRY) 

JL 
0V21 2 3 9 12 15 A B 

MIN AFTER FERTILIZATION 

Fig. 2. The effects of cold-shocking eggs at various times after fertilization on the survival of 
embryos after 24 h and the yield of normal fry after 96 h. Cold shock 0°C, 45 min. Incubation 
temperature 24 ° C. A = control of egg quality. B = control of sperm irradiation. Means with a com
mon superscript are not significantly different by Duncan's multiple range test (P=0.05). 
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Third experiment (Fig. 3) 

At t=24 h the survival of embryos from eggs which were cold shocked for 15 
min was high (82% at 8°C). Long shock durations (45 and 90 min) in com
bination with high temperatures (4°C and 8°C) caused high mortalities. The 
survival rates were significantly different from those of the other cold-shocked 
egg samples and controls (P=0.05). 

At £=96 h the survival of normal fry from eggs cold shocked at 4° and 8°C 
was significantly lower than that from eggs treated at 0°C. A high survival, 
irrespective of shock duration, occurred at 0°C. There was a low survival in 
the control for sperm irradiation (0.3% ). 

Fourth experiment (Fig. 4) 

At £=24 h there was no incubation temperature effect on egg samples cold 
shocked at t= 1 and 2 min. A significant influence of incubation temperature 

K TEMP. CO 

A B 0 15 45 90 
SHOCK DURATION (MIN ] 

t - 9 6 H ( N O R M A L FRY) 

TEMP. <°C) 

45 90 
SHOCK DURATION (M IN) 

Fig. 3. The effects of different combinations of cold shock temperature and duration on the sur
vival rate of embryos and the yield of normal fry. The eggs were shocked 1 min after fertilization. 
Incubation temperature 24 ° C. For further explanation see Fig. 2. 
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Fig. 4. The effects of different incubation temperatures prior to cold shocking on the survival of 
embryos (after 24 h) and normal fry (after 96 h). The cold shock was administered at various 
times after fertilization. Cold shock 0°C, 45 min. Incubation temperature 24°C. For further ex
planation see Fig. 2. 

on survival became apparent in egg batches cold shocked at t=3 min, survival 
being lowest at 24 ° C and highest at 20 ° C (P=0.05 ). Irrespective of incubation 
temperature, cold shocks administered at t=4 and t = 5 min caused high 
mortalities. 

At t=96 h a similar pattern of effects of incubation temperature on the sur
vival of fry was found. The only exception was a significant difference between 
egg samples incubated at 20 and 22 ° C and cold shocked att=2 min. The yield 
of normal viable fry in the sperm irradiation control was 3.2%. 

Fifth experiment (Fig. 5) 

At t=24 and 96 h the survival of embryos and fry from eggs cold shocked at 
t= 1, 2, and 7 min, using water as a fertilization medium, was relatively high. 
High mortalities of fry occurred with cold shocks applied at t=3, 5 and 9 min. 

The egg samples which were fertilized in NaCl/urea, and cold shocked be
tween 3 and 9 min, showed high survival rates after 24 h. Survival of fry oc-
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Fig. 5. The effects of NaCl/urea solution, used for fertilization and incubation prior to cold shock
ing, on the survival of embryos and yields of normal fry from eggs cold shocked at various times 
after fertilization. Cold shock 0 ° C, 45 min. Incubation temperature 24c C. For further explanation 
see Fig. 2. 

curred at the shock interval of 2-9 minutes, with relatively small peaks at t=3 
and 7 min. 

The sperm irradiation controls showed very low values and in this respect 
there was no difference between the two fertilization media. 

DISCUSSION 

It has been stated that UV irradiation permits only small samples (2.5 ml or 
less) of sperm to be treated at the same time (Thorgaard, 1983; Chourrout, 
1986). 

In the first experiment complete genetic inactivation was achieved using a 
relatively high density of sperm (dilution 1:3) in combination with a long du
ration of irradiation (60 min). Genetic inactivation was also achieved using a 
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low density of sperm (1:9 dilution) and short durations of irradiation (5-40 
min). These conditions correspond with those used by Stanley (1976) and 
Hollebecq et al. (1986) (Table 1). 

Irradiation of sperm diluted 1:9 for 50 and 60 min in the present research 
resulted in immotile sperm with corresponding 100% mortality (within 24 h) 
in the egg samples fertilized with this sperm. In contrast, irradiation of sperm 
diluted 1:3 for 50-60 min resulted in a high survival of embryos up to hatching. 
Many embryos and hatched fry displayed the typical haploid syndrome, i.e. 
microcephalia, short and curved tail and distorded and elongated yolk sac 
(Gervai et al., 1980b). The difference in survival between sperm diluted 1:9 
and 1:3 might be caused by the greater penetration of UV in more dilute sperm 
samples. 

Our results do not show the classic Hertwig effect, i.e. low survival of em
bryos at low doses of irradiation and high survival at higher doses. According 
to Ijiri and Egami (1980), this effect is only seen at very low doses of irradia
tion, 50 J/m2 or less. 

Cold shocks (at 4°C, for 60 min) administered at 5 and 15 min after fertil
ization to eggs incubated in an NaCl/urea solution (at 20°C ) resulted in yields 
of gynogenetic fry of 1.1-31 and 0.9-56% respectively (Nagy et al., 1978; Table 
2). First and second sensitive periods at 1-3 and 7-9 min after fertilization 
were also found in our research (second experiment). 

An incubation temperature below 24°C (fourth experiment) and the use of 
NaCl/urea solution (fifth experiment) both delay the first sensitive period a 
little; but this fails to give a full explanation for these differences. The differ
ences in time sequence of the two sensitive periods between the two research 
works may reflect differences in husbandry conditions or differences in strains. 
The broodfish used by Nagy et al. ( 1978) were kept in ponds and were of local 
Hungarian and Yugoslavian strains. Those used in our experiments were raised 
from eggs to maturity under standardized hatchery conditions and were of a 
Dutch strain. 

Applying cold shocks at a fixed time after fertilization without determining 
the time sequence of the two sensitive periods under the conditions used (in
cubation temperature, fertilization media ) may account for the low yields of 
gynogenetic fry mentioned in other publications (Ueno, 1984; Linhart et al., 
1986; Van Muiswinkel et al., 1986). The effects of different cold shock tem
peratures and durations, applied during the first sensitive period, revealed that 
a relatively high survival, irrespective of durations (15-90 min), occurred at 
0°C (third experiment). In contrast to Nagy et al. (1978), we found that a 
shock temperature of 4 ° C in combination with a long shock duration resulted 
in a low yield of gynogenetic fry. 

The bimodal response to cold shocks seems to be typical of carp eggs. In 
many other species, e.g. Tilapia aurea (Valenti, 1975), Siluris glanis (Krasnai 
and Marian, 1986) and Clarias gariepinus (Richter et al., 1986) only one sen-
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sitive period was found. The bimodal response in carp can probably be related 
to two consecutive phases occurring during meiosis. Temperature and pressure 
shocks dissociate the microtubules that make up the spindle during meiosis II 
( Dustin, 1984 ). Shocks applied at a later stage of second polar body formation 
caused an absorption of the second polar body by the ovoplasma (Makino and 
Ozima, 1943; Romashov and Belyaeva, 1965; Rott, 1965). 

The results of Hollebecq et al. (1986) using heat shocks agree with our re
sults in those few cases where two sensitive periods were found. The majority 
of their results, however, revealed only one sensitive period, variable in its 
location (Table 2). Heat shocks therefore may act in a different way on the 
eggs than cold shocks. 

Gynogenesis by inhibiting the first mitotic division (Table 2) was recently 
achieved in carp by heat shocking (40°C) eggs at 30 (Komen et al., in prepa
ration) or 40 (Nagy, 1986) min after fertilization. The homozygous fish ob
tained by this method will be used to develop a gynogenetic inbred broodstock 
line of common carp. 
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ABSTRACT 

Homozygous gynogenetic fry of common carp (Cyprinus carpio L.) were produced by 

heat shocking eggs, activated with U.V.-irradiated sperm (1:3 diluted, 10 ml, 2200 J/m2, 

min) during metaphase of the first mitosis. Consistent yields of 5 - 15 % viable, 

gynogenetic fry were obtained when eggs were shocked at 40 C for 2 minutes, 28-30 

minutes after fertilization. The homozygous nature of the gynogenetic fry was 

demonstrated by the mendelian segregation patterns of three recessive mutant pigment 

genes. Homozygous inbred strains were produced by heterozygous gynogenetic 

reproduction (2nd polar body retention) of homozygous gynogenetic females, while F, 

hybrids were produced by crossing these females with homozygous gynogenetic male 

siblings. The clonal nature of these strains was unequivocally demonstrated by the 

acceptance of reciprocally exchanged skin allografts. 

INTRODUCTION 

Inbred strains are important instruments in immunological, endocrinological and genetic 

studies. In fish, conventional inbred strains have only been developed in two species: 

Xiphophorus maculatus (Kallman, 1970) and Oryzias latipes (Hyodo-Taguchi, 1980), 

while inbred strains of commercially important fish species are still lacking. Most 

Salmonidae and Cyprinidae have long generation intervals and full-sib mating is 

therefore not a method of choice (Falconer, 1981). For these species gynogenesis has 

been adopted as a rapid method for the production of inbred strains (Thorgaard, 1983; 

Nagy and Csanyi, 1984). In gynogenesis, eggs are fertilized with irradiated and therefore 

genetically inactive sperm, and made diploid by either retention of the second polar 

body (heterozygous gynogenesis) or by inhibition of the first mitosis (endomitosis or 

homozygous gynogenesis). 

Studies on the degree of inbreeding in heterozygous gynogenetic offspring revealed a 

considerable degree of heterozygosity for several loci due to a high rate of 

recombination between these loci and the centromere during meiosis (Thorgaard et 

al., 1983; Thompson and Scott, 1984). Repeated heterozygous gynogenetic reproduction 
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will therefore lead to genetically identical but only partly homozygous strains (Nagy and 

Csanyi, 1984). In contrast homozygous gynogenesis should produce fully homozygous 

offspring, and gynogenetic reproduction of such homozygous animals would thus produce 

homozygous inbred strains in only two generations, as has been demonstrated in 

Brachydanio rerio (Streisinger et al., 1981) and Oryzias latipes (Naruse et al., 1985). Such 

inbred strains are often termed clones. 

In our laboratory, we are interested in the development of homozygous inbred strains 

of common carp (Cyprinus carpio) to use in studies on the genetics of the immune 

response (Kaastrup et al., 1989; Komen et al, 1990) and sex differentiation (Komen and 

Richter, 1990), 

In a previous paper we investigated the genetic inactivation of carp sperm by U.V.-

irradiation and the production of heterozygous gynogenetic common carp under 

standardized conditions (Komen et al., 1988). In this paper we describe the optimum 

conditions to produce homozygous gynogenetic fry by inhibition of the first mitosis 

through heat shocks. We also report on the production of homozygous inbred strains by 

subsequent gynogenetic reproduction through retention of the second polar body. The 

clonal nature of these strains was confirmed by skin transplantations. 

MATERIALS AND METHODS 

Husbandry of broodstock and fry. 

The broodstock of common carp used for gynogenetic experiments was a Fl generation 

from a cross Dl(rj) x W15(ç). 

D and W stands for random bred German (D) and Dutch (W) carp strains. The 

broodstock was raised from egg to maturity in the hatchery of the central fish culture 

facilities at the Wageningen Agricultural University. Fry were raised at 25 C and fed 

freshly hatched Artemia salina nauplii during the first three weeks after hatching, 

followed by vitamin-C enriched trout pellets at a daily ration of 30 gr/Kg08 body weight. 

Mature fish were kept in 800 1 rectangular tanks with recirculating water (23 C), and 

were fed trout pellets (Trouvit, Trouw, The Netherlands) at a daily ration of 1 % of 

body weight, using conveyer-belt feeders. The flow rate was 20 1/min, maintaining the 
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0 2 content above 5 ppm. The broodstocks had reached an age of 1.5 years (mean weight 

2 kg) when they were used for artificially induced breeding. 

Irradiation of milt and temperature shocking of eggs. 

Eggs and milt were obtained and treated as described previously (Komen et al., 1988). 

Females received two consecutive injections of carp pituitary suspension (cPS: 

Hydroquest International, Rosemont, N.Y) of 0.3 and 3 mg per kg body weight 

respectively, and were stripped 10 - 11 hrs after the last injection (at 23 C). Males 

received one injection of 1 mg cPS per kg body weight and were stripped 16 hrs later. 

The milt stock was diluted 1:3 with ice-cold 0.85 % NaCl solution and irradiated with 

U.V. (Philips 15 W germicidal tube, 253.7 nm) for 60-65 min. The intensity of irradiation, 

at a distance of 2.5 cm between lamp and sperm surface, was 2200 J/m2,mi„. 

Samples of 400 - 800 eggs were mixed with 200 jA of irradiated milt suspension and 

activated by adding water. The moment of water addition was taken as the fertilization 

time t0. The eggs were spread on the screen bottom (mesh size 0.5 mm) of a round 

basket ((/o 10 cm, transparent P.V.C), which was placed in a thermo-regulated water 

recirculation system (24.0 C). The system and baskets had been pretreated with 5 ppm 

malachite-green to prevent fungus infection. 

Heat shocking was done by transferring the baskets to a tank with pre-heated water at 

the desired temperature. The controls for sperm irradiation and egg quality were not 

heat shocked. 

The quality of the gametes was checked by the survival of embryo's and yields of normal 

fry from eggs fertilized with non-irradiated milt and incubated without a temperature 

shock (control for egg quality). The effectiveness of sperm irradiation was asessed by 

the absence of normal, viable fry in groups of eggs fertilized with irradiated milt but 

incubated without a temperature shock (control for sperm irradiation). 

Determination of the optimum heat shock treatment to produce homozygous 

gynogenetic fry. 

The first mitotic division in carp embryos was located by histological examination of 

embryos, fixed at regular intervals after fertilization. Preliminary heat shock experiments 
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had indicated this mitotic division to occur between 20 and 40 minutes after fertilization. 

Samples of 40-80 eggs were mixed with undiluted non-irradiated milt in petri dishes (o/5 

cm) and incubated in a thermo-regulated (24°C) water bath. 

Figure 1 First mitotic division and initiation of cleavage in embryo's of common carp 

(Cyprinus carpio L.) 

28 30 32 
minutes after fertilization 

t 20 fusion of male and female pronuclei 

t 25 prophase: pronuclei with spindle pole formation and condensation of chromosomes 

t 28 prometaphase: breakdown of nuclear envelope and arrangement of chromosomes in spindle 

t 30/t 32 metaphase: clear bipolar spindle with chromosomes aligned across the centre 

t 35 late anaphase: ordered segregation of chromosomes and increasing aster size 

t 40 telophase: formation of daughter nuclei and progression of cleavage furrow 

pn = pronuclei; sp = spindle pole; ne = nuclear envelope; s = spindle; c = chromosomes; a = aster; 

f = cleavage furrow; n = daughter nuclei, (x 740) 
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The developing embryos were fixed at t^, t25, t28, t30, t32, t35 and t40 min after fertilization 

in Bouin's fluid. Groups of 10 -14 eggs from each sample were embedded in paraffin 

and serially sectioned at 14 /urn. The sections were stained according to Lessman and 

Huver (1981) in Harris-hematoxilin / congo-red. 

In a consecutive experiment, the effects of heat shocking eggs at different times after 

fertilization around the time of first mitosis were examined. The eggs were incubated 

at 24.0 C and heat shocked (40.0 °C, 2 min) at 2 min intervals between 24 and 40 

minutes after fertilization. Temperature and duration of the heat shock were based on 

the results of Streisinger et al. (1981) and Nagy (1987). In total 6 trials were performed, 

each with a different male and female. Another experiment concerned the effects of 

different combinations of heat shock temperature (39, 40 and 41 C) and duration (1, 

2, and 3 min). Eggs were incubated at 24.0 C and heat shocked at 30 min after fertiliza

tion. For this experiment 1 male and 1 female were used. 

All treatments in both experiments were carried out in duplicate. The treatments were 

considered to have been effective if the heat shocked groups produced significantly more 

normal fry than the control groups for sperm irradiation. 

Determination of incidence of homozygous gynogenetic fry. 

The homozygous nature of the gynogenetic fry was demonstrated by using the mendelian 

segregation patterns of three recessive mutant pigment genes. Four females, 

heterozygous for these recessive mutations, were gynogenetically reproduced and the 

frequencies of mutant phenotypes in the presumably homozygous offspring was 

determined. The mutations concerned were blond (designated bt and b2) and transparent 

(designated tp) (Komen, 1990). Homozygous b ^ / b , , ^ fry lack normal melanophore 

development and have a yellow phenotype. Heterozygous animals b,, + /b„b2, +,b2/b„b2 

and +, + /b,,b2 all show normal melanophore development and cannot be distinguished 

from each other. 

Homozygous tp/tp fry are completely transparent as a result of reduced guanophore 

development. Heterozygous animals +/tp are normal in appearance. The 3 genes bj, b2 

and tp are not linked to each other. Fry which are both blond and transparent lack 

melanophores and are translucent with black eyes. All phenotypes are clearly distinguish-
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able 4 weeks after hatching (Komen, 1990). 

Five replicate groups of 400- 1200 eggs from each of 3 females, heterozygous for b, or 

b2, and tp, were fertilized with irradiated milt and heat shocked (40.0 °C, 2 min) at 30 

min after fertilization. Eggs from a fourth female, heterozygous for both b, and b2, and 

tp, were similarly treated. After hatching the gynogenetic fry from the 5 replicate groups 

of each female were counted and pooled. Fry from the controls of sperm irradiation 

of each female were also pooled. After 4 weeks the mortality in each group was assessed 

and the frequencies of blond, blond/transparent, transparent and normal pigmented fry 

determined. 

All 4 females were homozygous for a recessive mutation in the S (scalation) gene and 

had a scattered phenotype (s/s: mirror carp). The (Dl x W15)-male used was hetero

zygous S/s and scaled. A possible genetic contribution from insufficiant irradiated sperm 

was assessed by the occurence of scaled fry in gynogenetic offsprings and controls for 

sperm irradiation. 

Production of homozygous clones and Fl hybrids. 

Two females (E4 and E20) and two males (E5 and E6) from one presumably 

homozygous gynogenetic offspring were used to produce two gynogenetic homozygous 

inbred strains and four F, hybrid groups. The offspring had been raised to maturity in 

the hatchery of the central fish culture facilities at the Wageningen Agricultural 

University as already described (see husbandry). The females used were two of the few 

that could be reproduced succesfully at an age of 2 years (see also discussion). The 

males in this broodstock were homozygous for a recessive mutation in a sex determining 

gene designated mas-1. They can be considered as true XX-males (Komen and Richter, 

1990). Homozygous gynogenetic inbred strains (clones) were produced by cold shocking 

eggs from females E4 and E20 to inhibit the second meiotic division as described 

previously (Komen et al., 1988). Eggs were fertilized with irradiated milt and shocked 

at 0 C for 45 minutes, 1-2 min after fertilization. F, hybrids were produced by fertilizing 

eggs from the E4 and E20 females with non-irradiated milt from the E5 and E6 males. 

The clonal nature of the strains was examined twenty weeks after hatching by skin 

grafting between individuals of the same strain (Komen et al., 1990). The fish were 
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arranged in pairs and one graft was reciprocally exchanged in each pair. This was carried 

out with 24 fish per strain with the exeption of the E4 x E5 and E^ x E5 strain from 

which only 8 individuals were tested. As a control on the immuno-competence of the 

homozygous fish grafts were likewise exchanged between fish from the E20 and E4 

clones. This was done with 12 fish from each clone. 

Table 1 The survival of embryos after 24 hrs and the yield of normal fry after 96 hrs 

(%) from eggs, heat shocked at various times after fertilization. Each trial refers 

to the offspring of a different male and female. Eggs were incubated at 24 °C 

and shocked at 40 °C for 2 minutes. 

errfcryo 

trial 

1 
2 
3 
4 
5 
6 

normal 

trial 

1 
2 
3 
4 
5 
6 

24 

2.6 
10.3 

fry 

24 

0.0 
0.0 

26 

7.5 
11.7 
57.8 
32.2 

26 

0.6 
0.6 
1.1 
2.2 
2.8* 

tine after fertilization 

28 

54.9 
21.0 
14.5 
39.8 
37.8 
27.5 

28 

10.6* 
0.7 
1.4 
5.6* 

12.2* 
5.2* 

30 

15.1 
31.1 
20.3 
24.0 
21.5 
23.0 

30 

4.8 
11.6* 
2.4 
2.2 
5.8* 
1.4 

32 

0.0 
17.7 
8.6 

17.4 
12.1 
12.3 

32 

0.0 
6.6* 
0.3 
2.9 
5.4 
1.5 

34 

0.0 
14.4 
0.7 
0.0 
0.7 
6.5 

34 

0.0 
9.4* 
0.0 
0.0 
0.7 
0.0 

(min) 

36 

5.1 
4.6 
0.3 

0.4 

36 

0.3 
0.0 
0.0 

0.0 

38 

0.6 

38 

0.0 

40 

64.0 

5.7 

40 

2.0 

0.0 

A 

96.3 
75.9 
84.7 
97.9 
71.8 
98.3 

A 

92.6 
49.5 
65.9 
96.7 
71.3 
95.8 

B 

88.9 
44.0 
65.0 
59.7 
72.5 
89.1 

B 

0.2 
0.9 
0.0 
0.7 
0.5 
0.5 

A = control of egg quality; B = control of sperm irradiation. 

* = yields of normal fry (mean values of duplicates) significantly different from sperm control according 

to Duncan's multiple range test (P<0.05). 
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Randomly sampled fish from each strain were transferred to aquaria with recirculated 

and U.V. sterilized water (23 °C), and individually numbered by tattooing (Langley 

hypodermic, Langley, U.K.). A 3x5 mm full thickness skin allograft was taken from the 

dark (many melanophores) dorsal side of the donor and slipped trough an incision under 

the pale ventral skin of the recipient. Two days later the recipient skin covering the graft 

was removed. Autografts, likewise taken from the dorsal skin of the recipient and 

grafted next to the allograft, served as a control on transplantation technique. Grafts 

were examined under a low power microscope every two days until 14 days after 

transplantation, and once a week thereafter until full acceptance was accomplished. The 

extent of hemorrhaging and the degree of melanophore destruction and regeneration was 

recorded. 

Parameters and statistical analysis. 

The yields of normal fry (%) after hatching and yolk-sac absorbtion (t,6) in the various 

treatment groups and controls for sperm irradiation of the heat shock optimisation trials 

were compared to determine the effects of the heat shock treatments. All data were 

transformed using an arc-sin transformation and analysed with Duncan's multiple range 

test (P<0.05)(Sokal and Rohlf, 1969) using an SPSS computer program (Nie et al., 1975). 

The yields of homozygous fry were similarly used to compare the sensitivity of the eggs 

from the four different females to the gynogenetic treatment. Homozygous gynogenetic 

progeny of the bl, + , + /bl,b2,tp females were expected to contain equal ratios of blond, 

transparent, blond/transparent and normal fry. Similarly the +, +, + /b l,b2,tp female (nr 

4, table 3) should produce 25 % blond and blond/transparent fry in equal ratios, and 75 

% normal and transparent fry in equal ratios. A chi-square test for goodness of fit 

(P< 0.05) was used to determine whether these frequencies of normal, blond, transparent 

and blond/transparent fry in the four groups of offspring deviated significantly from the 

expected ratios. 
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RESULTS 

Histological examination of carp embryos during the first mitotic division (Figure 

1)-

All eggs examined showed normal development, indicated by the formation of a large 

blastodisc at the animal pole and the migration of yolk vesicles towards the vegetal pole. 

The first mitosis of the embryo occurs between 20 and 35 min after fertilization (a.f.). 

At 20 min a.f. the male and female pronuclei fuse to form a large nucleus with 

associated asters. The first mitosis is initiated at 25 min a.f. by a condensation of the 

chromosomes and the formation of spindle poles. At 28 min a.f. the embryo enters 

prometaphase: the nuclear envelope dissolves and the chromosomes attach themselves 

to the spindle fibers. During metaphase between 30 and 32 min a.f. the chromosomes 

are aligned across the middle of a conspicuous spindle. The sister-chromatids are 

separated during the following ana/telophase and pulled towards the spindle poles. The 

asters increase in size and at 40 min a.f. a cleavage furrow can be seen. The 

chromosomes decondensate and form two new daughter nuclei. 

Heat shock treatments (Table 1; Figure 2) 

High rates of developing embryos and yields (49.5 - 96.7 %) of normal fry were found 

in the controls for milt and egg quality. All controls for sperm irradiation had similar 

high rates of developing embryos but only few normal fry (0 - 0.9 %) were recovered, 

indicating complete genetic inactivation of sperm without loss of fertilization capacity. 

The survival of embryos and yields of normal fry of eggs shocked at different times after 

fertilization (a.f.) were found to correlate with the successive stages of mitosis (compare 

figure 1 and table 1). 

The survival of embryos increased progressively with eggs shocked at t24, t26, t28 and 

t30 a.f., i.e. from prophase to prometaphase, and decreased when eggs were shocked at 

later stages of the mitotic division. There was some variation between the trials concern

ing the location of the optimum survival range. Survival was usually highest (20.3-57.8 

%) when eggs were shocked between 26 and 30 min a.f. 
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Figure 2 The survival rate of embryos and yields of normal fry (%) from eggs, shocked 

at different combinations of heat shock temperature and duration. Eggs and 

sperm originate from the same female and male. Eggs were incubated at 24 C 

and shocked 30 minutes after fertilization. 

SHOCK-DURATION (MIN.) 

t-96 HRS.INORMAL FRY) 

SHOCK-DURATION (MIN.) 

40 41 
SHOCK-TEMP.rC) 

A = control of egg quality; B = control of sperm irradiation 
* = yields of normal fry (mean values of duplicates) significantly different from the sperm irradiation 
control according to Duncan's multiple range test (P< 0.05). 

Statistically significant yields of normal fry (5.2 - 12.2 %, table 1) were obtained when 

eggs were shocked at 28-30, and occasionally 32 minutes a.f. Earlier or later shocks 

resulted in few surviving fry, not significantly different from the control of sperm 

irradiation. Varying the heat shock temperature and duration revealed a narrow range 

of permissive shock combinations (Fig.2). Between 25.4 and 56.9 % of the eggs shocked 

at 39 °C for 3 min, at 40°C for 2 and 3 min, or at 41 °C for 1 min, developed into 
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Table 2 The survival of embryos after 24 hrs, yields of normal fry after 96 hrs and 

mortality of fry between hatching and 28 days post hatching from eggs of 4 

different females, heterozygous for "blond" and "transparent". Eggs were 

incubated at 24 C and shocked (40.0 C, 2 min) 30 minutes after fertilization. 

Fatale 

1 

2** 

3 

4 

replicate 

1 
2 
3 
4 
5 
B 

1 
2 
3 
4 
B 

1 
2 
3 
4 
5 
B 

1 
2 
3 
4 
5 
B 

Number of 
eg^; 

1022 
790 

1068 
742 

1294 
912 

947 
1676 
878 
861 
839 

494 
748 

1014 
1139 
771 
938 

557 
455 
610 
782 
389 
887 

survival t24 
entaryos (%) 

67.3 
80.3 
60.7 
66.2 
51.6 
89.1 

69.1 
57.3 
64.1 
65.9 
82.8 

62.6 
61.9 
59.8 
58.9 
66.3 
91.0 

47.2 
55.0 
53.9 
48.7 
53.0 
93.4 

survival tq* 
normal fry (%) 

10.1 
12.3 
9.8 
7.5 
4.8 
0.6 

15.7 
3.5 
8.9 
6.9 
0.8 

14.4 
12.6 
10.1 
10.1 
11.3 
0.7 

11.0 
9.2 
6.8 
7.2 

12.3 
0.9 

normal fry*) 
(mean ± sd) 

8.6 ± 2.9 

8.8 ± 5.1 

11.3 ± 2.3 

9.3 ± 2.3 

mortality 
% 

57.3 

48.0 

44.4 

36.1 

control for sperm irradiation (B) not included 
* one replicate was excluded due to fungus infection. 

normal embryos after 24 hrs and produced statistically significant yields of normal fry 

(4.8-14.3 %). Eggs shocked at 39°C but for shorter durations showed a similar survival 

of embryos but did not yield significant numbers of normal fry. Eggs, shocked at 41 C 

for 2 or 3 minutes exhibited nearly 100 % mortality within 24 hrs. 
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Table 3 Frequencies for normal, transparent, blond and blond/transparent fry in 

presumed homozygous gynogenetic offspring from 4 different females, 28 days 

after hatching (see also table 2). 

Panale 

1 

2 

3 

4 

B 

ga io type 1 ) 

K b ^ + y b ^ b ^ t p ) 

( + , b 2 , + / f c l , b2 ' t p ) 

( + , b 2 , + / b 1 , b 2 , t p ) 

(+ ,+,+ / b j ^ t p ) 

day 20 
N 

180 

179 

261 

159 

20 

normal 
N % 

44 

43 

58 

55 

11 

24 .4 

24 .0 

22.2 

37.7 

55 .0 

t r a n s p a r e n t 
N % 

43 

44 

57 

60 

7 

23.9 

24 .6 

21 .8 

34.6 

35.0 

b l c r d 
N % 

48 

47 

74 

20 

0 

26 .7 

26 .3 

28 .4 

12 .6 

0 

b l o r r i / t r an sp 
N % 

45 

45 

72 

24 

2 

25.0 

25 .1 

27 .6 

15 .1 

10 .0 

Chi 2 

0.31 

0.20 

3.72 

1.22 

12 .8* 

1 the genotypes ( + ,b2, + /b ,,b2,tp) and (b,, +, + /b hb2,tp) cannot be distinguished 
B control for sperm irradiation (pooled values) 
* the observed frequencies for normal, transparent, blond and blond/transparent fry are significantly 
different from the expected frequencies according to the Chi-square test for goodness of fit (Poos = 7.82). 

Incidence of homozygosity in gynogenetic fry (table 2). 

All 4 females produced relatively high numbers of gynogenetic fry. Differences in yields 

of normal gynogenetic fry between females were insignificant but there was a 

considerable variation in yields between replicate groups of each female (3.5 -15.7% for 

female nr 2). All offspring suffered considerable mortalities (36.1 - 57.4 %) during the 

first 28 days after hatching. The observed frequencies of normal, blond, transparent and 

blond/transparent fry in each group of pooled offspring from the 4 females after 4 

weeks were not significantly different from the expected frequencies (table 3). There 

was a slight excess of blond and blond/transparent fry in the offspring of female nr 3. 

Only 20 normal fry from the pooled sperm irradiation control survived until 4 weeks 

after hatching. Eleven were normally pigmented, 7 were transparent and two were 

blond/transparent. This ratio was significantly different from either a 1:1:1:1 or 3:3:1:1 

ratio (p<0.05). None of the offspring, including the sperm irradiation control, contained 

scaled fry indicating a complete absence of paternally inherited genes. 
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Table 4 Skin grafting between individuals of presumed homozyous clones and Fl 

hybrids. 

Strain 

E4 gyn 

E20 gyn 

E4 x E6 

E20 x E6 

E4 x E5 

E20 x E5 

E4 vs E20 

Number of 
fish 

24 

24 

24 

24 

8 

8 

12 vs 12 

accepted 

21 

22 

20 

18 

8 

6 

0 

allografts 

lost rejected 

3 0 

2 0 

4 0 

6 0 

0 0 

2 0 

2 22 

autografts 

accepted lost 

22 2 

23 1 

21 3 

19 5 

8 0 

7 1 

22 2 

Homozygous gynogcnetic clones were produced by cold shocking eggs from females E4 and Ej0 at 0 C, 1-2 

minutes after fertilization. F, hybrids were produced by fertilizing eggs from the E4 and E20 females with 

non-irradiated milt from the E5 and E6 males. For skin grafting the fish were divided into pairs and one 

allograft was reciprocally exchanged per pair. Grafts were also reciprocally exchanged between 12 fish from 

the E4-gyn and 12 fish from the E20-gyn groups. 

Homozygous clones and Fl hybrids (Table 4). 

The clonal nature of the homozygous inbred and Fl strains was confirmed by the 

permanent acceptance of allografts. Some allografts failed to adhere to the host and 

were lost after removal of the recipient skin. Allografts reacted identically to the auto

grafts with respect to damage and regeneration of pigment and the extent of hemor

rhage. All grafts showed some vascularisation which disappeared between 6 and 8 days 

after transplantation. Destruction of pigment cells, due to mechanical damage, was 

observed during the first 6 days after transplantation. Regeneration of melanophores 

started around 10 days after transplantation, and after 3 weeks the graft was completely 
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healed and accepted. Grafts exchanged between E20 and E4 fish were rejected within 12 

to 16 days after transplantation. All allografts showed extensive vascularisation and 

hemorraghing. Melanophore destruction started 4 days after transplantation and was 

completed during the following 8 - 12 days. 

DISCUSSION 

In our experiments consistent yields of 5 -12 % (max 15.7) viable homozygous fry were 

produced when haploid eggs, incubated at 24 C, were subjected to a heat shock of 40 C 

for 2 min, 30 min after fertilization, i.e. at metaphase of the first mitotic division. Similar 

conditions of the heat shock and time of application were reported by Nagy (1987) who, 

in a single experiment, produced gynogenetic fry with a heat shock applied at 40 min 

after fertilization. This difference can be explained by the different incubation 

temperatures used (24 C vs 22 C), but more likely has a genetic basis (Komen et 

al., 1988). Comparable differences in embryonic development rate are found between 

various inbred mice strains (Hansmann et al, 1985). 

Heat, cold and pressure shocks are known to be effective in disrupting the microtubili 

that make up the spindle during mitosis and meiosis (Dustin, 1984). Applied at 

metaphase, they cause failure of the mitosis and subsequent cellular division (Rein-

schmidt et al., 1979; Streisinger et al., 1981; Onozato, 1984). The productive heat shock 

combinations (39 C,3 min to 41 °C,1 min) found in this study are a little higher than 

those reported by Hollebecq et al. (1986) but might be typical for most Cyprinids. Heat 

shocks of 41 C for 2-3 min are lethal in common carp but succesfully induced diploidy 

in Oreochromis niloticus (Mair et al.,1987), Brachydanio rerio (Streisinger et al.,1981), 

and Oryzias latipes (Naruse et al, 1985). For Salmonids, optimum heat shock tempera

tures of 36-38 C have been reported (Thorgaard et al., 1981). 

There is a remarkable consensus regarding the low and variable yields of homozygous 

fry reported in all these studies, irrespective of whether androgenesis or gynogenesis is 

applied (Chourrout, 1987). Partly this appears to be a consequence of the critical condi

tions of the shock treatment (see fig 2 and table 2). However, the fraction of eggs in 

metaphase at the time of shock treatment will determine the fraction of eggs that can 
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respond favourably to the shock. Common carp eggs, cold shocked shortly after fer

tilization, are all in metaphase II of the meiosis and yields of normal fry are usually high 

(25-50 %: Nagy et al., 1978; Komen et al, 1988). The variable and increased range of 

productive shock times around 30 minutes after fertilization (see table 1) indicate some 

variation in developmental rate between eggs of the same spawn. Synchronously 

developing eggs, in conjunction with proper timing of the first mitosis, are therefore 

imperative for succesfull gynogenesis (Streisinger et al., 1981; Chourrout, 1984; Naruse 

et al., 1985). 

An important problem associated with very low yields of gynogenetic fry is the 

contamination with heterozygous spontaneous diploids which occasionally survive 

suboptimal shock treatments (Purdom et al., 1985; Linhart et al., 1987). Spontaneous 

diploids arise from non-disjunction during the first meiotic (M-I) or second meiotic (M-

II) division and this mechanism might be genetically controlled, as was demonstrated in 

common carp (Cherfas, 1981), plaice (Thompson et al., 1981) and mice (Bartels et al., 

1985). In this study we used two pigment markers to detect M-I or M-II nondisjunction. 

M-I non-disjunction results in 100 % heterozygous offspring for genes located close to 

the centromere, such as transparent. Similarly, M-II nondisjunction in gynogenetic 

offspring from +, + /b„b2 females is detected by the presence of approximately 6 % 

blond fry (Komen, 1990). However, we did not find evidence for the existence of any 

substantial numbers of heterozygous fry in the presumed homozygous offspring (see 

table 3). On the other hand, the presence of nearly equal numbers of transparent and 

normal fry, and the almost absence of blond fry in the pooled control for sperm irradia

tion (table 3) suggest an origin from non-disjunction in meiosis II for these fry. It is 

unknown whether these diploids actually survive optimal heat shock treatments, since 

this should result in tetraploid fry. Experiments designed to produce tetraploid carp were 

unsuccesful (unpublished results) while screening of large numbers of homozygous 

gynogenetic fry has never revealed the presence of anything but diploids. However, it 

cannot be excluded that very few heterozygous fry do survive the treatment but are 

outnumbered by high yields of homozygous gynogenetic fry, as was suggested by Purdom 

(1985). Rigorous screening of large numbers of presumably homozygous fish for 

electrophoretically detectable heterozygous phenotypes of various enzymes could 
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resolve this question. 

The ultimate proof for homozygosity came from transplantation testing of the 

homozygous clones and F, hybrids, produced from the presumably homozygous 

broodstock. Skin (scale) grafting has been succesfully used to demonstrate the clonal 

nature of natural occurring gynogenetic populations of Xiphophorus maculatus (Kallman, 

1970) and triploid clonal Carassius gibelio langsdorfii (Nakanishi et al., 1987). However, 

in the only two reports on gynogenetic homozygous clones of fish (Streisinger et al., 

1981; Naruse et al., 1985) this conclusive piece of evidence was omitted. 

In carp, histo-compatibility genes exist as at least one major locus and multiple minor 

loci, which are codominantly expressed. Even small differences in minor histocom-

patiblity genes result in chronic rejections of grafts (Komen et al., 1990). However, all 

allografts exchanged among members of the homozygous clones or F, hybrids were 

unequivocally accepted. Furthermore grafts exchanged between homozygous EJO and E4 

fish were all rejected (table 4). These results illustrate the power of this technique for 

future screening of clones of common carp and other fish species. 

Homozygous clones and their hybrids will open up new exciting areas for selective 

breeding. The hybrid strains show an important reduction in variation for various 

morphological traits when compared to an outbred strain (Komen et al., in prep). Since 

most variability in common carp is probably non-additive (Moav and Wohlfarth, 1968), 

selected hybrids are expected to show important heterosis as well, as has been outlined 

by Cherfas (1981), and Nagy (1987). However, the production of homozygous clones is 

not without problems. The inbreeding depression expressed in homozygous gynogenetic 

offspring is considerable and many fish are lost during weaning (see table 2) and 

maturation (25 - 35 %). Furthermore, many mature homozygous females show severe 

defects in their gonads and only a few (< 10 %!) can be gynogenetically reproduced 

(Komen et al., in prep.). These problems might illustrate why only three fish species 

have been cloned so far, despite numerous reports on the production of homozygous fry 

(Brachydanio rerio: Streisinger et al., 1981; Oryzias latipes: Naruse et al., 1985; Cyprinus 

carpio: Komen et al., this paper). 
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ABSTRACT 

The fate of skin allografts exchanged among heterozygous and homozygous gynogenetic 

common carp siblings, and among newly developed inbred strains and F, hybrids , is 

described. Heterozygous gynogenetic offspring were produced by fertilizing eggs with 

U.V.- irradiated sperm and by treating the resulting zygote with a cold shock (0 C, 45 

min). The temperature shock causes retention of the second polar body which allows the 

eggs to develop into normal diploid fry. Homozygous gynogenetic offspring were 

similarly produced by using a heat shock (40 °C, 2 min) which suppresses the first mitotic 

division. Skin allografts exchanged among heterozygous gynogenetic carp exhibited 

prolonged survival with some allografts (21.8 %) surviving for over 28 days. Furthermore 

a strong histocompatibility locus was seen to seggregate in this group. In contrast skin 

allografts exchanged among homozygous gynogenetic siblings were all rejected within 

14 days (MST 9.4 days). New homozygous inbred strains, designated JJ and MM, were 

produced by gynogenetic reproduction of homozygous female carps, while Fj hybrids 

were produced by crossing of these homozygous females with homozygous male siblings. 

All grafts exchanged among members of the same strain were permanently accepted. 

Likewise grafts from homozygous strain members were accepted by fish from the related 

F,-hybrids, while the reverse grafts were rejected. These results provide evidence for the 

idea that in carp histocompatibility genes exist as at least one major locus and multiple 

minor loci, which are codominantly expressed. 

INTRODUCTION 

In all mammals, birds and amphibians studied, a group of closely linked genes, called the 

major histocompatibility complex (MHC), controls the production of a strong 

transplantation antigen that elicits acute allograft rejections (1, 2). Other, minor his

tocompatibility loci code for antigens which produce variable, but usually weak immune 

responses (3). Little is known about the organization of histocompatibility genes in 

fishes. Most teleosts consistently reject allografts in an acute fashion (4,5,6) but estimates 

on the number of histocompatibility loci involved vary from 4-7 in goldfish (7) to 10-15 

in different Xiphophorus species (8). Furthermore, reactions against allo-antigens in 

vitro, as demonstrated by mixed leucocyte reactions (MLR) in rainbow trout (Salmo 

gairdneri) also appear to be regulated by more than one histocompatibility locus (9). 
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The presence of a well developed immune system in carp (Cyprinus carpio) argues for 

the existence of a MHC homologue in these species (10,11). However, studies on skin-

allograft reactions or MLR using full-sib and gynogenetic offspring of common carp have 

been inconclusive (12-15). Comparable studies in the amphibians Xenopus laevis (16) 

and Rana pipiens (17) demonstrated a single strong histocompatibility locus responsible 

for acute graft rejection. 

More affirmative evidence for the existence of a MHC homologue in carp could be 

obtained by using inbred strains and F[ hybrids . Such strains can be produced by 

gynogenesis. In gynogenesis, eggs from common carp are fertilized with sperm which is 

genetically inactivated by U.V.-irradiation. Diploidy is restored by suppression of the 

second meiotic or first mitotic division. In the first case the resulting offspring are partly 

homozygous and heterozygous for those genes involved in recombination events between 

non-sister chromatids during the first meiotic division (heterozygous gynogenesis) (18, 

19). In the second case the post-meiotic haploid maternal genome is duplicated before 

the first mitotic division. Suppression of this division therefore results in fully homozy

gous diploid offspring (homozygous gynogenesis)(20,21). Subsequent gynogenetic repro

duction of homozygous fish will yield fully homozygous (inbred) strains while crosses 

between homozygous siblings result in strains of genetically identical but partly heterozy

gous fish (F^ hybrids). In the present paper, the two modes of gynogenetic reproduction 

were used to investigate the segregation of histocompatibility genes in the offspring, as 

inferred from the fate of skin allografts. Random selected homozygous carps were then 

propagated to produce homozygous inbred strains and Ft hybrids . The clonal nature of 

the strains was studied by intra- and inter-strain graft exchange. Knowledge on the or

ganization of histocompatibility genes in carp will facilitate the production of inbred 

strains with particular histocompatible genotypes. Such strains will be extremely useful 

for basic studies on the genetics of the immune response and the existence of a MHC 

at the evolutionary level of fish. 

MATERIALS AND METHODS 

Animals. Broodstock of common carp (Cyprinus carpio L.) were derived from a cross 

Dl(rj) x W15(<j»). D and W stands for random-bred German (D) and Dutch (W) strains. 

From this broodstock, one male and one female were selected for reproduction. Eggs 
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and milt were obtained by artificially induced reproduction as described before (19). 

Fry were raised in aquaria with recirculated and filtered water (24 C). They were fed 

Artemia salina nauplii for the first two weeks after hatching, followed by trout-pellets 

according to the recommendations of the manufacturer ( Trouw, Putten, the 

Netherlands). 

Gynogenesis. 

Gynogenesis was induced as described previously (19,21). Genetic inactivation of sperm 

was achieved by irradiating milt with U.V.(2200 J/m2/min) for 60 min. Heterozygous 

gynogenetic fry were produced by treating eggs, fertilized with irradiated milt and 

incubated at 24 C, with a cold shock (0°C, 45 min) starting 7-9 min after fertilization. 

The cold shock causes retention of the second polar body (2PB-group). Approximately 

35 % of the eggs developed into normal, diploid fry. To produce homozygous 

gynogenetic fry, eggs were fertilized with irradiated milt, incubated at 24 °C, and heat 

shocked (40 C, 2 min.) 30 min after fertilization. The heat shock causes endomitosis in 

the absence of a first cellular division (EM-group). Only 11% of the treated eggs 

developed into viable diploid fry. Control, full-sib fry were obtained by fertilizing eggs 

with non-irradiated milt (CO-group). Typically, more than 90 % of these normal 

fertilized eggs developed into fry. 

Inbred strains and F1 hybrids 

Two females (J and M) were randomly chosen from the EM-group and used for the 

production of homozygous inbred lines. Eggs from each female were fertilized with 

irradiated milt from an unrelated male and incubated at 24°C. They were then cold 

shocked (0 C, 45 min) 7-9 min after fertilization to produce two different groups of 

genetically identical homozygous fry (inbred strains JJ and MM). Two groups of 

genetically identical but partly heterozygous fry were produced by fertilizing the eggs 

from each female with milt from a homozygous male (S) of the EM-group (Fj hybrids 

JS and MS). 

Genetic markers. 

The original (WxD)-female used in this experiment was homozygous for a recessive gene 

inhibiting normal scalation (mirror carp: s/s) and heterozygous for two recessive mutants 
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(designated bl and b2) inhibiting melanophore development (black: b„ + / + ,b2). The 

(WxD)-males used were heterozygous scaled ( + /s) and homozygous black ( + , + / + , + ). 

The absence of scaled fry in presumptive gynogenetic groups provides a reliable check 

for the absence of paternal genes. The degree of homozygosity in 2PB- and EM-groups 

was estimated by the number of blond fish (no melanophores: M,b2/bl,b2). In 

heterozygous gynogenetic fry (2PB-group), due to a high cross over rate, only 3-6% 

blond fish are normally found, while in homozygous gynogenetic fish approximately 25% 

are blond (21). 

Experimental design. 

In a first series of experiments, grafts were reciprocally exchanged within groups of 5 

fish, which were randomly chosen from the CO-, 2PB- or EM-group. Each fish in a 

group received 4 allografts and 1 autograft. Three groups of 5 CO fish, 4 groups of 5 

2PB fish and 4 groups of 5 EM fish were tested. The fish were 6 months old at the start 

of the experiments (mean weight 150 g). 

In a second series of experiments, grafts were reciprocally exchanged between a group 

of 5 2PB fish and a group of 5 EM fish. Each fish received 1 allograft from each fish 

in the other group, and 1 autograft. The fish were 9 months old at the start of the 

experiment (mean weight 300 g). 

In a third series of experiments, grafts were reciprocally exchanged between fish from 

the inbred strains and F, hybrids. A fish from strain JJ received 1 allograft from another 

individual of strain JJ, and one from a fish belonging to strain MM and the hybrid group 

JS. Similarly, an animal from strain MM received an allograft from fish of strains MM, 

JJ and hybrid group MS. Fish from the MS hybrid group received grafts from 

individuals of the hybrid groups MS and JS and from strain MM, and fish from the JS 

group received allografts from donors of hybrid groups JS and MS, and strain JJ. In this 

way, 16 fish of each strain or hybrid group were tested. The fish were 6 months old at 

the start of the experiments (mean weight 250 g). 

Transplantations. 

Fish were transferred to aquaria with U.V.-sterilized water of 22° C and individually 

numbered by tattooing (Langley, hypodermic, U.K.). Skin grafting was started after an 

adaptation period of 2 weeks. Only mirror carp females with normal melanophore 



development were used. Donor and recipient were anaesthetised in 0.03% MS 222 

(Sandoz) in water. Grafting was performed under a low power stereomicroscope. A 5 

mm incision was made in the pale (few melanophores) ventral skin of the recipient. A 

3x5 mm, full-thickness skin allograft was taken from the dark (many melanophores) 

dorsal side of the donor, and slipped through the incision under the recipient skin. Two 

days later the overlying recipient skin was removed from the graft. Autografts were 

taken from the dorsal side of the recipient and transplanted to the ventral side of the 

same animal. Grafts were examined every other day and the fraction (%) of intact 

melanophores in the graft was estimated. The survival end point of the graft was defined 

as the number of days after transplantation at which all melanophores were destroyed. 

After day 28, regeneration of the underlying and surrounding recipient skin made a 

distinction between recipient and donor melanophores difficult and the examination of 

allografts was stopped. Only in the third series of experiments (see experimental design) 

graft examination was continued after 28 days with intervals of 5 days until a graft was 

completely destroyed. The median survival time in the first and second series of 

experiments was calculated as the day after transplantation when 50 % of the allografts 

in the experimental groups were rejected. In the third series of experiments, the mean 

survival time ± sd was calculated, since all allograft reactions in one group are in fact 

replicates. 

RESULTS 

The gynogenetic groups did not contain scaled individuals, indicating the absence of 

paternal genes in these fry. Fish from the CO-group (n = 292) were either scaled 

(51.4%) or scattered (48.6%) as expected. The number of blond fish in the EM-group 

(45 out of 211) and 2PB-group (12 out of 298) fitted the expected percentages of 25 % 

and 3-6 % respectively. No blond fish were found in the CO-group. 

First series of experiments (table 1). 

The median survival time of allografts in fish from the CO-group was 10.4 days. 

Autografts and allografts are indistinguishable for the first 2 days after transplantation. 

Blood recirculation is restored and the grafts become slightly inflamed. Mechanical 

damage to the grafts is manifested as local areas of destructed melanophores (less than 

89 



10 %). Autografts eventually heal in well and can not be distinguished from the 

surrounding host tissue after 12 days. Allografts become covered by hyperplastic host 

tissue and show vascularisation and hemorrhaging after 4 days. Melanophore destruction 

usually begins after 6-10 days and is completed within 8-18 days after transplantation. 

Table 1 Survival end points of allografts, exchanged within groups of 5 fish from 

different experimental groups (FS, 2PB or EM group). 

00 group 
exp. 1 

2 
3 

total 

percentage 

EM group 
exp. 1 

2 
3 
4 

total 

percentage 

2PB group 
exp. 1 

2 
3 
4 

total 

percentage 

8 

4 

4 

8.0 

5 
4 

2 

11 

16.4 

1 

1 

1.6 

Days after grafting 
10 12 14 16 18 

6 
6 
6 

18 

36.0 

7 
4 

10 
10 

31 

46.3 

2 
1 

3 

4.7 

6 
5 
5 

16 

32.0 

6 
4 
5 
5 

20 

29.9 

5 
3 
3 
2 

13 

20.3 

3 

2 

5 

10.0 

1 

3 
1 

5 

7.4 

2 
1 
5 

8 

12.5 

1 

3 

4 

8.0 

2 
2 
1 

5 

7.8 

3 

3 

6.0 

2 
2 
1 

5 

7.8 

20 

1 
3 
1 

4 

6.3 

22 24 26 28 

MST 10.4 days 

MST 9.4 days 

1 1 1 1 
2 2 1 

2 5 
2 7 

5 5 1 14 

7.8 7.8 1.6 21.8 

MST 16.8 days 
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Fish from the EM-group rejected all allografts within 14 days after transplantation (MST 

9.4 days), whereas all autografts were accepted. Allograft-reactions were vigorous with 

both graft and surrounding host tissue showing extensive vascularisation and hemorrhag

ing. Observation of the graft was often hampered by dense hyperplastic host tissue 

Table 2 Survival end points of allografts, exchanged within groups of 5 heterozygous 

gynogenetic fish (2PB group), classified as acute ( + ) or subacute/chronic (-) 

allograft reactions; and genotype assignments for a putative strong H-locus. 

A 
c 
c 
e 
P 
t 
o 
r 

(01) 
AA 

(02) 
AB 

(03) 
AA 

(04) 
AA 

(05) 
BB 

Donor (fish nr) 

(01)(02)(03)(04)(05) 

24 
-

L 

20 
-

12 
+ 

Li 

L 

14 
+ 

12 
+ 

20 
-

L 

24 
-

14 
+ 

22 12 
+ 

24 28 
-

18 10 
+ 

16 
+ 

14 
+ 

A 
c 
c 
e 
P 
t 
o 
r 

(06) 
AA 

(07) 
?? 

(08) 
BB 

(09) 
AA 

(10) 
AA 

Donor (fish nr) 

(06)(07)(08)(09)(10) 

18 
+ 

14 
+ 

28 
-

28 
-

28 
-

L 

28 
-

22 
-

20 
+ 

14 
+ 

14 
+ 

16 
+ 

28 28 
-

14 12 
+ + 

14 12 
+ + 

22 
-

28 
-

A 
c 
c 
e 
P 
t 
o 
r 

(11) 
AA 

(12) 
AA 

(13) 
BB 

(14) 
AB 

(15) 
AA 

Donor 

(11)(12)(13)(14)(15) 

28 
-

16 
+ 

20 
-

28 
-

24 
-

16 
+ 

24 
-

28 
-

12 
+ 

20 
+ 

20 
-

12 
+ 

14 L 
+ 

L 28 
-

18 18 
+ + 

28 
-

12 
+ 

A 
c 
c 
e 
P 
t 
o 
r 

(16) 
AA 

(17) 
BB 

(18) 
AA 

(19) 
BB 

Donor 

(16)(17)(18)(19) 

12 
+ 

26 
— 

12 
+ 

10 
+ 

12 
+ 

28 

22 8 
+ 

12 24 
+ 

10 
+ 

12 
+ 

1) L = grafts lost within 4 days after transplantation 
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covering the graft. Melanophore destruction started after 6 days and was usually 

completed at day 12 after transplantation. In contrast to fish from the CO or EM group, 

fish from the 2PB group exhibited prolonged survival of allografts (MST 16.8 days). 

Large differences were observed between individual allografts on the same recipient. 

Based on the intensity of the allograft reaction and pattern of melanophore destruction, 

two types of allograft reactions could be distinguished. Acute allograft reactions 

resembled allograft reactions in control fish. Melanophore destruction started 6-10 days 

after transplantation and was usually completed during the following 4-6 days. Sub-

acute/chronic allograft reactions showed markedly less vascularisation and hemorrhaging 

than acute allograft reactions. Melanophore destruction started late, 10-14 days after 

transplantation, and proceeded in an uneven way during the following 8-14 days. Some 

parts of the graft were destructed earlier than others. In some recipients all allograft 

reactions were markedly delayed. In these fish, chronic allograft reactions were very 

weak with allografts surviving for over 28 days without visible melanophore destruction. 

Classifying each individual allograft reaction as acute ( + ) or subacute/chronic (-), all 5 

fish in each experiment were assigned a putative genotype for a strong histocompatibility 

locus with alleles A and B (table 2). It is assumed that allografts from donors with the 

same genotype are chronically rejected, while grafts differing in one or both alleles from 

the recipient are rejected in an acute fashion. Fish with a heterozygous genotype (AB) 

reject all allografts chronically. 

Second series of experiments (table 3). 

More than 90 % of the allografts from 2PB fish were rejected within 12 days after 

transfer to EM fish (MST 9.4 days). Allograft reactions resembled those observed in 

grafts, exchanged among fish from the EM-group (see table 1). In contrast, skins from 

EM fish, grafted on 2PB fish, exhibited prolonged survival (MST 11.8 days). Allograft 

reactions were similar to those observed in grafts exchanged among heterozygous 

gynogenetic fish (table 1), although no clear distinction could be made in acute or 

chronic allograft reactions. Six allografts survived for 26 days or longer, showing little 

or no melanophore breakdown. 
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Table 3 Survival end points of allografts, exchanged between fish from the EM group 

and 2PB group. 

2PB on EM 
exp. 1 

2 
3 

total 

percentage 

EM on 2PB 
exp. 1 

2 
3 

total 

percentage 

8 

1 

2 

3 

6.2 

1 

1 

1.8 

10 

15 
6 
7 

28 

58.3 

12 
3 

15 

27.3 

12 

7 
4 
2 

13 

27. 

3 
6 
3 

12 

21. 

Days 

14 

1 

1 

2 

1 4.2 

2 
6 
2 

10 

8 18.2 

after 

16 

1 

1 

2.1 

2 
5 

7 

12.7 

grafting 

18 

l 

1 

2.1 

1 

1 

1.7 

20 22 24 26 28 

MST 9.4 days 

1 2 
1 2 
1 1 1 

3 3 3 

5.5 0 0 5.5 5.5 

MST 11.8 days 

Third series of experiments (table 4). 

All allografts, exchanged among fish of the same strain, were permanently accepted. 

Likewise, grafts from fish of strains JJ and MM were accepted by fish of hybrid groups 

JS and MS (Fig. la-lc), while the reverse grafts were uniformly rejected (20.2 ± 2.9 days 

and 18.9 ± 3.8 days respectively). Allograft reactions were subacute/chronic as in 2PB 

fish (first experiment) and showed little variation between individual fish from the same 

strain. Grafts, exchanged reciprocally between fish of strains JJ and MM, were all 

rejected in an acute fashion which resembled allograft reactions observed in EM fish 

(see first experiment). Grafts from fish of strain JJ survived slightly longer on fish of 

strain MM (16.6 ± 3.3 days) than the reverse grafts (13.1 ± 3.3 days) but this difference 

was not significant. A similar but more pronounced phenomenon was seen in grafts 

reciprocally exchanged between fish of the JS and MS hybrid groups. Grafts from MS 

fish were all rejected within 30 days (25.6 ± 4.6 days) by JS fish while the reverse grafts 
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were rejected in a truly chronic fashion (44.8 ± 6.2 days). In these grafts, pigment 

destruction started after 40 days, with a low degree of haemorrhaging. 

Table 4 Mean survival endpoints of allografts exchanged between fish of inbred (KK 

and MM) and recombinant (KS and MS) strains. 

DONOR STRAIN 

A 
C 
C KK 
E 

T 
0 MM 
R 

S 
T KS 
R 

I 
N MS 

KK 

accepted 

n = 13 

16.6 ± 3.3 

n = 13 

accepted 

n = 12 

X 

MM 

13.1 ± 3.3 

n = 9 

accepted 

n = 16 

X 

accepted 

n = 13 

KS 

20.2 ± 2.9 

n = 13 

X 

accepted 

n = 13 

44.8 ± 6.2 

n = 11 

MS 

xi 

18.1 ± 3.8 

n = 15 

25.6 ± 4.6 

n = 12 

accepted 

n = 11 

1) X = not tested 

DISCUSSION 

The present study showed that different modes of gynogenetic reproduction result in 

different types of allograft rejections. In full-sib progeny (CO-group), most grafts were 

rejected in an acute fashion with only few grafts showing prolonged survival ( > 18 days). 

These results are in good agreement with those of Hildemann and Owen (7), and 

indicate that more than one histocompatiblity locus (H-locus) is involved in graft 

rejection. This was confirmed by the allograft reactions observed among homozygous 

gynogenetic offspring (EM-group). In the case of a single strong H-locus, 50 % of the 

grafts from fish of this group are expected to have both alleles in common with the 

recipient. 
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Figure 1 Carp from the Fl hybrid KS group with fuly accepted grafts of a syngeneic KS 

donor (A) and an allogeneic KK doner (B), 120 days after transplantation. 

The fact that none of these grafts survived for more than 14 days can be taken as proof 

that a large number of H-loci are differing between donor and recipient. 

Surprisingly, grafts exchanged between fish from the 2PB group not only showed 

extended survival but also indicated the segregation of a strong histocompatibility locus 

in this group. Classifying each individual allograft reaction as acute ( + ) or subacute/-

chronic (-), all fish exept one (nr.7: see table 3) could be divided in AA, BB and AB 

genotypes for a strong locus. A prolonged survival of allografts was also found by Nagy 

et al.(12) and Van Muiswinkel et al. (15) in gynogenetic common carp, and by Nakanishi 

(14) in gynogenetic goldfish, and can be explained by assuming a relatively high degree 

of residual heterozygosity for minor H-loci in gynogenetic offspring, as suggested by 

Nagy (22). The relatively small size of fish chromosomes often allows no more than a 
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single obligate chiasma during meiosis (23, 24). Consequently, for distal genes the 

frequency of recombination and thus the fraction of heterozygous gynogenetic offspring 

(Y), is often high. In carp this is illustrated by a number of genes with y values of more 

than 0.67 (25) and by the fact that histocompatible lines of carps can only be obtained 

after at least 4 successive generations of heterozygous gynogenesis (12). It should be 

stressed that the actual survival times of the grafts are the result of the discriminatory 

capacity of the recipient (26). Fish which are heterozygous (and thus identical) for many 

minor H-loci show a reduction in histo-incompatibility with minor H-loci of the graft 

and are more likely to show the effects of a strong locus disparity than fish which are 

at large homozygous for these minor loci. In this respect, the genetics of histocom

patibility in common carp are identical to those in the toad Xenopus laevis (16) and the 

frog Rana pipiens (17). In both species the presence of a strong MHC locus was 

demonstrated in a group of heterozygous gynogenetic offspring with reduced histo-in

compatibility for minor H-genes. 

It was expected that the effects of a strong H-locus disparity on graft rejection would 

also show when homozygous (EM) skins were grafted on their heterozygous (2PB) 

siblings. However, the majority of the grafts, 81.8 %, were rejected within 16 days 

without evidence for a strong locus effect (compare table 1 and 3). The most likely 

explanation is that minor H-loci are in fact more antigenic in homozygous than in 

heterozygous form (3). Homozygous (EM) grafts are only rejected because both alleles 

of a given H-locus are different from the recipient regardless wether this is a 2PB or 

EM fish. In contrast, a large number of heterozygous (2PB) grafts are rejected because 

only one allele differs from the recipient (EM or 2PB). This allelic dosage effect 

apparently overrides the higher probabilities for homozygous grafts to be accepted. 

Similar findings have been obtained by Kallman (27) in inbred strains and F, hybrids 

of the swordtail Xiphophorus maculatus. 

The homozygous constitution of fish from the EM group was unequivocally 

demonstrated by the permanent acceptance of syngeneic grafts in the homozygous JJ and 

MM strains and the heterozygous MS and JS strains produced from these fish. 

Furthermore all JJ and MM grafts were accepted by JS and MS fish while the reverse 

grafts, which had one haploid genotype in common with their recipient, were rejected 

in a chronic fashion (see table 4). Finally, all allografts reciprocally exchanged between 

members of the two inbred strains were clearly rejected. Skin transplantation in common 
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carp was thus found to conform to the basic laws of transplantation (28) and showed 

that H-loci are indeed codominantly expressed in this species. 

The considerable discrepancy in rejection times of JS and MS grafts on MS and JS fish 

(44.8 vs. 25.6 days, table 4) indicate again a strong H-locus disparity between the two 

strains. The fish from strain JJ should be AA and fish from strain MM BB if we assume 

strain MS to be AB for a single strong H-locus, and fish from strain JS AA. The 

rejection of MS grafts by MM fish should then be more acute than the rejection of JS 

grafts by JJ fish. However, the observed rejection times in these groups (20.2 and 18.9: 

see table 4) do not fully support such a conclusion. One possible explanation is that the 

presumed strong H-locus is polymorphic and exists in allelic forms of different strength, 

as shown in mice and man (28). It can not be excluded however that the MM strain is 

in fact a low responding strain, due to certain defects in the immune system. This would 

also explain why JJ grafts are rejected slower than expected by MM fish. 

The experimental animals used in this study were hybrids of two selectively bred carp 

strains from distinct geographic areas, Dutch and German. This is probably the reason 

why the effects of a strong locus were so readily noted while in other studies, using 

gynogenetic fish from a single strain, this was not the case (12, 14, 15). The notion that 

this strong histocompatibility locus is in fact a homologue of the major histocompatibility 

complex in mammals and birds remains an intriguing possibility. Recently, a H locus 

with MHC class I-like characteristics has been identified using allo-antisera raised in 

another gynogenetic offspring of common carp, kept at our laboratory (29). It will be 

interesting to see wether such antisera can be used to identify the strong H-locus alleles 

in the inbred strains, discussed in this paper. Eventually, the demonstration of genetic 

linkage between these serologic specificities, acute graft rejection, MLR and GvH 

reaction will permit this histocompatibility system to be functionally defined as MHC 

(2). 
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Chapter 6 

THE EFFECTS OF HETEROZYGOUS AND HOMOZYGOUS GYNOGENETIC 

INBREEDING ON SEX, GONAD DEVELOPMENT AND FERTILITY 

IN COMMON CARP (Cyprinus carpio L.) 

J. Komen, G.F. Wiegertjes, V. van Ginneken, E.H. Eding 

and C.J.J. Richter 
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ABSTRACT 

The gonad development and fertility in three offsprings, produced by full sib breeding 

(FS group: F = 0.25), heterozygous gynogenesis (2PB group: F = 0.65) and homozygous 

gynogenesis (EM group: F = 1), using the same common carp female, is compared. 

Heterozygous gynogenetic offspring were all female, but the homozygous offspring 

consisted of 50 % males and intersexes. These males and intersexes were homozygous 

for a recessive mutant sex determining gene. Inbreeding significantly increased the mean 

gonad weight as well as the variation in gonad weights. Full sib and heterozygous 

gynogenetic offspring were normal in gonad development, but gonads from homozygous 

gynogenetic carp were often retarded in vitellogenesis. The ovulation response was 

significantly reduced with increasing levels of inbreeding while the numbers of 

precocious ovulations and non-responders in the 2PB and EM group increased. 

Homozygous fish were essentially free of recessive lethal genes. Yields of normal fry 

were reduced in crosses involving eggs from females of the FS and 2PB group when 

compared to crosses with eggs or milt from EM animals. FS eggs fertilized with EM milt 

gave significantly better yields of normal fry than any other group. A homozygous inbred 

strain and two Fl hybrids produced from homozygous gynogenetic offspring were 

comparable in development but the Fl hybrids showed a clearly reduced variation in 

both body weight and gonad development. In contrast, the phenotypic variation in the 

homozygous inbred strain was considerably enlarged for all traits studied. 

INTRODUCTION 

Gynogenesis is a useful tool for the rapid production of inbred strains of fish. Selected 

gynogenetic inbred strains and their crosses can be used for stock improvement (Wilkins, 

1981; Gjedre, 1988), for standardisation of bio-assays (Falconer, 1981; Richter et al., 

1987), and for studies on the regulation of complex biological traits, e.g. the immune 

response (Kaastrup et al., 1989) or sex determination and differentiation (Komen and 

Richter, 1990). 

However, the genetic control of reproductive and immunological traits in fish and their 

relationships with growth are still poorly understood, and proper selection criteria for 

inbred lines are difficult to formulate (Campton and Gall, 1988; Gjedre, 1988). 
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Furthermore the viability and fertility of homozygous inbred strains produced by 

gynogenesis has been questioned (Kinghorn, 1983). 

Analysis of the phenotypic values of a trait in gynogenetic offsprings with known degrees 

of inbreeding (F = degree of homozygosity) can provide information on the number of 

genes involved, the type of interaction between alleles and the presence of deleterious 

mutations. The mean value of a trait will be depressed in an inbred group as the result 

of phenotypic expression of unmasked recessive alleles and the reduced frequency of 

heterozygous loci expressing dominance and overdominance. Concomitantly the variance 

for this trait will be increased as the result of an increase in homozygous genotypes 

representing more extreme phenotypic values (Falconer, 1981; Kincaid, 1983). 

If gynogenesis is achieved by suppression of the second meiotic division (heterozygous 

gynogenesis) then the resulting offspring will be homozygous exept for those genes 

involved in recombination during meiosis (Nace, 1970). The effects of inbreeding for a 

particular trait in such gynogenetic offspring will therefore depend on the degree of 

homozygosity for the genes involved. Estimates of F in heterozygous gynogenetic 

offspring vary from 0.55 in rainbow trout to 0.65 in common carp (Cherfas and 

Traveller, 1978; Nagy and Csanyi, 1982; Thorgaard et al., 1983; Thompson, 1983). 

Gynogenesis by inhibition of the first mitotic division results in duplication of the 

haploid genome while the first cell division is omitted (endomitosis). The resulting 

offspring is fully homozygous (homozygous gynogenesis: F = 1) and subsequent 

gynogenetic reproduction of selected homozygous fish produces a homozygous inbred 

strain of genetically identical fish ("clone"). Homozygous gynogenetic inbred strains have 

been produced in zebrafish (Brachydanio rerio; Streisinger et al., 1981), medaka (Oryzias 

latipes; Naruse et al., 1985) and recently in common carp (Cyprinus carpio L.\ Komen 

et al., 1990a). Fl hybrids produced by crossing these homozygous strains are 

genotypically identical and essentially free of recessive deleterious genes (Streisinger et 

al., 1981). They are therefore expected to show a certain degree of heterosis and 

reduction in variation. 

In order to investigate the genetic control of reproductive traits in common carp and to 

test our assumptions concerning the effects of inbreeding and crossbreeding, we 

compared the gonad development and fertility in three groups of offspring, produced by 

full sib breeding (F = 0.25), heterozygous gynogenesis (F = 0.65) and homozygous 

gynogenesis (F = 1), using the same female. We also present data on the performance 
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of a homozygous inbred strain and two Fl hybrids produced from homozygous 

gynogenetic offspring. 

MATERIALS AND METHODS 

Experimental groups 

The female and male used for the production of the experimental groups were full sibs, 

selected from the progeny of a cross D x W . D and W are animals from a German (D) 

and Dutch (W) carp strain kept at our laboratory (see also chapter 1). The selected 

animals were free of any visible abnormalities and could be reproduced successfully. 

Eggs and milt were obtained and treated as described by Komen et al. (1988; 1990a). 

The milt stock was diluted 1:3 with ice-cold 0.85 % NaCl and 10 ml was U.V. irradiated 

(Philips 15 W germicidal tube; 2200 J/m2min at 253.7 nm) for 60-65 min to inactivate the 

paternal genome. Heterozygous gynogenetic offspring (second polar body or 2PB group) 
O 

was produced by giving eggs, fertilized with irradiated milt and incubated at 24 C, a 

cold shock (0 C during 45 min) 1-2 min after fertilization. Homozygous gynogenetic 

offspring (endomitotic or EM group) was produced by giving similarly fertilized and 

incubated eggs a heat shock (40 °C, 2 min), 30 min after fertilization. A full-sib control 

group (FS group) was produced by fertilizing eggs with untreated milt from the stock 

solution. 

Genetic markers 

The selected female was homozygous for a recessive gene determining scattered 

scalation (mirror carp: s/s), and heterozygous for the two recessive alleles of a 

duplicated gene involved in melanophore development (bl, + / + ,b2). Only homozygous 

bl,b2/bl,b2 animals have a yellow ("blond") fenotype due to reduced melanophore 

development (Komen et al., 1990a). The male was heterozygous scaled (wild type: +/s) 

and normally pigmented. Gynogenetic offspring should contain no scaled fry (no 

paternal inheritance) and 3-6 % (2PB group) or 25 % (EM group ) blond fry. Full sib 

progeny should consist of normally pigmented fry of which 50 % is scaled. 
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Husbandry 

Fry were raised in 140 1 aquaria with recirculating, filtered and U.V.-sterilized water (25 

C). They were fed freshly hatched Artemia salina nauplii during the first 3 weeks after 

hatching, followed by vitamin-C enriched trout pellets (Trouvit, Trouw, Holland) at a 

daily ration of 30 g/kg°8 body weight. Mortality was only assessed at 8, 15 and 22 weeks 

after hatching to minimise any damage from handling. Six months after hatching, 200 

randomly sampled fish (mean body weight 200 g) from each experimental group were 

transferred to each of three 8001 rectangular tanks with recirculating water (23 C). All 

groups were daily fed trout pellets at 1 % of body weight. The flow rate through each 

tank was 20 1/min, maintaining the 0 2 content above 5 ppm. 

Assessment of gonadal development 

Gonadal development, expressed as proportional gonad weight (gonado-somatic index 

: G.S.I.), maturation-stage (% post-vitellogenic eggs) and post-vitellogenic egg weight, 

was assessed by random sampling 30 fish from each experimental group at 13 months 

(sample 1) and 19 months (sample 2) after hatching. Fish were killed by electrocution, 

weighed to the nearest 0.1 g and dissected. Gonads were weighed to the nearest 0.1 g 

and the G.S.I, calculated as (gonad weight/total fish weight) x 100%. Gonadal sex and 

sex ratios were determined by macroscopic examination. Gonads were scored as female, 

male or intersex (gonads containing both testicular and ovarian tissue) and the colour 

of the eggs was recorded. Two samples of 0.5 - 1.0 g tissue were taken from the middle 

of the ovary. One sample was fixed in Ca-formol, mounted in paraffin and sectioned at 

10 fim. Sections were stained with haemaluin/eosin and classified by counting the 

numbers of previtellogenic, vitellogenic, post-vitellogenic and atretic oocytes present 

(Horvath, 1975). The maturation stage was expressed as % post-vitellogenic oocytes per 

section. The second sample was weighed to the nearest 0.001 g, fixed in Ca-formol and 

processed by separating and counting post-vitellogenic (yolky) eggs. Egg size was 

expressed as N (number of eggs) / g (ovary tissue), and calculated as: number of eggs 

in sample (N) / W sample (g). Samples from male and intersex gonads were taken from 

the middle of the organ and, in the case of intersex gonads, at the demarcation between 

ovarian and testicular tissue and processed for histological examination. 
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Assessment of fertility 

Fertility, expressed as ovulation-response after hormonal induction and as fertilization 

rates and yields of normal fry from ovulated eggs, was determined in randomly sampled 

females from the FS and the 2PB group at 21 months after hatching. Fish from the EM 

group could not be sexed with certainty (see results), and were randomly sampled 

irrespective of their suspected sex. The following procedure was repeated at weekly 

intervals until 36 fish of each experimental group had been tested. 

One group of 6 FS fish and one group of 6 2PB fish were each injected with a priming 

dose of 0.8 mg carp pituitary suspension (cPS: Hydroquest Int., Rosemont, N.Y) per kg 

body weight, and a booster dose of either 0.8 mg (control, 2 fish), 1.6 mg (2 fish) or 3.2 

mg (2 fish) cps / kg body weight, to induce ovulation. Six EM fish were all injected with 

0.8 mg and 3.2 mg cps / kg body weight, since we expected only very few females, who 

would respond, in this group. The time interval between injections was 30 h. All fish 

were stripped 11 h after receiving the booster injection (at 23 °C; Horvath 1978), killed 

by electrocution and dissected. Stripped eggs, ovulated eggs that could not be stripped, 

and the ovary itself were all weighed separately to the nearest 0.1 g. The ovulation 

response was calculated as: (W total ovulated eggs / W (ovary + total ovulated 

eggs))* 100 %. Gonads from non-responding females were sampled for histological 

examination as already described. 

One randomly sampled male from the FS group was injected with a single dose of 1 mg 

cps / kg body weight and stripped 16 h later. The quality of the stripped eggs from each 

female, injected with 3.2 mg cps, was determined by fertilizing 100- 200 eggs with sperm 

from this FS male. Fertilization rate (%) was determined by counting white eggs and 

developing embryos after 24 h of incubation (at 24°C). The yields of normal and of 

deformed fry were determined after hatching (96 h) and expressed as: (nr of fry / nr of 

incubated eggs) * 100 %. The fertility of milt of males from the EM group was deter

mined by fertilizing eggs from FS females. 

Homozygous inbred strain and Fl hybrids 

A homozygous inbred strain was produced by gynogenetic reproduction of a female, 

named E4 from the EM group. Eggs were fertilized with irradiated milt from a FS male 

and cold shocked (0 C, 45 min) 1-2 min after fertilization. A control group was produced 

by fertilizing eggs with untreated milt from the FS male. Two Fl hybrids were produced 

107 



by fertilizing eggs from the female E4 with milt of 2 EM males (named E5 and E6). The 

clonal confirmation of the inbred strain and Fl hybrids by skin transplantation has been 

described elsewhere (Komen et al., 1990b). All groups were raised under standard 

conditions (see husbandry). At 6 months after hatching 40 fish were randomly sampled 

from each group, and their length, weight, gonad weight and sex recorded as described. 

Parameters and statistical analysis 

A Chi-square test for goodness of fit was used to compare observed frequencies of blond 

fry, males + intersex gonads, and gonads containing yellow eggs with the expected 

frequencies. The effects of inbreeding on gonad development in sample 1 and sample 

2 was assessed by comparing the mean weight, gonad weight, G.S.I., % post-vitellogenic 

eggs, and egg weight of each experimental group. The homozygous inbred strain, Fl 

hybrids and control group were likewise compared for differences in mean length, 

weight, gonad weight and GSI. Log transformed data were tested for homogeneity of 

variance but did not meet the requirements for analysis of variance (Sokal and Rohlf, 

1969). Therefore differences between experimental groups were tested for significance 

(P<0.05) using a Kruskall-Wallis test for k independent samples combined with Wil-

coxon's two sample test (SAS). Differences in variation between groups were compared 

by calculating the coefficient of variation (SD/mean) for each parameter. 

Ovulation responses, fertilization rates and yields of normal and deformed fry were 

transformed using an arc-sin transformation (Sokal and Rohlf, 1969) and analysed with 

Duncan's multiple range test (P<0.05). 

RESULTS 

The observed frequencies of blond fry in the 2PB group (3 %) and EM group (23.3 %), 

as well as the observed frequencies of scaled fry in the FS group (51.4 %), were not 

significantly different from the expected frequencies. There were no scaled fry in the 

2PB and EM groups, indicating the absence of paternally derived genes. Mortality 

between 8 and 15 weeks after hatching was high in the EM group (32.7 %) and the 2PB 

group (37.0 %), but considerably lower in the FS group (2.3 %). Mortality decreased to 

4.5 % in both gynogenetic groups and to less than 1 % in the FS group at 22 weeks after 

hatching and was negligible in all groups (< 1%) in the period thereafter. 
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Table 1 Frequencies of female, intersex and male gonads, and frequencies of gonads 

containing yellow eggs, in random sampled fish from the FS, 2PB and EM group. 

Fish were sampled at age 13 months (sample 1) and at 19 months (sample 2). 

group 

FS 

2PB 

EM 

sexe 

u 
o" 

9 „ 
o/ó* 
C? 

9 
g/ó* 

d1 

sample 1 
N 

20 
0 

10 

28 
1 
1 

19 
8 
3 

sample 2 
N 

17 
0 

12 

28 
1 
1 

13 
7 

10 

sum1) 
N 

37 
0 

22 

56 
2 
2 

32 
15 
13 

% 

61.7 

38.3 

93.3 

6.7 

53.3 

46.7 

yellow eggs2) 
N 

9 
0 

0 
0 

20 
5 

% 

24.3 

0 

53.2 

green eggs 
N 

28 
0 

56 
2 

12 
10 

% 

75.7 

100.0 

46.8 

1 Percentages are calculated from pooled values of male + intersex gonads. The frequencies of males and 
intersexes in the FS and EM groups were not sign, different from a 50 % ratio according to the Chi-square 
test (P<0.05). 
2 Values are from pooled samples. Percentages are calculated from pooled values of female + intersex 
gonads. The frequencies of gonads with yellow eggs were not significantly different from a 25% ratio (FS 
group) or 50 % ratio (EM group) according to the Chi-square test (P<0.05). 

Sex ratios (table 1) 

Both samples from the 2PB group contained 28 females, 1 male and 1 fish with intersex 

gonads. In contrast, both samples from the EM group contained significant numbers of 

males (3 resp. 10) and fishes with intersex gonads (8 resp. 7; see table 1). Assuming the 

intersex gonad as a phenotype produced by the same mutation(s) as testis (see 

discussion), the numbers of intersex and male gonads from both samples were pooled. 

The obtained frequency (46.7 %) was not significantly different from an expected 50 % 

ratio (see table 1). The pooled frequency of males in the FS group was 38.3 %. This 

deviation from the 50 % ratio was due to the removal of males during the rearing 

period. Fishes with intersex gonads were not found in this group. 

Gonadal development females (table 2) 

There were no significant differences between females of the FS, 2PB and EM group 
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concerning mean body weight at 13 months. The relative increase in body weight 

between samples was less for fish from the EM group than for fish from the 2PB or the 

FS group, resulting in a significant lower body weight at 19 months for this group. 

There were significant differences in gonad development between experimental groups. 

Fish from the FS group had a significantly lower gonad weight and GSI than gynogenetic 

fish at 13 months after hatching. At 19 months the EM group had a significant lower 

mean gonad weight than the 2PB group, while differences between FS and 2PB group 

and between FS and EM group were insignificant. Differences for mean GSI between 

groups at 19 months were similar but insignificant. The FS group realised the largest 

increment in GSI between samples (97.6 %), followed by the 2PB group (58.2 %) and 

the EM group (27.1 %). 

The gonads of females from the 2PB and FS group were similar in maturation upon 

histological examination. At 13 months after hatching they contained numerous pre-vitel-

logenic oocytes (stage I-III) and only a few vitellogenic oocytes (yolk formation stage 

IV-VI; Horvath, 1985). Post vitellogenic (yolky) oocytes comprise 18.6 - 22.1 % of the 

total number of oocytes present (mean values, see table 2). At this age the increase in 

gonad weight is in part due to an increase of post vitellogenic eggs (fig la and lb). At 

19 months ovaries of FS and 2PB fish contain between 20 and 40 % post vitellogenic 

oocytes, but 2PB fish show a larger variation in both gonad weight and numbers of post 

vitellogenic eggs compared to FS fish (compare table 2 and fig la and lb). Gonadal 

development of EM females could be classified as normal or retarded. Normally 

developed ovaries were similar to those in FS and 2PB fish. Retarded ovaries contained 

large numbers of vitellogenic oocytes and only a 

few post vitellogenic oocytes (<5%; see fig 1). At 19 months the difference between 

normal and retarded gonads was even more pronounced. Retarded gonads still contained 

less than 15 % post vitellogenic oocytes, despite their often large size (fig lc). 

Eggs from EM fish were smaller than eggs from gonads of 2PB and FS fish (both 

samples), but these differences were not significant. There was a considerable increase 

in egg weight between samples for all groups. Some females from the FS group 

possessed gonads with yellow eggs instead of green. Such gonads did not occur in the 

2PB group but in the EM group 20 females and 5 intersex fish with yellow eggs were 

found. The pooled frequencies for yellow eggs in the EM group (53.2 %) and FS group 

(24.3 %: table 1) were not significantly different from a 50 % or 25 % ratio. 
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Table 2 Mean values and coëfficiënt of variation of various morphological parameters 

for females in random samples from the FS, 2PB and EM group, and the relative 

increase for the mean of these parameters between samples (ô%) (see table 1). 

parameter group sample 1 (13 months) 

mean SD C.V. 

sample 2 (19 months) 

mean SD C.V. 
fi% 

body FS 
weight 
(g) 2PB 

EM 

FS 
ovary weight 
(g) 2PB 

EM 

GSI 

post vit. 
eggs (%) 

egg size 
(N / g) 

FS 

2PB 

EM 

FS 

2PB 

EM 

FS 

2PB 

EM 

786.9 225.3 28.6 

810.8 337.8 41.7 

754.5 226.8 30.1 

72.8a 43.3 59.5 

107.6^ 66.0 61.3 

101.ô*3 48.5 47.7 

9.3a 4.0 43.0 

11.9b 4.9 41.2 

13.4b 5.2 38.8 

18.6a 7.4 39.8 

22.la 11.2 50.7 

9.913 7.0 70.7 

2094a 550 26.3 

2 2 7 3ab 8 9 7 39_5 

2642b 778 29.5 

1353.03*3 285.7 21.1 

1598. (P 525.8 32.9 

1164.la 448.0 38.5 

247.8' ,ab 63.6 

1378 

1368 

1586 

25.7 

291.Ob 124.5 35.1 

209.5a 102.2 59.4 

18.3 3.0 16.4 

18.9 4.3 22.8 

17.0 6.9 40.6 

29.03 4.7 16.2 

31.3a 8.0 25.6 

18.O*3 12.0 66.7 

157 11.4 

201 14.7 

480 30.3 

71.9 

97.1 

54.3 

240.6 

170.5 

106.7 

97.6 

58.2 

27.1 

56.2 

41.6 

80.8 

-34.2 

-42.0 

40.0 

Mean values for groups within a sample with common superscripts are not sign, different according to 
Wilcoxons two sample test ( p < 0.05 ). Coefficient of variation was calculated as (SD / mean) * 100 %. 
The relative increase between samples was calculated as: 
(mean sample 1 - mean sample 2) / (mean sample 2) 
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Table 3 Mean values and coefficient of variation for various morphological parameters 

of males in random samples from the FS and EM group, and the increase for 

these parameters between samples (ô%).(see also table 1) 

parameter 

body weight 
(g) 

testis weight 
(g) 

GSI 

group 

FS 

EM 

FS 

EM 

FS 

EM 

sample 1 

raean SD 

676.9* 118.5 

378.6 201.4 

43.9* 17.1 

15.3 9.4 

6.5 2.0 

4.1 2.2 

C.V. 

17.5 

53.2 

39.0 

61.4 

30.8 

53.6 

sample 2 

mean SD 

1296.0* 174.9 

808.4 286.6 

135.4* 43.0 

63.5 43.0 

10.5* 3.1 

7.6 5.3 

C.V. 

13.5 

35.5 

31.8 

67.7 

29.8 

69.6 

5% 

91.5 

113.5 

208.8 

314.4 

63.2 

83.3 

* = mean values for groups within a sample are significantly different according to Wilcoxons two sample 
test ( p < 0.05 ). For further explanation see table 2. 

The coefficient of variation (C.V.) decreased between samples for all parameters in both 

the FS and 2PB group but increased for fish from the EM group. At 19 months, C.V. 

was largest for the EM group, followed by the 2PB group, and smallest for the FS group. 

Gonad development males + intersexes (table 3) 

EM males (i.e. no intersex gonads) were significantly smaller than FS males and 

possessed significantly smaller testis. (63.5 vs 135.4 g; sample 2). The relative rate of 

increase for these characters was larger for EM males than for FS males. There was also 

more variation in size and testis weight between males of the EM group when compared 

to the FS males. Testis of FS males all contained large tubuli seminiferi, filled with 

spermatozoa, whereas testis from EM males were less developed, containing only mature 

cysts which are occasionally fused. 
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Table 4 Ovulation responses of common carp females from the FS, 2PB and EM group 

after injection with 0.8, 1.6 or 3.2 mg/Kg of carp pituitary suspension to induce 

ovulation. Fish were sampled at age 21-23 months. 

group total 

N 

FS 36 

2PB 34 

EM 20 

m 

N 

0 

3 

0 

N 

11 

8 

8 rag cPS/Kg 

ovulation 

N % (sd) 

1 13.4 (-) 

0 

m 

N 

0 

2 

1.6 rag cPS/Kg 

N 

0 

2 

ovulation 

N % (sd) 

12 60.S15 (19.3) 

8 40.4a (24.4) 

m 

N 

0 

2 

3 

3 

N 

1 

2 

11 

2 mg cPS/Kg 

ovulation 

N % (sd) 

11 63.3b (13.8) 

7 55.5ab(25.1) 

6 48.9a (21.2) 

m = missing; - = not responding; % refer to mean ovulation response ( ± sd) 
Values with identical superscript are not significantly different according to Duncan's multiple range test 
(P-cO.05). 

Fish with intersex gonads were comparable to females with respect to mean body weight 

(1145.2 in sample 2; compare with table 2), but gonad weight and G.S.I, were highly 

variable. All intersex gonads were characterised by clearly demarcated areas of testicular 

and ovarian tissue. The ratio of male to female tissue varied from 10:90 to 90:10 (%) 

in both samples. Testicular development was comparable to testis development in EM 

males while ovarian tissue was usually inhibited, containing mainly vitellogenic and 

atretic oocytes. 

Ovulation response (table 4) 

All selected FS fish were females, but 2 intersexes were found in the 2PB group. Fish 

from the EM group consisted of 20 females and 16 males and intersexes. 

Only 1 FS fish ovulated after recieving a control dose of 0.8 mg cps. All 12 FS fish and 

8 2PB fish were stripped after injection with 1.6 mg cps. Two 2PB fish ovulated before 

recieving a booster dose and 2 fish did not ovulate. The ovulation response of FS fish 

was significantly better (60.5 ± 19.3) than of 2PB fish (40.4 ± 14.4) at this dose. Fish 

injected with 3.2 mg cps reacted in a comparable way. Eleven FS and 7 2PB fish were 
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Table 5 Survival of embryos 24 h after hatching, and yields of normal an deformed fry, 

96 h after hatching, from crosses between FS, 2PB and EM females, and FS and 

EM males. Fish were induced to ovulation by injection with carp pituitary 

suspension (3.2 mg cps/Kg: see also table 4). 

CROSS 

o x 3 

FS x FS 

2PB x FS 

EM X FS 

FS x EM 

N 

11 

7 

6 

9 

survival t24 
embryos (%) 

mean 

92.3 

83.7 

92.3 

93.6 

(SD) 

(5.5) 

(20.7) 

(3.6) 

(4.7) 

survival t96 
normal 

mean 

79.8 

73.5 

80.9 

88.8* 

fry (%) 

(SD) 

(10.4) 

(21.7) 

(3.6) 

(4.8) 

survival t96 
deformed (%) 

mean 

10.2 

3.8 

3.7 

2.1 

(SD) 

(8.4) 

(2.5) 

(2.6) 

(1.7) 

One EM female did not produce sufficient eggs and was excluded from this experiment. 
Mean survival was calculated from total incubated eggs. 
* = yields of normal fry were significantly different according to Duncan's multiple range test. 

strippable while 1 FS and 2 2PB fish were not. Two 2PB fish ovulated before the 

booster injection. Of the 20 EM fish only 6 responded. One fish died during the 

experiment, 2 fish ovulated before the booster and 10 fish did not react. One fish 

ovulated but could not be stripped due to malformations of the gonadal duct. 

The ovulation response was better in FS fish than in 2PB fish (63.3 vs 55.5 %, table 4) 

and significantly reduced in EM fish (48.9 ± 21.2 %). Ovaries of non responding FS and 

2PB females were normally developed and showed signs of maturation, i.e. germinal 

vesicle migration and germinal vesicle dissolution. In contrast ovaries from EM females 

who did not ovulate after the cps treatment were all retarded in development and 

similar to the gonads already described. 

Fertility (table 5) 

All egg samples from the EM and FS fish had good fertilization rates (92.3-93.6). There 
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was a large variation in fertilization rates of eggs from 2PB fish. Yields of normal fry 

were reduced and highly variable in FS x FS and 2PB x FS batches when compared to 

crosses with EM eggs or milt. 

FS eggs fertilized with EM milt had significantly better yields of normal fry than any 

other group. Rates of deformed fry were higher in FS x FS batches than in the other 

batches but this difference was not significant. 

Table 6 Sex and mean length, weight, gonad weight and GSI of fishes from a 

homozygous inbred strain and two Fl hybrids of common carp, 24 weeks after 

hatching (at 25 °C). 

GROUP 

E4 gyn 

E4 x E5 

E4 x E6 

E4 x FS 

sex (n) 

o. $/â ó* 

38 1 0 

37 2 0 

39 0 1 

17 0 23 

All fish in sample 

Length (cm) 

mean 

14.8 

17.5 

16.6 

17.9 

± sd CV 

2.7 18 

0.8 5 

1.4 9 

1.3 7 

Weigth (g) 

mean ± sd CV 

151.5 64.3 42 

194.2 29.8 15 

167.2 37.7 23 

219.8 45.9 21 

All females 

Gonad W. (g) 

mean 

0.58 

0.99 

1.00 

0.61 

± sd CV 

0.47 81 

0.29 29 

0.33 33 

0.27 44 

in sample 

GSI 

mean 

0.33 

0.52 

0.61 

0.29 

± sd 

0.21 

0.16 

0.22 

0.11 

CV 

64 

31 

36 

38 

One EM female E4 and 2 EM males E5 and E6 were used to produce the various strains. The EM female 
was also crossed with a FS male to produce a normal control offspring. 

Homozygous inbred strain and Fl hybrids (table 6) 

The homozygous inbred strain and Fl hybrids consisted mainly of females and one or 

two intersexes. The E4 x FS strain contained 17 females and 23 males. This group had 

the largest mean length and weight after 6 months, but the differences between groups 

were not significant. The Fl hybrids E4 x E5 and E4 x E6 both had higher gonad weights 

and GSI's than the other groups (not significant). Fishes of the E4 x Es strain and E4 x 

E6 strain were also less variable in gonad weight and GSI than fishes of the E4 x FS 

group. The largest variation for all characters was found in fishes of the homozygous 

inbred strain. 
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DISCUSSION 

The effects of inbreeding on various reproductive traits could be classified as single 

recessive gene effects and differences in the mean and variation of a trait between 

groups. 

The most striking effect caused by a single gene was the occurrence of 46.7 % males and 

intersexes in the EM group, and the virtual absence of such fish in the FS and 2PB 

group. In common carp males are thought to be XY and females XX since conventional 

breedings consistently produce 50 % males while gynogenesis produces all female 

offspring (Nagy et al., 1978; Komen, unpublished results). Nevertheless, intersex gonads 

are occasionally noted in conventional offspring (Gupta and Meske, 1976; Hilge and 

Conrad, 1975) and in large numbers in some heterozygous gynogenetic offspring 

(Gomelskii et al., 1978). Such intersexes, as well as the males and intersexes found in 

this study, probably have a genetic origin (Komen et al, in prep). It is assumed that the 

selected female progenitor used in this study was heterozygous for a recessive mutation 

in a minor sex determining gene, termed mas-1. In homozygous condition this mutation 

induces a testis or (incomplete penetrance) an intersex gonad in XX offspring. Normal 

female sex differentiation is restored in heterozygous offspring from (mas-l/mas-1) EM 

males crossed with ( + / + ) EM females (see also table 6), but a conventional cross 

between an EM male and an heterozygous (mas-1/+ ) female produces again 50 % 

intersexes and males in the offspring (Komen and Richter, 1990). The near absence of 

males and intersexes in the 2PB group argues for a high degree of heterozygosity for 

mas-1 in this group. 

A similar high degree of heterozygosity was also found for another new mutant 

discovered in this study, termed yellow eggs (ye). Yellow eggs are a common feature of 

fancy (ornamental) carp, but the mode of inheritance is unknown (S. Rothbard, pers. 

comm.). In our experiments yellow eggs were found both in the FS and EM group, but 

not the 2PB group. The obtained frequencies (24.3 and 53.2 %, see table 1) are 

consistent with a monogenic recessive inheritance for this trait, and indicate 100 % 

heterozygosity for ye in the 2PB group. The high recombination rates found for mas-1 

and ye are typical for common carp and several other fish species, and are probably 

caused by high levels of interference in a number of chromosomes, resulting in single 

obligatory chiasmata during meiosis (Thorgaard et al., 1983; Thompson and Scott, 1984; 
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Streisinger et al., 1986). In consequence 2PB offspring remain heterozygous, and thus 

identical, for those genes which are located distally from these chiasmata. A similar 

conclusion was drawn when the rejection times of skin allografts grafts exchanged within 

a FS, 2PB and EM group of carps were compared (Komen et al., 1990b). Graft rejection 

was considerably delayed in the 2PB group in comparison to graft rejection among FS 

or EM fish, indicating a high degree of genetic similarity for 2PB fish. 

Gonad development 

These observations might help to explain why inbreeding depression for gonad 

devlopment was only noticed in the EM group while fish from the 2PB group were com

parable with fish from the FS group (see table 2). Only at 13 months the EM and the 

2PB group showed a significantly higher GSI and gonad weight than the FS group. 

Gonad weight during sexual maturation is the result of fecundity (the total number of 

oocytes in the gonad) and vitellogenesis (the relative number of post-vitellogenic 

oocytes). In the platyfish (Xiphophorus maculatus) the onset of vitellogenesis and subse

quent maturation of the gonad is determined by a sex chromosome linked locus which 

controls the development of the pituitary-gonadal axis (Kallman and Borowski, 1976; 

Schreibman and Kallman, 1977). The alleles of this locus (at least 5) act in a more or 

less dominant 

fashion. It has been suggested that sexual mturation in common carp is regulated in a 

similar way (Hulata et al., 1985). Early maturing Chinese "Big Belly" carp have high 

gonad weights while various late maturing european strains have lower gonad weights. 

Crossbreeding between these strains revealed incomplete dominance for later maturation 

and lower gonad weights (Hulata et al., 1974,1985). In this study the higher mean gonad 

weight and GSI of 2PB fishes might be explained by a reduction in heterozygosity for 

the loci controlling gonadal growth, while the increased variation is due to the increased 

frequency of homozygous genotypes producing more extreme gonad weights and GSI's 

(Falconer, 1981). The gonad weights at 13 months are even higher but become increas

ingly depressed by a reduced vitellogenesis in nearly half the homozygous EM fish. It 

is possible that this reduced vitellogenesis is in fact the manifestation of an unmasked 

recessive deleterious gene. Alternatively these fish might represent late maturing genoty

pes. In that case the rate of vitellogenesis and sexual maturation in common carp is 

controlled in a similar way as in platyfish by a single locus with dominant alleles. The 
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Figure 1 The relationship between the relative presence of post vitellogenic eggs (%) 

and gonad weight in random sampled females from the FS, 2PB and EM group. 

Fish were sampled at 13 months ( ) and 19 months ( ) after hatching. 

A) FS group; B) 2PB group; C) EM group. 

B 
o „ D o 

« ' D a ° 

' ^ „ °° ° 
A D O « 

M ° 

• • ' • " • " * 

lOO 2O0 300 400 50O 600 100 ZOO 300 400 500 600 

40 

30 

20 

10 

A 

D D 

*h . 

a 

A 

A 

& 

D 

a 

D 
D 

a 
D a 

c 

100 200 300 400 500 600 

ovary weight (gr) 

118 



recombination frequency for this locus might be high since FS and 2PB fish were fully 

comparable in development. Taken together, these results clearly show that inbreeding 

increases the mean proportional gonad weight by or in combination with an advanced 

early maturation. Selection for late maturing genotypes with low gonad weights will be 

feasible only in EM offspring. 

Fertility 

More classical and straightforward effects of inbreeding were found in the fertility test. 

The ovulation response was significantly reduced with increasing levels of inbreeding 

while the numbers of precocious ovulations and non-responders in the 2PB and EM 

groups clearly indicated an increased sensitivity to stress. The selection involved with 

inbreeding was illustrated by the results of the various crosses between FS, 2PB and EM 

fish. Again a large number of deleterious mutations in genes involved in embryo 

development remain heterozygous in FS and 2PB offspring and thus escape selection by 

mortality. The persistence of such genes in heterozygous gynogenetic offspring was also 

found by Nagy (1987) who detected high levels of embryo malformations after crossing 

hormonally sex inversed males from a fourth (!) gynogenetic generation with females 

from a third gynogenetic generation. These results do not justify a use of 2PB gynoge

netic females for the production of homozygous gynogenetic fry by endomitosis, as was 

suggested by Chourrout (1987). We suggest on the contrary the use of crossbred females 

from two distinct strains for this kind of gynogenesis. Not only are the eggs of such 

females more viable and more uniform in quality, leading to more consistent yields of 

homozygous gynogenetic fry (Komen et al., 1990), but the homozygous offspring will also 

present a much larger pool of genetic variation to select from. 

Inbred strain and F l hybrids 

Homozygous gynogenetic fish are essentially free of recessive lethals as was demonstr

ated for zebrafish (Brachydanio rerio; Streisinger et al., 1981) and in this study for 

common carp by a significantly higher yield of normal fry and very few malformations 

in crosses involving homozygous animals. Embryos were less viable in crosses involving 

EM eggs compared to crosses where EM milt was used but in general these results 

showed that eggs and milt from homozygous gynogenetic fish were fully fertile. 

Homozygous gynogenesis is thus an effective way of producing inbred strains. 
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The Fl hybrids E4 x E5 and E4 x E6 were comparable in development to the E4 x FS 

strain but showed an important reduction in variation for gonad development. In 

contrast this purely phenotypic variation was enlarged for all characters in the homozyg

ous inbred strain. In this respect inbred strains of common carp behave like any other 

inbred strains (Falconer, 1981) although the observed variation is considerable when 

compared to other vertebrate species (Allendorf et al, 1988). This augmented variation 

is often attributed to reduced homeostasis i.e. the inability of an organism to develop 

along precisely predetermined pathways (Lerner, 1954). Developmental instability is 

expressed as an increase in asymmetry for various morphological traits. Studies in 

rainbow trout have shown that individuals with developmental instability are often 

homozygous for enzyme variants involved in major biochemical pathways (Leary et al., 

1983). In this study deformed fish were also found in the homozygous inbred strains 

while they did not occur in the Fl hybrids. However, this may be caused by food 

availability and crowding, since deformed fish only occurred in the lower weight classes. 

These fish were probably less successful in competing for food and more susceptible to 

the negative effects of crowding. It is therefore concluded that Fl hybrid strains will be 

more suitable for use in bio-assays than homozygous inbred strains, since Fl hybrids are 

expected to show less variable and more standardized responses. 
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ABSTRACT 

Komen, J., Lodder, P.A.J., Huskens, F., Richter, C.J.J, and Huisman, E.A., 1989. Effects of oral 
administration of 17a-methyltestosterone and 17/?-estradiol on gonadal development in com
mon carp, Cyprinus carpio L. Aquaculture, 78: 349-363. 

The effects of oral administration of 17a-methyltestosterone (17a-MT) and 17/?-estradiol (17/?-
E2 ) on the gonadal development of common carp were investigated during periods of 5 weeks 
between 3 and 15 weeks after hatching. Administration of 50 ppm 17a-MT in the food between 6 
and 11 weeks after hatching resulted in 92.7% males. Earlier or later treatments with 17a-MT at 
concentrations of 50 and 100 ppm of hormone in the food resulted in high percentages of sterile 
fish. Administration if 17/?-E2 failed to induce female gonads in any of the periods tested and 
irrespective of the concentrations of hormone used. Gonad weight and gonadosomatic index of 
both males and females decreased with increasing doses of 17/J-E2, indicating that the hormone 
had been absorbed by the fish. For hormonal sex control in other fish species it is recommended 
to apply hormone dosages which are related to body weight and not to body weight gain. 

INTRODUCTION 

Control of sex differentiation by administration of sex steroids plays an im
portant role in the culture of various fish species. It can be used to create mono-
sex populations in ponds if natural spawning is not desired (tilapias: Shelton 
et a l , 1981; Rothbard et al., 1983) or if growing of one sex has certain advan
tages over the other (salmonids: Johnstone et al., 1978; Donaldson and Hunter, 
1982 ). In combination with gynogenesis, it can be used to establish inbred lines 
with fish of either sex (Nagy and Csanyi, 1984). The development of gynoge-
netically inbred lines of fish could also serve to standardize bioassays in im
munological and endocrinological research (Van Muiswinkel et al., 1986; Rich
ter et al., 1987; Komen et al., 1988). 
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There are few reports concerning hormonal sex induction in common carp, 
Cyprinus carpio. Nagy et al. (1981 ) successfully induced male gonads in gyno-
genetic females, using 100 ppm 17a-methyltestosterone incorporated in the 
food, administered during any period of 36 days between 8 and 80 days after 
hatching. Sathyanarayana Rao and Satyanarayana Rao ( 1983 ) obtained high 
percentages of male and sterile gonads in C. carpio after oral administration of 
220 ppm 17a-MT during 131 days after hatching. Identical treatment with 
17/?-estradiol was less successful, since sterile gonads and gonads of both sexes 
were recovered. These results confirm the importance of both dosage and tim
ing in treatments with sex steroids (Yamamoto, 1969). 

To obtain gynogenetic homozygous lines with phenotypic female and male 
fish, we investigated the effects of oral administration of 17a-methyltestos-
terone (17a-MT) on the gonadal development of common carp. In addition, 
similar experiments were carried out with 17/?-oestradiol (17/7-E2) to obtain 
XY females. These fish could give information on the expression of male sex 
chromosomes in sex-induced females (Hunter and Donaldson, 1983). 

In the present experiments, three different periods (3-8, 6-11 and 10-15 
weeks) after hatching were tested, each with different concentrations of 17a-
MT and 17/Î-E2. 

MATERIALS AND METHODS 

Experimental fish 

Fry for both experiments were obtained by the method of artificial propa
gation as described by Woynarovich ( 1962 ). For each experiment eggs and milt 
from one female and one male were used. 

The fry were fed freshly hatched nauplii of' Artemia salina for a period of 2 
weeks following yolk-sac absorption. During the experimental period, the fish 
were kept at 25°C (Horvath, 1985) and fed trout pellets (45% protein, Trou-
vit, The Netherlands ) using Scharfflinger conveyer-belt feeders, for 12 h a day. 
The fish were sampled and weighed every week. The mean biomass and mor
tality were estimated, and the feeding level adjusted according to the recom
mendations given by Huisman (1976). At this feeding level, all the food was 
eaten immediately after administration. 

Experimental diets 

Experimental diets containing 17a-MT or 17/?-E2 (Intervet, Boxmeer, The 
Netherlands) were prepared by the alcohol evaporation method (Guerrero, 
1975). Depending on the pellet size, 1 kg of pellets was carefully mixed with 
400 (size 1 and 2), 550 (size 0) or 750 (size 00) ml of 96% ethanol containing 
50, 100 and 150 mg 17a-MT. In the same way, pellets containing 25, 75 and 
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125 mg 17/?-E2 per kg were prepared. The wet pellets were dried for 24 h at 
room temperature. Control diets consisted of pellets, mixed with ethanol only. 
The diets were stored at 4 ° C and administered within 4 days after preparation. 

Experimental design 

First experiment. Three weeks after hatching, 500 fry were stocked in each of 
sixteen 65-1 aquaria. The aquaria were part of a recirculation system in which 
the 0 2 content was maintained above 6 ppm and the NH4 and N02 content 
below 1 ppm. Three different periods of treatment were tested, each with dif
ferent concentrations of 17a-MT in the food: 
- period I: 3 to 8 weeks after hatching; 50 and 100 ppm 
- period II: 6 to 11 weeks after hatching; 50, 100 and 150 ppm 
- period III: 10 to 15 weeks after hatching; 50 and 100 ppm. 
The second period carried control groups. These fish were fed control diets. 

Second experiment. Three weeks after hatching, 500 fry were stocked in each 
of twenty 140-1 aquaria. The lower density was chosen to fit the lower capacity 
of the recirculation system. The 0 2 content wa maintained above 6 ppm and 
the NH4 and N0 2 content below 2 ppm. Again three periods of treatment were 
tested with different concentrations of 17/J-E2 in the food: 
- period I: 3 to 8 weeks after hatching; 25 and 75 ppm 
- period II: 6 to 11 weeks after hatching; 25, 75 and 125 ppm 
- period III: 10 to 15 weeks after hatching; 25 and 75 ppm 
Each test period carried control groups. 

In both experiments, all combinations were tested in duplicate and ran
domly assigned to each of the aquaria. The water from aquaria with fish re
ceiving hormone was not recirculated during the periods of treatment. Eight 
weeks after hatching, the stocking density was reduced to 100 randomly sam
pled fish per aquarium. Fifteen weeks after hatching, the stocking density was 
further reduced to 50 fish per aquarium. Twenty-four weeks after hatching, the 
experiments were terminated and the fish sacrificed for dissection and histo
logical examination. 

Parameters used to assess effects of hormonal treatment 

Fish were killed with an overdose of ethyleneglycol monophenylether 
(Merck), and weighed to the nearest 0.1 g. Fish that produced sperm after 
stripping were scored as such. The fish were dissected and the gonads were 
weighed to the nearest 0.01 g. The gonadosomatic index (GSI) was calculated 
as (gonad weight/total weight) X100%. Gonadal sex was determined using a 
low power microscope (40x, Zeiss). Gonads having both testicular and ovar-
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ian tissue were scored as intersex, while filiform gonads were scored as sterile. 
These types of gonads and gonads of which the sex could not be determined 
were fixed in Ca-formol, sectioned and stained with haemalum/eosin for his
tological examination. 

Effects of hormonal treatments were assessed as: mortality rate; increase in 
body weight; frequencies of male, female, intersex and sterile gonads; increase 
in gonad weight and GSI; and frequencies of males that could be stripped. 
These data were determined per dosage and period. 

Statistical analysis 

Log-transformed data were tested for homogeneity of variance and normal
ity (BMDP, Dixon 1983), but did not meet the requirements for analysis of 
variance (Sokal and Rohlf, 1969). Therefore data from duplicate groups were 
pooled and differences in body weight, gonad weight and GSI between treat
ments within each tested period were analysed using a Kruskall-Wallis test 
for k independent samples (P=0.05). Testing for differences between periods 
was not found meaningful due to differences in experimental conditions caused 
by mortality. A chi-square test for heterogeneity with Yates correction was 
used to determine whether frequencies in occurrence of males differed from 
the expected 50% ratio and to compare differences in percentages of males 
shedding milt within the same treatment periods (BMDP, Dixon 1983). 

RESULTS 

First experiment 

Mortality of untreated fish between 3 and 8 weeks after hatching ranged 
from 16 to 30%, while severe lordoses and other malformations occurred in fish 
fed 50 and 100 ppm 17a-MT, leading to mortalities of 28% and 39% respec
tively. Mortality was less than 1% between 8 and 24 weeks after hatching and 
malformations as a result of hormonal treatment did not occur. 

The mean body weight at the end of the experiment was not significantly 
different between hormone-treated groups and the control group (P<0.05) 
for treatment period II (see Table 1 ). Differences in mean body weight within 
treatment periods were also not observed at the end of the experiment 
(P<0.05). A comparison between the different treatment periods shows that 
the same concentrations of 17a-MT in the food are not proportional to the 
total dosage of hormone expressed as mg/kg body weight and are reasonably 
proportional to the total dosage of hormone expressed as mg/kg body weight 
gain (Table 1). These observations are a consequence of the feeding regimes 
used (Huisman, 1976); see also discussion. 

The frequencies in occurrence of males were, with the exception of the con-
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TABLE 1 

Concentrations of 17a-methyltestosterone in the food, dosages of hormone per kg body weight 
and per kg body weight gain administered to common carp (C. carpio) at various periods after 
hatching 

Treatment 

Period 

I 

II 

III 

17a-MT 
(ppm) 

50 
100 

0 
50 

100 
150 

50 
100 

Start treatment 

Mean 
weight 
(g) 

0.02 
0.02 

0.92 
0.90 
0.92 
0.99 

11.97 
11.87 

Dosage 
(mg/kg 
body weight) 

10 
20 

_ 
7.5 

15 
22.5 

4 
8 

End treatment 

Mean 
weight 
(g) 

2.08 
2.33 

11.86 
11.92 
11.82 
12.33 

30.51 
30.77 

Dosage 
(mg/kg 
body weight) 

7.5 
15 

-
4 
8 

12 

2 
4 

Total 
treatment 

Dosage 
(mg/kg 
weight gain) 

44.7 
86.4 

-
48.3 

103.5 
160.4 

57.3 
116.9 

End 
experiment 

Mean weight 
(g) (SD) 

93.4 (40.0) 
95.3 (41.1) 

102.4 (39.2) 
91.5 (34.1) 
96.7 (33.8) 
92.1 (37.7) 

89.3 (35.2) 
88.9 (36.5) 

Values are from pooled duplicates and were compared within the same treatment periods. There 
were no significant differences in body weight according to the Kruskal-Wallis test (P < 0.05 ). 

TABLE 2 

Frequencies of male, female, intersex and sterile gonads in common carp, after various dietary 
treatments with 17a-MT (see also Table 1 ) 

Period 

I 

II 

III 

17a-MT 
(ppm) 

50 
100 

0 
50 

100 
150 

50 
100 

Number of 
fish 

98 
99 

90 
96 
91 
97 

95 
97 

Males 
(%) 

37.8" 
7.1b 

64.4a 

92.7C 

80.2b 

76.3" 

74.7" 
80.4" 

Females 
(%) 

0 
0 

32.2 
2.1 
3.3 
7.2 

5.3 
8.2 

Intersex 
(%) 

0 
0 

0 
0 
2.2 
5.2 

1.1 
0 

Sterile 
(%) 

62.2 
92.8 

3.3 
5.2 

14.3 
11.3 

18.9 
11.3 

Values within a period with identical superscripts were not significantly different according to the 
chi-square test (P < 0.05 ). The frequencies of males in all groups, except the control groups, were 
significantly different from the expected 50% ratio (P<0.05). 
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TABLE 3 

Gonad weight, GSI and percentages of male common carp shedding milt, after various dietary 
treatments with 17a-MT (see also Tables 1 and 2 ) 

Treatment 

Period 

I 

II 

III 

17a-MT 
(ppm) 

50 
100 

0 
50 

100 
150 

50 
100 

All fish in samp 

Mean gonad 
weight 
(g) (SD) 

0.96(1.93) a 

0.18(0.73) b 

1.63 (1.77)a 

2.28(1.71) b 

2.05 (1.84)ab 

1.73 (1.83)a 

1.04 (1.26)a 

0.92 (1.09)a 

le 

GSI 
mean (SD) 

0.99 (1.71)a 

0.19 (0.69)b 

1.72 (1.69)a 

2.55 (1.73)b 

2.06 (1.87)a 

1.87 (1.68)" 

1.26 (1.38)a 

1.03 (0.96)a 

All males in s 

Mean gonad 
weight 
(g) (SD) 

2.37 (2.48) 
2.21 (1.87) 

2.21 (1.96) 
2.44 (1.68) 
2.46 (1.80) 
2.16 (1.89) 

1.32 (1.34) 
1.10 (1.15) 

ample 

GSI 
mean (SD) 

2.43 (1.99) 
2.35 (1.40) 

2.42 (1.75) 
2.73 (1.67) 
2.48 (1.84) 
2.34 (1.65) 

1.63 (1.42) 
1.24 (0.96) 

Shedding 
milt 

(%) 

10.3" 
0a 

43.lb 

4.0" 
19.7" 
2.7" 

9.9" 
5.1° 

Values within a period and column with identical superscripts were not significantly different 
according to the Kruskal-Wallis test (gonad weight and GSI; P<0.05) and the chi-square test 
( % of males shedding milt; P < 0.05 ). 

trol group, significantly different from the expected 50% ratio (Table 2). The 
lowest percentage of male gonads was found in the first treatment period. Ap
parently, 17a-MT had a sterilizing (see also histological examination) effect 
on gonad development in the period 3-8 weeks after hatching. The highest 
percentage of male gonads was found in the fish fed 50 ppm 17a-MT during 
the second period. With increasing concentrations of 17a-MT in the food (pe
riod II) the percentage of female, intersex and sterile gonads increased (Table 
2). 

There was a statistically significant decrease in gonad weights and GSI of 
all the fish in the sample within periods I and II (Table 3) with increasing 
concentrations of 17«-MT in the food. A similar tendency was observed when 
only the males were considered but these differences were not statistically sig
nificant. The percentage of males that shed milt after stripping was signifi
cantly reduced by hormonal treatment (see period II in Table 3). 

Second experiment 

All groups suffered high mortalities between 3 and 8 weeks after hatching, 
ranging from 51 to 69%. Mortalities between 8 and 24 weeks after hatching 
were less than 1% for all groups. Malformations as a result of treatment with 
17/Î-E2 were not observed. 
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TABLE 4 

Concentrations of 17/?-estradiol in the food, dosages of hormone per kg body weight and per kg 
body weight gain administered to common carp at various periods after hatching 

Treatment 

Period 

I 

II 

III 

17/J-E2 
(ppm) 

0 
25 
75 

0 
25 
75 

125 

0 
25 
75 

Start treatment 

Mean 
weight 
(g) 

0.05 
0.07 
0.05 

0.43 
0.44 
0.40 
0.45 

11.20 
7.60 
7.90 

Dosage 
(mg/kg 
body weight) 

-
5 

15 

_ 
3.8 

11.3 
18.8 

_ 
2 
6 

End treatment 

Mean 
weight 
(g) 

4.04 
3.39 
2.03 

15.72 
13.16 
13.94 
13.49 

40.73 
31.55 
25.41 

Dosage 
(mg/kg 
body weight ) 

-
3.8 

11.3 

_ 
2 
6 

10 

_ 
1 
3 

Total 
treatment 

Dosage 
(mg/kg 
weight gain ) 

-
-
-

-
27.5 
82.5 

137.5 

_ 
35.3 

105.8 

End 
experiment 

Mean weight 
(g) (SD) 

87.3 (52.1) 
82.1 (52.1) 
78.2 (55.7) 

80.4 (41.6) 
75.8(38.5) 
84.8 (46.6) 
80.6 (44.7) 

83.4(48.7) 
75.6 (37.7) 
75.4 (42.2) 

Values are from pooled duplicates and were compared within the same treatment periods. There 
were no significant differences in body weight according to the Kruskal-Wallis test (P<0.05). 

TABLE 5 

Frequencies of male, female, intersex and sterile gonads of common carp, after various dietary 
treatments with 17/?-E2 (see also Table 4) 

Period 

I 

II 

III 

17y?-E2 
(ppm) 

0 
25 
75 

0 
25 
75 

125 

0 
25 
75 

Number of 
fish 

73 
99 
95 

96 
99 
99 
92 

99 
98 

100 

Males 
(%) 

53.4 
50.5 
62.1 

58.3 
42.4 
46.5 
53.3 

50.5 
48.0 
45.0 

Females 
(%) 

45.2 
44.4 
33.7 

40.6 
53.5 
49.5 
44.6 

46.5 
50.0 
50.0 

Intersex 
(%) 

1.4 
4.1 
2.1 

1.1 
4.1 
3.0 
2.1 

3.0 
1.0 
5.0 

Sterile 
(%) 

0 
1.0 
2.1 

0 
0 
1.0 
0 

0 
1.0 
0 

The frequencies of males and females were not significantly different between hormone-treated 
groups and their controls, and were not significantly different from the expected 50% ratio, ac
cording to the chi-square test (P < 0.05 ). 
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TABLE 6 

Gonad weight, GSI and percentages of male common carp shedding milt, after various dietary 
treatments with 17/?-E2 (see also Tables 4 and 5) 

Treatment 

Period 

I 

II 

III 

17/?-E2 
(ppm) 

0 
25 
75 

0 
25 
75 

125 

0 
25 
75 

All females in 

Mean gonad 
weight 
(g) (SD) 

0.96 (0.82 )a 

0.79 (0.51)" 
0.59 (0.39)b 

0.76 (0.50)a 

0.62 (0.37)fl 

0.57 (0.33)ab 

0.46 (0.31 )bc 

0.83 (0.45)a 

0.56 (0.33)b 

0.45 (0.33)c 

sample 

GSI 
mean (SD) 

1.10 (0.57)a 

1.07 (0.33)a 

0.79 (0.26)b 

0.94 (0.38)a 

0.92 (0.35 )a 

0.68 (0.25)bc 

0.69 (0.45 )c 

0.99 (0.30)a 

0.82 (0.56)b 

0.61 (0.26)c 

All males in sample 

Mean gonad 
weight 
(g) (SD) 

3.66 (2.16)a 

3.49 (3.38)ab 

2.83 (2.41 )b 

3.31 (3.23)a 

2.68(1.71)" 
2.10 (1.99)b 

2.33 (1.88)ab 

3.23 (2.78)a 

2.68 (2.28)b 

1.65 (1.44)c 

GSI 
mean (SD) 

4.28 (1.71 )a 

3.65 (1.88)a 

3.65 (2.13)a 

3.86 (2.04)a 

3.46 (1.57)a 

2.21 (1.38)b 

2.43 (1.15)c 

3.97 (1.89)a 

3.11 (1.83)" 
2.00 (1.36)b 

Shedding 
milt 
(%) 

51.3" 
28.0b 

15.3b 

50.0a 

21.4b 

8.7b 

8.2b 

82.0a 

10.6b 

2.2b 

Values within a period and column with identical superscripts were not significantly different 
according to the Kruskal-Wallis test (gonad weight and GSI; P<0.05) and the chi-square test 
( % of males shedding milt; P < 0.05 ). 

The mean body weight at the end of the experiment was not significantly 
different between hormone-treated groups and their controls (P<0.05) and 
ranged from 75.4 (period III, 75 ppm) to 87.3 (period I, control; Table 4). The 
relationships between the concentrations of 17/J-E2 in the food and the dosage 
of hormone expressed as mg/kg body weight or as mg/kg body weight gain 

Figs. 1-6. Gonads of C. carpio aged 180 days, after various dietary treatments with 17a-MT or 
17ß-E2. 

Fig. 1. Testis of a control group that contains immature and mature cysts. Spg! =primary sper
matogonium, Spg2 = secondary spermatogonia, Spc = spermatocyte, Spd-spermatids, 
Spz = spermatozoa (X1600). 

Fig. 2. Ovary of a control group that contains lamellae with oogonia (Og), and previtellogenic 
oocytes (pOc) surrounded by a follicular layer (Fl) (X1600). 

Fig. 3. Intersex gonad of a group treated with 17a-MT (50 ppm, 10-15 weeks after hatching) that 
contains testicular (T) and ovarian (O) tissue (X160). 

Fig. 4. Intersex gonad of a group treated with 17a-MT (100 ppm, 6-11 weeks after hatching). 
Note the areas in which testicular and ovarian tissue are mixed. The oocytes (Oc) show advanced 
development, having circular rows of vacuoles (Vac ) in their cytoplasm. The spermatogenic cysts 
are fused to form tubuli seminiferi (tS ) (X 400 ). 
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(Table 4) are comparable with those observed in the first experiment with 
17a-MT (Table 1). Due to high mortalities, dosages per kg body weight gain 
could not be calculated for groups fed 25 and 75 ppm during the first period 
(Table 4). 

The frequencies of males were not significantly different between 17/?-E2-
treated groups and their controls and they were not significantly different from 
the expected 50% ratio (P<0.05; Table 5). Intersex gonads were found in hor
mone-treated fish and controls. Sterile gonads only occurred in hormone-
treated fish. 

Gonad weights and GSI of both females and males significantly decreased 
in each period with increasing concentrations of hormone in the food. This 
indicates that treatment with 17/?-E2 has an inhibiting effect on gonadal de
velopment. Males and females of control groups had the highest gonad weights 
and GSI in each tested period. The number of males that produced milt after 
stripping was significantly lower (P < 0.05; Table 6 ) in groups that were treated 
with 17/?-E2 than in control groups and decreased in each test period with 
increasing concentrations of 17/?-E2 in the food. 

Histological examination 

Gonads which could not be sexed macroscopically were either intersex or 
sterile. The latter category originated mainly from hormone-treated fish. There 
were no essential histological differences between gonads sampled in the first 
and second experiment. 

Testes consist of irregularly shaped cysts, separated by interstitial tissue 
with blood vessels (Fig. 1). The cysts contain primary and secondary sper
matogonia, spermatocytes, spermatids and spermatozoa. Mature cysts, filled 
with spermatozoa, are fused to form tubuli seminiferi (Fig. 1 ). 

Ovaries (Fig. 2 ) consist of lamellae with oogonia and early prophase oocytes 
situated in the margins and previtellogenic oocytes located further inwards. 
The previtellogenic oocytes have a nucleus with one or more nucleoli. The 
latter type corresponds with stage II of the classification of Horvath ( 1985 ). 
All oocytes are surrounded by a thin follicular layer. Oocytes containing yolk 
granules were not found. 

Intersex gonads contain clearly distinctive areas of testicular and ovarian 
tissue, separated by connective tissue (Fig. 3). The intersex gonads of hor
mone-treated fish often consist of areas in which testicular and ovarian tissue 
are mixed. The oocytes in these areas show advanced development, having 
circular rows of vacuoles in their cytoplasm (Fig. 4 ). These oocytes correspond 
to stage III/IV of Horvath (1985). In other intersex gonads the mixed areas of 
oocytes and spermatogenic cysts are fused, indicating that atresia has started 
(Fig. 5). 

Sterile gonads are filiform and contain strands of connective tissue in which 
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Fig. 5. Intersex gonad of a group treated with llß-E2 (75 ppm, 6-11 weeks after hatching). Note 
the degenerating and fused oocytes (Oc), containing spermatids and spermatozoa (Sp) from 
neighbouring cysts (C) (X1600). 

Fig. 6. Sterile gonad of a group treated with 17a-MT (100 ppm, 3-8 weeks after hatching). Note 
the cluster of previtellogenic oocytes (pOc), embedded in connective tissue, and the absence of 
germ cells (X400). 
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occasionally oocytes or spermatogonial cysts, but not germ cells, are found. 
The oocytes and spermatogonial cysts are often in a retarded stage of devel
opment (Fig. 6) . 

DISCUSSION 

According to Yamamoto ( 1969 ), sex steroids should be administered during 
the entire period of gonadal differentiation in order to be effective. In carp, this 
period starts approximately 7-9 weeks after hatching, with a mitotic prolifer
ation of germ cells, followed by a sexual differentiation of the primordial gonad. 
Testes and ovaries can be distinguished after histological examination 17 weeks 
after hatching (Parmentier and Timmermans, 1985). 

In the present study with common carp, administration of 17a-MT in a 
concentration of 50 ppm in the food between 6 and 15 weeks after hatching 
yielded 92.7% male gonads. Earlier or later t reatments gave less successful 
results. Between 3 and 8 weeks after hatching, t reatment with 100 ppm of 17a-
MT resulted in 93% sterile gonads and severe malformations of fish. These 
results are in strong contrast with those of Nagy et al. ( 1981 ) who found tha t 
male gonads could be induced in gynogenetic common carp by oral adminis
tration of 100 ppm 17a -MT during any period of 36 days between 8 and 80 
days after hatching. The comparatively low number of sterile fish reported in 
their study could be at tributed to the fact tha t only females were tested. How
ever, the results of Nagy et al. (1981), in which the fish were fed ad libitum, 
are difficult to compare with our data since the dosage of hormone cannot be 
accurately expressed in mg/kg body weight or mg/kg body weight gain. This 
also holds for hormonal sex control studies in other fish species (see review by 
Hunter and Donaldson, 1983) in which dosages are expressed in mg/kg diet 
without mentioning the feeding levels applied. 

In our experiments it is likely tha t the high feeding levels applied during 3 
to 8 weeks after hatching resulted in an overdosage of 17a-MT with concom
itant development of sterile gonads. It is therefore recommended to apply dos
ages which are related to body weight, taking into account growth increment 
(to be ) realised over the experimental period, rather than feeding rations with 
fixed hormone concentrations (see Table 1). 

Oral administration of 17/J-E2 in the present study did not affect the sex 
ratio of common carp in any of the tested periods. It is not clear whether this 
result is typical for cyprinids since in the related goldfish (Carassius auratus) 
the less effective estrogen estrone induced female gonads (Yamamoto, 1975). 
In cichlids feminization with estrogens has not been successful in various ti-
lapia species (Jensen and Shelton, 1979; Mair et al., 1986). In salmonids, oral 
administration of estrogens successfully produces females (Salmo gairdneri, 
Johnstone et al., 1978), but variable results have also been reported (Okada, 
1973). 

It is difficult to explain why sex induction in fish with androgens is, in gen-
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eral, more successful than with estrogens. Failure to induce female gonads might 
be caused by a degradation of 17/Î-E2 in the liver, as suggested for Salmo gaird-
neri by Van den Hurk and Lambert (1982). According to Yamamoto (1969) 
and Hishida and Kawamoto ( 1970), 17/?-E2 is less resistant to degradation in 
the digestive tract and liver than synthetic estrogens like ethynylestradiol. 
However, in our experiments with C. carpio, gonad weight and GSI of females 
and males decreased with increasing doses in each test period, indicating that 
the hormone had been effectively absorbed. Furthermore, the stripping re
sponse of males was significantly reduced after treatment with 17/?-E2. Tes
tosterone and estradiol (or their metabolites? ) are indeed known to suppress 
gonadal development by inhibition of spermatogenesis and vitellogenesis (Bil
lard et al., 1982; Lee et al., 1986). 

A second explanation for the failure to induce female gonads with 17/?-E2 in 
C. carpio can be found in the so-called dominant-neutral sex hypothesis. In 
juvenile rainbow trout, androgens and estrogens are known to exert a positive 
feedback on GTH syntheses (Van den Hurk, 1982; Goos et al., 1986). It is 
unknown whether GTH, during treatment with 17/?-E2, in turn promotes an
drogen and estrogen synthesis in the differentiating gonad. Such a control might 
exist in tilapia. Hopkins et al. (1979) produced 90% females in Tilapia aurea 
(Oreochromis aureus) after treatment with ethynylestradiol in combination 
with metallibure, a pituituary blocker. Treatments with ethynylestradiol alone, 
or 17/Î-E2 alone or in combination with metallibure were not successful. 

The evidence produced by Van den Hurk and Slof ( 1981 ), demonstrating 
the steroidogenic capabilities of rainbow trout testes but not ovaries at the time 
of sex differentiation, supports the dominant-neutral sex hypothesis. It sug
gests that in our experiments with common carp ovarian development could 
be interrupted or changed with 17a-MT, whereas testicular development with 
its own steroidogenic capability cannot be overruled by exogenous 17/?-E2. 

All control groups in the first and second experiments contained more males 
than females, which can be caused by small amounts of testosterone present 
in the pellets used ( Sower and Iwamoto, 1985 ). However, it was recently found 
in our laboratory that certain crosses of inbred carp produce aberrant sex ra
tios. The possibility that these sex ratios are caused by the presence of homo
zygous recessive genes is under current investigation. 
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ABSTRACT 

In this paper genetic sex determination and hormonal induced sex differentiation is 

discussed for common carp. The presence of a recessive mutant gene, which induces in 

homozygous condition maleness in gynogenetic offspring has been demonstrated. 

INTRODUCTION 

Sex differentiation in common carp is assumed to be regulated by genes, located on the 

so called sex chromosomes. Males are thought to be XY and females XX since 

gynogenetic reproduction of females produces exclusively female offspring (Nagy, 1986). 

Male sex inversion in gynogenetic females can be achieved by administration of 

androgens prior to phenotypic expression of gonadal sex (Nagy et al., 1981). Gonadal 

differentiation in this case takes place independent of the genotype (hormonal induced 

sex). Sex control in common carp by hormonal induction of sex is needed to establish 

reproducable inbred strains. In our laboratory we are interested to obtain inbred strains 

of carp for standardisation of endocrinological and immunological bio-assays. Another 

interest concerns selection on production characteristics such as late gonadal maturation. 

This can be achieved by crossing inbred strains to produce F, hybrids which display 

heterosis and reduced variation. 

In this account we will first discuss the results of sex control by administration of sex 

steroids in our common carp broodstock. We will then analize the genetic basis of sex 

differentiation in some of the gynogenetic offsprings from this broodstock, and present 

evidence for the existence of a minor female sex determining gene. We will conclude by 

presenting the results of an experiment in which we investigated a possible interaction 

of hormonal induced sex with homozygosity or heterozygosity for this minor female sex 

determining gene, using homozygous and heterozygous clones of common carp. 

SEX INVERSION WITH HORMONES 

We have tested the effects of various dietary treatments with 17b-estradiol (Ej) and 17a-

methyltestosteron (MT) on the gonadal development of common carp (Komen et al., 

1989). Experimental diets containing various concentrations of MT or Ej were prepared 
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by the alcohol evaporation method. For both hormones, three different periods of 

treatment were tested. A summary of the various treatments is given in table 1. 

Table 1 Summary of treatments with MT and E^. Diets containing various hormone 

concentrations were administered during 3 different periods after hatching. 

Alcohol treated diets containing no hormone were used as controls. 

treatment 

I 

II 

III 

time after 
hatching 
(weeks) 

3 - 8 

6 - 1 1 

10 - 15 

concentrations of MT 
(PPn) 

0 50 100 150 

-

+ 

-

+ 

+ 

+ 

+ 

+ + 

+ 

concentrations of E 2 

(ppm) 
0 25 75 125 

+ 

+ 

+ 

+ 

+ 

+ 

+ 

+ + 

+ 

Gonadal development of about 100 fish per group was assessed by macroscopical and 

histological examination 24 weeks after hatching, when the fish had reached a body 

weight of 80-100 gram. Gonads having both testicular and ovarian tissue were scored as 

intersex, while filliform gonads, in which occasionally oocytes or spermatogonial cysts 

were found, were scored as sterile. The results from these experiments can be sum

marized as follows (fig 1 and 2): 

The frequencies of females in estradiol treated groups and their controls were not 

significantly different from the expected 50 % (fig. 1). It is noteworthy that males 

receiving high hormone concentrations had reduced gonad weights and could not be 

stripped. This indicated that the hormone had effectively been absorbed. In contrast, 

the frequencies of males in groups treated with methyltestosterone during the second 

and third period were signifcantly higher than the expected 50 % (fig 2). 

The optimum treatment for effective male sex inversion proved to be oral administration 

of 50 ppm MT in the food during 6 to 11 weeks after hatching (fig. 2: treatment 11-50). 

Increasing the hormone concentration in the food apparently causes paradoxical 

feminization since the frequencies of intersexes and females slightly increased in these 

treatment groups. MT had a significant sterilizing effect on gonadal development when 

administered during the first period. Unexpectedly, the duplicate control groups in this 
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Figure 1 Frequencies of male, female, intersex and sterile gonads of common carp, after 

various dietary treatments with 17ß estradiol. The frequencies of males and and females 

were not significantly different between hormone treated groups and their controls, or 

the expected 50 % ratio, according to the Chi-square test (P<0.05)(see also table 1). 
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experiment (fig 2: treatment II-O) contained considerably more males (mean 64.4%) than 

females although this was not significantly different from the expected 1:1 sex ratio. This 

skewed sex ratio could not be attributed to failures in the experimental conditions. Such 

deviations from a 1:1 sex ratio, including all-female offspring from normal breedings, 

have occasionally been found in our laboratory during the last ten years. 

SEX DIFFERENTIATION IN GYNOGENETIC CARP 

In another series of experiments artificial gynogenesis was applied to compare the 

effects of inbreeding in heterozygous and homozygous gynogenetic common carp, and 

to produce homozygous clones (Komen et al, in prep.). In gynogenesis, eggs are fertil

ized with irradiated sperm and diploidy is restored by suppresion of either the second 

meiotic or first mitotic division. In the first case the degree of homozygozity in the 

offspring depends on the rate of crossing over between non-sister chromatids during the 

first meiotic division (retention of second polar body: 2PB-gynogenesis). In the second 

case fully homozygous diploid offspring are produced (endomitosis: EM-gynogenesis). 

The female used in this experiment was selected from one of our broodstocks, termed 
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Figure 2 Frequencies of male, female, intersex and sterile gonads ofcommon carp, after 

various dietary treatments with 17a methyltestosterone. Values are from pooled 

duplicates. The frequencies of males in all groups, except the controls, were significantly 

different from the expected 50 % ratio, according to the Chi-square test (P<0.05)(see 

also table 1). 
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WT. She was homozygous for a recessive gene for scalation (s/s; mirror carp), and 

normally pigmented but heterozygous for two recessive mutations which inhibit melano-

phore formation in homozygous condition (blond: b,,b,/b2,b2; Komen et al, submitted). 

The selected male from this broodstock was heterozygous scaled ( + /s) and normally 

pigmented ( + , + / + , + ). Genetic inactivation of the sperm was achieved by irradiating 

milt, diluted 1:3 with 0.85% fysiological saline to a total volume of 10 ml, with U.V. 

(2200 J/m2,min) for 60 min. A cold shock (0°C, 45 min; 1-2 min after fertilization) was 

used to produce 2PB-gynogenetic offspring (2PB group) while homozygous gynogenetic 

offspring (EM group) were produced by giving eggs a heat shock (40°C, 2 min; 30 min 

after fertilization (Komen et al.,1988; Komen et al.,1990 in press). 

Control fry were produced by fertilizing eggs with non irradiated milt (CO group). The 

breedings and the resulting groups are summarized in Table 2. 

None of the gynogenetic groups contained scaled individuals, indicating the absence of 

transmission of paternal genes, while 50 % of the fish in the CO group were scaled. Due 

to a high frequency of recombinantion between the two loci b, and b2, and the centro

mere, only 6 % of blond fish were found in the 2PB group. 
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Table 2 Sex ratio's in normal and gynogenetic offspring of common carp. 

Eggs from a female from the WT broodstock were fertilized with irradiated sperm 

from a WT male from this broodstock, and cold shocked or heat shocked to 

produce heterozygous (2PB) or homozygous (EM) offspring. Non irradiated milt 

from the WT male and a gynogenetic male GY was used to produce a control 

(CO) group and an all female offspring (WTxGY) respectively. 

cross 

wr Q x wr c? 

WT o gynog. 

WT o gynog. 

WT o x GY o" 

offspring 

CD-group 

2PB-group 

EM-group 

WTxGY-group 

N 

60 

60 

60 

60 

male 

47.8 

3.3 

21.6 

0.0 

sex ratio (%) 

intersex 

0.0 

3.3 

25.1 

0.0 

female 

52.2 

93.4 

53.4 

100.0 

The homozygous nature of the EM group was confirmed by the presence of 23.8 % 

blond fish, which is not statistically different from the expected 25 %. Surprisingly, upon 

maturation of these gynogenetic offsprings, a high proportion of males and intersexes 

were found in the EM group (46.7 %) while in the 2PB group about 6.6 % males and 

intersexes occurred (Table 2). The control group on the other hand showed a normal sex 

ratio with nearly 50 % males. 

Gynogenetic males had been found occasionally in other experiments among 2PB-

gynogenetic offspring, but their origin was always unclear. We therefore crossed the WT 

female, who had been used to produce the aberrant 2PB and EM groups, with such an 

unrelated gynogenetic male GY. The offspring of this mating (WTxGY group; Table 2) 

contained only females. This indicated that neither the WT female nor the GY male 

carried a Y chromosome.In order to elucidate the cause of maleness in the EM and 2PB 

groups, we selected 3 females from the WTxGY group (nrs 1, 2 and 3) and crossed them 

with a selected male from the EM group. These crossings and the sexratio's in the 

resulting offsprings are summarized in Table 3. The 3 offsprings were raised to maturity 

and 6 months after hatching approximately 90 fish of each group were dissected and 
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macroscopically sexed. The offsprings of female 1 and 2 contained males plus intersexes, 

and females in an approximately equal ratio. The offspring of female 3 contained mainly 

females and a few intersexes and males. 

Table 3 Sex ratio's in offspring from normal crosses of common carp. 

Three females, selected from the (WT x GY)-group were each crossed with a 

homozygous gynogenetic male, selected from the EM-group. 

cross 

(WTxGY) - Q 1 x EM o* 

(WTxGY) - o 2 x EM c? 

(WTxGY) - £ 3 x EM i 

N 

90 

99 

89 

male 

43.3 

27.3 

1.1 

sex ratio (%) 

intersex 

13.4 

33.3 

4.5 

female 

43.3 

38.4 

94.4 

A MODEL FOR ATYPICAL SEX DETERMINATION IN GYNOGENETIC AND 

NORMAL COMMON CARP 

The results (Table 2 and 3) can be explained by adopting the following model. Assume 

the presence of a minor female sex determining gene mas+ The recessive allele (mutant 

gene) mas-1 in homozygous condition induces a male or intersex gonad in fish which are 

chromosomally XX (XX; mas-l/mas-1). A similar mutant gene, termed male sex 

determining gene, has been postulated by Kallmann (1984) to explain XX males in dif

ferent Xiphophorus species. 

The presence of nearly 50 % males and intersexes in the homozygous gynogenetic 

offspring (EM group) from the original WT female can then be explained by assuming 

her genotype to have been mas+/mas-l, with mas+ and mas-1 seggregating in mas-

l/mas-1 males and intersexes and mas+/mas+ females (fig 3). The presence of 6.6 % 

males and intersexes (mas-l/mas-1 ?) in the 2PB group might indicate a high frequency 

of recombination between this locus and the centromere and thus a position distal on 

the chromosome arm (Thorgaard, 1983). 

The majority of females in the 2PB group are therefore probably mas+/mas-1. The G Y 
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Figure 3 A model for atypical sex determination in gynogenetic common carp. 

Percentages indicated in the bars correspond with the data presented in table 2 and 3. 

For explanation see text. 
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male must be homozygous mas+/mas+ since no males were found in the WTxGY-group. 

The actual genotype of GY is at present unknown, but preliminary results from 

backcrossings of (WTxGY)-females to this GY male have indicated the presence of two 

other mutant minor sex determining genes (Komen et al., in preparation). 

If the WT female is assumed to be mas+/mas-l and the G Y male mas+/mas+, then the 

genotypes of the females in the WTxGY group should be either mas+/mas+ or 

mas+/mas-l. This was corroborated by the results from the second series of crosses (see 

table 2 and fig 3). The WTxGY females 1 and 2 were apparently masVmas-1 since the 

cross with the selected EM male (mas-l/mas-1) produced females (mas+/mas-l) and 

males and intersexes (mas-l/mas-1) in approximately equal ratio's. The WTxGY female 

3 must have been mas+/mas+ since she produced mainly mas+/mas-l female offspring 

after crossing with the EM male mas-l/mas-1. 

We believe that the non-gynogenetic fish used in the first series of experiments with MT 

were the offspring of a cross XX;mas+/mas-l x X/Y;mas+/mas-l, and that the skewed 

sex ratio (64.4 % males) in the control group (fig 2, treatment II-O) was due to the 

presence of XX;mas-l/mas-l males (Table 4). 

Table 4 Punnet square for possible genotypes in an offspring from a cross XX; 

mas+/mas-l x XY;mas+/mas-l. The frequency of males (bold type) in this 

offspring will be 5/8 or 62.5 %. 

X,mas+ 

X,mas-1 

Y,mas+ 

Y,mas-1 

X,mas+ 

XX;mas+/mas+ 

XX;mas+/mas-l 

XY;mas+/mas+ 

XY;mas+/mas-l 

X, mas-1 

XX;mas+/mas-l 

XX;mas-l/mas-1 

XY;mas+/mas-l 

XY;mas-l/mas-l 
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SEX INVERSION IN CLONES OF COMMON CARP 

In order to investigate a possible interaction between the effects of hormone treatment 

and these sex determining genotypes, we performed an experiment in which carp clones 

with genotypes XX;mas+/mas+ and carp clones with genotypes XX;mas+/mas-l were 

treated with 17a methyltestosterone to induce male sex inversion. Per clone about 50 fish 

were used for the treatment while another 50 fish were used as untreated controls. The 

treatment used (50 ppm, 6-11 weeks after hatching) was the optimum treatment for male 

sex inversion, found in the first series of experiments. The results are summarized in fig 

4. 

Figure 4 Frequencies of male, female, intersex and sterile gonads invarious clones of 

common carp, after dietary treatment with 17a- MT. Clones which were homozygous 

or heterozygous for a minor female sex determining gene mas+ (A), were treated with 

50 ppm 17a MT, 6-11 weeks after hatching. Untreated fish from each clone served as 

a control on normal sex differentiation. 
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All hormone treated groups except one contained a very high percentage of intersexes 

(60-90 %) in comparison to the previous experiment (compare fig 2 and 4). Only one 

hormone treated clone contained significantly more males than intersexes (69 % vs 

20.3%). The controls, as could be expected, contained mainly females. The percentages 

of male sex inverted fish could not be correlated with homo- or heterozygosity for the 

sex determining gene mas+. The high percentages of intersex gonads occuring in all 

hormone treated groups (exept one) indicate that other (regulatory?) genes in these 

various clones more or less determine the succes of hormonal induced sex inversion. 

DISCUSSION 

According to Yamamoto (1969) sex steroids should be administered during the period 

of gonadal differentiation in order to be effective. Despite this general rule, however, 

little is known as to the exact mechanism in which exogenous androgens and estrogens 

exert their influence on the developing gonad. Male sex inversion can succesfully be 

induced by administration of various androgens in salmonids (Johnstone et al., 1978), 

tilapias (Rothbard et al., 1983) and in carps (Nagy et al, 1981, Komen et al., 1989). 

On the other hand, female sex inversion by the use of various estrogens is often only 

partially succesful or not succesful at all in tilapias and carps. In the first series of 

experiments 17ß estradiol did not affect the sex ratio in any of the tested dosages or 

periods. A possible explanation for these findings can be found in the so called induced-

neutral sex hypothesis. In this hypothesis, maleness can be induced in the neutral female 

sex but not vice versa. In rainbow trout the steroidogenic capability of testes but not 

ovaries were demonstrated at the time of sex differentiation (Van den Hurk and Slof, 

1981). This could explain in our experiments with common carp why ovarian develop

ment can be changed by MT while testicular development with its own steroidogenic 

capacity cannot be overruled by exogenous E2. It should be noted however that the 

succes of a hormonal treatment often seems to depend on the species used. Various 

closely related tilapia species show differences in sensitivity to treatment with estrogens. 

Estradiol treatment was ineffective in carps while in the closely related goldfish the less 

effective estrogen estrone induced female gonads (Yamamoto, 1975). Similarly , Nagy 

et al. (1981) obtained succesfull male sex inversion in Hungarian carps with 100 ppm 

MT administered during any period of 36 days between 1 and 12 weeks after hatching, 
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while our results with Dutch carps revealed a much shorter sensitive period of 6 to 11 

weeks after hatching. These findings indicate that the genetic background of a carp 

species is an important factor in hormonal induced sex inversion. The results obtained 

in the third series of experiments furthermore show that even individual genotypes (e.g. 

of each of the clones tested) more or less determine the succes of hormonal induced 

male sex inversion. 

The presence of a minor female sex determining gene of which the recessive (mutant) 

allele in homozygous condition induces a male or intersex gonad in gynogenetic offspring 

has, as far as we know, never been observed in fish. The discovery of this minor female 

sex determining gene indicate a complex system of genes apart from those located on 

X and Y involved in sex determination in common carp. With respect to their role in sex 

differentiation it is attractive to assume that they code for specific enzymes which are 

involved in sex steroid synthesis or for specific steroid receptors. 
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Summary 

The absence of 'well defined inbred lines is an important problem associated with 

scientific research on fish. Inbred lines can be produced by conventional full-sib mating, 

but at least 10-15 generations are needed to produce homozygous inbred lines. Using 

common carp, which reach maturity at 1.5 years, this would last some 15-30 years. 

Nowadays experimental fishes are usually obtained from commercial fish farms, or bred 

in the laboratory using a limited number of broodstock fish. In both cases the genetic 

background and the degree of inbreeding of the experimental animal is unknown. 

In consequence the results from various laboratories are difficult to compare. Bioassays 

often show a large variation in the experimental results and a relative low 

reproducability. Moreover, large numbers of fish are needed to obtain statistically 

significant results. In order to solve these problems this research project was started with 

the aim to develop homozygous inbred lines of fish by gynogenetic breeding. 

Furthermore, in our university there was a high need for inbred lines with specific 

(mutant) genotypes, which could be used in the ongoing research on the immune system 

and sex determination of common carp. 

In gynogenesis, eggs are fertilized with genetically inactivated sperm. The resulting 

haploid embryo can be made diploid by inhibition of the second meiotic division (reten

tion of the second polar body or 2PB method), or by inhibition of the first mitotic 

division (endomitosis or EM method). In the first case the gynogenetic offspring will be 

partly heterozygous due to recombination during the preceeding meiotic prophase. In the 

second case the haploid genome of the embryo is duplicated while the first cell division 

is prevented. The resulting diploid offspring will be fully homozygous. 

In a first series of experiments (chapter 3) the optimal conditions for irradiation and 

dilution of milt, and for administration of a temperature shock to inhibit the second 

meiotic division, were investigated. Milt was irradiated with U.V. light (235.7 nm). 

Dilution (in physiological saline) and irradiation duration were important parameters for 

the survival of spermatozoa. Sperm, diluted 1:3, could be irradiated for 60 minutes (2200 

J/m2,min) without loss of fertilization capacity. This fertilization capacity was 

considerably reduced when higher dilutions were used, while a shorter irradiation period 

failed to inactivate all spermatozoa. 
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The effectiveness of genetic inactivation was checked by using sperm from scaled males 

(a dominant trait) and eggs from scattered females (recessive trait). Gynogenetic 

offspring turned out to be all scattered. Inhibition of the second meiotic division was 

achieved by administering eggs, fertilized with genetically inactivated sperm, a 

temperature shock at various moments after fertilization. Consistent yields of 25- 50 % 

viable fry were obtained when eggs were cold shocked (0°C) for 45 minutes, 1-2 or 7-9 

minutes after fertilization (at 24 C). This bimodal response was typical for common 

carp, but essentially different from other investigations on common carp gynogenesis, 

where lower incubation temperatures and degumming of egg was practised. 

In a second series of experiments (chapter 4) the optimal conditions for inhibition of the 

first mitotic division were investigated. The occurrence of metaphase of the first mitotic 

division was histologically determined. Consistent yields of 5 - 15 % viable fry were 

obtained when eggs were heat shocked at 40 °C for 2 minutes, 28-30 minutes after fer

tilization (i.e. at metaphase). Accurate timing of the heat shock, as well as the heat shock 

temperature and duration, were critical in obtaining an optimal yield of diploid fry. The 

homozygous nature of the gynogenetic fry was demonstrated by the Mendelian 

segregation patterns of two recessive colour mutations (chapter 4). 

An important aspect of the described gynogenetic breeding techniques is the effect of 

the expected homozygosity in a first generation of gynogenetic offspring. In order to 

investigate this effect, we compared homozygous carps (EM method) with heterozyous 

gynogenetic carps (2PB method) and a group obtained by full-sib mating (chapter 5). 

The three groups were all obtained from the same mother, and allowed a comparison 

of the effects of increasing levels of homozygosity. Skin grafts were exchanged between 

animals of the same group and between animals of different groups. Skin allografts 

exchanged among heterozygous gynogenetic carp exhibited prolonged survival. 

Furthermore a strong histocompatibility (H) locus was seen to segregate in this group. 

In contrast skin allografts exchanged among homozygous gynogenetic siblings or among 

normal full-sibs were all rejected in an acute manner, with homozygous fish showing the 

most vigorous allograft reactions. These findings were explained by assuming that acute 

allograft reactions were the result of a single strong H-locus disparity, or of a multiple 

minor H-loci barrier which mimics a strong H-locus effect (chapter 5). 
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In a follow-up experiment (chapter 6) the effects of increasing levels of homozygosity 

on sex, gonad development and fertility of carps from these three groups were 

compared. Surprisingly nearly 50 % males and fishes with intersex gonads were found 

in the EM group while males were absent in the 2PB group. This excluded a possible 

contamination with non-irradiated (non-inactivated) sperm. Inbreeding significantly 

increased the mean gonad weight as well as the variation in gonad weights. Full sib (FS) 

and heterozygous gynogenetic offspring (2PB) were normal in gonad development, but 

gonads from homozygous gynogenetic (EM) carp were often retarded in vitellogenesis. 

The ovulation response was significantly reduced with increasing levels of inbreeding. 

Eggs from ovulated females of the FS, 2PB and EM groups were fertilized with milt 

from males of the FS and EM groups. Yields of normal fry were reduced in crosses 

involving FS and 2PB eggs when compared to crosses with EM eggs or milt. This indi

cated that homozygous fish were essentially free of recessive lethal genes affecting 

embryo survival (chapter 6). 

New inbred lines were produced using a combination of both gynogenetic techniques. 

Homozygous inbred strains were produced by gynogenetic reproduction (2PB method) 

of homozygous gynogenetic (EM) females. Fi hybrid strains were produced by crossing 

homozygous females with homozygous gynogenetic male siblings. The clonal nature of 

these strains was unequivocally demonstrated by reciprocally exchanged skin allografts. 

All grafts exchanged among members of the same strain were permanently accepted. 

Likewise grafts from homozygous strain members were accepted by fish from the related 

half-sib Flhybrid strains, while the reverse grafts were rejected. These results provided 

evidence for the idea that in carp, as in other vertebrates studied so far, histocom

patibility genes exist as major and minor loci which are codominantly expressed (chapter 

5). 

The inbred strains and Fl hybrids were comparable in body weight and gonad 

development (chapter 6), but the Fl hybrids showed a much lower variation in body 

weight and gonad development. In contrast the phenotypic variation was considerably 

enlarged in the homozygous inbred strains. This phenomenon is well known in inbred 

strains of mice and rats, and are generally attributed to developmental instability. The 

Fl hybrids are therefore more suited for use in bioassay's, especially since they might 
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possess an increased viability. 

One of the advantages of the described gynogenetic inbreeding system is that selection 

of the most interesting and viable genotypes is required only in the first generation. The 

selected females can be propagated to produce inbred strains are identical to their 

parents in overall performance. However, in order to obtain males within a gynogenetic 

inbred line, some females should be sex-inversed by hormonal treatment. Therefore 

juvenile, non-inbred carps were treated with various doses of orally administrated 17a 

methyltestosterone during different periods after hatching. The treatment periods were 

3-8 weeks, 6-11 weeks and 10-15 weeks after hatching. The tested hormone 

concentrations in the food were 50 and 100 ppm, while a dose of 150 ppm was also 

applied during 6-11 weeks after hatching. The gonads were inspected at 6 months after 

hatching. Administration of 50 ppm 17a-MT in the food between 6 and 11 weeks after 

hatching resulted in 92,7% males. Earlier treatments with 17a-MT in concentrations of 

50 and 100 ppm of hormone in the food resulted in high percentages of sterile fish while 

later treatments produced a high percentage of intersex gonads (chapter 7). Surprisingly 

a similar experiment using 17ß estradiol failed to induce female gonads in any of the 

periods tested and irrespective of the concentrations of hormone used. 

The optimal treatment with methyltestosterone was used to induce sex-inversion in the 

produced homozygous inbred strains and Fl hybrids (chapter 8). The untreated groups 

contained females and a single fish with intersex gonads. In the treated groups however, 

mainly intersex gonads were observed. Only one Fl hybrid group contained significantly 

more males (60 %) than animals with intersex gonads. These results can only be 

explained by assuming that the success of hormone induced sex inversion is genetically 

determined. 

Maleness in common carp is thought to be determined by dominant sex determining 

genes, since heterozygous gynogenetic offspring were all female. However, in some 

homozygous gynogenetic offspring nearly 50 % males and intersexes were found. It was 

therefore suggested that maleness in these groups might be caused by recessive 

mutations in sex determining genes. The mother of one offspring group, probably 

heterozygous for a putative mutation, was crossed with an unrelated gynogenetic male 

from another experimental group. The offspring of this cross was exclusively female, but 

crosses of these females with gynogenetic males contained again 50 % males and 
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intersexes. It was concluded that these males and intersexes were homozygous for a 

recessive mutant sex determining gene termed mas-1. To our knowledge such mutations 

have not been described in fish before (chapter 8). 

In conclusion, it can be stated that gynogenesis is a very successful and rapid method for 

the production of homozygous inbred lines of the common carp, Cyprinus carpio. Such 

inbred lines have until now only been produced in two small aquarium fish species, 

zebrafish (Brachydanio rerio), and medaka (Oryzias latipes). Our new inbred lines of 

common carp will be very important for future scientific research. The use of F l hybrids 

in endocrinological and immunological bioassays will result in an increased 

standardisation and thus in a reduction of the number of experimental animals needed. 

Perhaps the inbred lines can also provide an alternative for the use of other 

experimental vertebrate animals. The present study also demonstrated the possibilities 

of gynogenetic breeding in unravelling complex biological processes as graft rejection 

and sex determination. Moreover, the rapid isolation of specific mutants with an 

abnormal development may offer important possibilities for future research. 
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Samenvatting 

Een belangrijk probleem bij het gebruik van vissen in wetenschappelijk onderzoek is het 

ontbreken van genetisch gedefinieerde inteeltlijnen. Bij conventionele inteelt zijn in het 

algemeen ongeveer 10-15 generaties van "full-sib" (broer-zus) paring benodigd om bij 

benadering homozygote lijnen te verkrijgen. Met een generatie-duur van 1,5-2 jaar bij 

de karper duurt dit zo'n 15-30 jaar. Voor experimenten worden vaak vissen uit 

commerciële viskwekerijen betrokken of wordt er gewerkt met vissen welke in het 

laboratorium uit een beperkte groep ouderdieren zijn verkregen. In beide gevallen is er 

sprake van een heterogene groep proefdieren met onbekende genetische achtergrond, 

terwijl er tevens sprake kan zijn van een aanzienlijke mate van onbedoelde inteelt. 

Hierdoor zijn onderzoeksresultaten onderling of afkomstig van verschillende laboratoria 

soms moeilijk vergelijkbaar, en vertonen bijvoorbeeld bio-assays een zeer grote spreiding 

in de gemeten respons terwijl de herhaalbaarheid gering is. Een van de gevolgen is het 

gebruik van aanzienlijke aantallen proefdieren om statistisch verantwoorde conclusies 

te kunnen trekken. Om deze problemen te ondervangen werd een onderzoek gestart met 

als doel om via een kunstmatige vorm van parthénogenèse (gynogenese) ingeteelde 

lijnen bij de karper te produceren. Het onderzoek moest tevens een eerste aanzet 

vormen tot de ontwikkeling van inteeltlijnen met zeer specifieke (mutante) genotypen 

ten behoeve van bestaand onderzoek aan het immuunsysteem en de geslachtsdifferen-

tiatie bij de karper. 

Bij gynogenese worden eieren "bevrucht" met genetisch inactief sperma. Het in potentie 

haploide embryo kan diploid worden gemaakt door blokkering van de tweede meiotische 

deling (vasthouden van het tweede poollichaampje of 2PB-methode) of de eerste 

mitotische deling (endomitose of EM-methode). In het eerste geval zijn de 

gynogenetische nakomelingen niet volledig homozygoot door het optreden van recom-

binatie tijdens de voorafgaande profase van de méiose. In het tweede geval wordt het 

haploide genoom van het embryo verdubbeld zonder dat de eerste celdeling plaatsvindt. 

De resulterende diploide nakomelingen zijn in principe volledig homozygoot. 

In een eerste serie experimenten (hoofdstuk 3) werden de optimale condities van 

bestraling en verdunning van het sperma, en toediening van de temperatuurschok aan 
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de eieren onderzocht. Tevens werd gekeken wat de invloed was van variaties in 

incubatie condities van de eieren op de opbrengst aan 2PB gynogenetische larven. Voor 

de bestraling werd op grond van de literatuur gekozen voor U.V.-C licht (253.7 nm). Uit 

de resultaten bleek dat verdunning (in een fysiologische zout oplossing) alsmede be

stralingsduur van invloed waren op de overleving van het sperma. Bij een optimale 

verdunning van 1:3 was het sperma na 60 minuten bestraling (2200 J/m2, min) genetisch 

geïnactiveerd zonder verlaging van de bevruchtings-capaciteit. Bij een sterkere 

verdunning werd de bevruchtingscapaciteit aanzienlijk gereduceerd, terwijl bij een 

kortere bestralingsduur niet al het sperma genetisch geïnactiveerd werd. Ter controle op 

onvolledige inactivatie werd sperma van geschubde mannetjes (dominant kenmerk) en 

eieren van ongeschubde vrouwtjes (recessief kenmerk) gebruikt. Gynogenetische 

nakomelingen bleken inderdaad uitsluitend ongeschubd te zijn. Blokkering van de 

tweede meiotische deling geschiedde door eieren, na bevruchting met bestraald sperma, 

gedurende een korte tijdsfase na bevruchting, een koudeschok toe te dienen. De 

opbrengst aan vitale larven bedroeg doorgaans 25-50 %, wanneer de eieren 1-2 of 7-9 

minuten na bevruchting (bij 24°C) gedurende 45 minuten in ijswater (0 C) werden 

gedompeld. Deze tweetoppige respons bleek typisch voor karper, maar te verschillen van 

andere onderzoekingen waarbij lagere incubatietemperaturen en ontkleving van de 

eieren werden toegepast. 

In een volgende serie experimenten (hoofdstuk 4) werden de optimale condities voor 

verstoring van de eerste mitose ( EM-methode) onderzocht. Het tijdstip waarop de 

metafase optreedt werd langs histologische weg vastgesteld. Vervolgens vond blokkering 

van de mitose plaats door eieren 28-30 minuten na bevruchting (d.w.z. tijdens de 

metafase) een hitteschok (van 24 C naar 40 C gedurende 2 minuten) toe te dienen. De 

opbrengst aan vitale homozygote larven bedraagt onder deze condities slechts 5-15% van 

het aantal bevruchte eieren. Acurate 'timing' van de hitteschok alsmede de hitteschok-

duur en -temperatuur bleken binnen zeer nauwe grenzen bepalend voor de overleving. 

De homozygotie van de nakomelingen werd aangetoond door gebruikmaking van 

vrouwelijke ouderdieren welke heterozygoot waren voor twee recessive kleurmutaties. 

De pigmentatie typen werden in strict Mendelse verhoudingen in de gynogenetische 

nakomelingen teruggevonden hetgeen duidde op een afwezigheid van heterozygoten 

(hoofdstuk 4). 

161 



Een belangrijk aspect van de beschreven gynogenetische inteelttechnieken is het gevolg 

van de te verwachten homozygotie in een eerste gynogenetische generatie. Om deze te 

onderzoeken werden homozygote karpers (EM methode) vergeleken met karpers, 

verkregen door normale broer-zus paring (Full-Sib = FS) en 2PB-gynogenese (2PB). 

Deze karpers hadden allen dezelfde moeder. Hierdoor was het in principe mogelijk de 

optredende homozygotie te kwantificeren. Huidtransplantaten werden uitgewisseld tussen 

dieren van de dezelfde groep en tussen dieren uit verschillende groepen. Het bleek dat 

alle huidjes uitgewisseld tussen dieren binnen de FS of EM groepen snel werden 

afgestoten. Daarentegen vertoonden de afstotingstijden van huidjes uitgewisseld tussen 

2PB dieren een zeer grote spreiding. Bovendien was de invloed van een sterk 

histocompatibiliteits- of transplantatie-locus, naast meerdere zwakke loci, in deze groep 

aantoonbaar. Deze resultaten duidden op een grote mate van heterozygotie en dus 

isogenie voor vele histocompatibiliteitsgenen in de 2PB nakomelingsschap. Daarentegen 

waren de vissen in de EM groep genetisch blijkbaar zeer verschillend, wat op grond van 

volledige homozygotie voor vele loei op verschillende chromosomen paren ook verwacht 

werd (hoofdstuk 5). 

In een vervolg-experiment (hoofdstuk 6) werden van een aantal vissen uit de drie 

genoemde groepen diverse kenmerken met betrekking tot de voortplanting gemeten. 

Verassend was het voorkomen van bijna 50 % dieren met mannelijke of intersex 

gonaden in de EM groep. Mannetjes waren echter afwezig in de gynogenetische 2PB 

groep, waardoor een contaminatie met genetisch niet geïnactiveerd sperma kon worden 

uitgesloten. De effecten van inteelt manifesteerden zich verder als een sterk toegenomen 

variatie in lichaams-, ovarium- en eigewicht met toenemende mate van homozygotie. De 

inteeltdepressie kwam vooral in de EM groep tot uiting als een stijging in het gemiddeld 

ovariumgewicht, een daling van het gemiddelde eigewicht, en een sterk verminderde 

ovulatierespons. In de FS-groep waren alle vrouwelijke dieren na hormonale inductie 

afstrijkbaar, terwijl bij de 2PB-groep 65% en bij de EM-groep slechts 20% afstrijkbaar 

was. De eieren, afkomstig van geovuleerde vrouwtjes uit de FS, 2PB en EM groep, 

werden vervolgens bevrucht met sperma van mannetjes uit de FS groep. Tevens werden 

eieren van FS-vrouwtjes bevrucht met sperma van EM-mannetjes. Kruisingen tussen FS 

en EM dieren gaven significant minder misvormde larven en meer normale larven dan 

de andere kruisingen. Dit betekende dat gameten van EM-homozygote vrouwtjes en 
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mannetjes vrij waren van recessief lethale genen welke embryonale sterfte kunnen 

veroorzaken (hoofstuk 6). 

Door toepassing van een combinatie van beide gynogenese technieken werden ingeteelde 

lijnen geproduceerd. Homozygote vissen, verkregen volgens de EM-methode, werden 

nogmaals voortgeplant volgens de 2PB methode. Deze gynogenetische nakomelingen zijn 

homozygoot en genetisch identiek zodat van een inteeltlijn gesproken kan worden. 

Daarnaast werden homozygote vrouwtjes gekruisd met homozygote EM mannetjes. 

Deze kruisingen tussen homozygote vissen zijn ook genetisch identiek maar 

heterozygoot. Deze groepen kunnen als Fl hybriden worden beschouwd. Het klonale 

karakter van de inteeltlijnen en Fl hybriden werd aangetoond door huid transplantaties 

uit te voeren. Huidjes, uitgewisseld tussen leden van dezelfde groep, werden zonder 

meer geaccepteerd. Huidjes, uitgewisseld tussen leden van verschillende homozygote 

inteeltlijnen, werden snel afgestoten terwijl huidjes van homozygote vissen werden 

geaccepteerd door Fl hybriden indien deze de moeder met de homozygote donoren 

gemeenschappelijk hadden. Omgekeerd werden de huidjes afgestoten. Deze resultaten 

toonden aan dat bij de karper, evenals bij zoogdieren, histocompatibiliteitsgenen codomi-

nant tot expressie komen (hoofdstuk 5). 

Met betrekking tot het lichaamsgewicht en de gonadenontwikkeling waren er grote 

verschillen tussen de inteeltlijnen en de Fl hybriden (hoofdstuk 6). De Fl hybriden 

hadden op dezelfde leeftijd een hoger gemiddeld lichaams- en gonadegewicht dan de 

homozygote inteeltlijnen, terwijl de spreiding aanzienlijk gereduceerd was. Omgekeerd 

vertoonden de homozygote inteeltlijnen een sterk vergrote individuele spreiding in 

gewicht en gonade-ontwikkeling. Dit fenomeen komt ook voor bij inteeltlijnen van 

muizen en ratten, en wordt toegeschreven aan ontwikkelingsinstabiliteit. Het feit dat dit 

verschijnsel ook bij karpers optreedt doet vermoeden dat een instabiele ontwikkeling een 

direkt gevolg is van de volledige homozygotie van het dier. Voor het gebruik in bio-

assays lijken derhalve kruisingen tussen homozygote dieren meer perspectieven te 

bieden, mede ook vanwege de verbeterde larvale overleving en de te verwachten hoge 

vitaliteit. 

Het voordeel van het hier beschreven twee generaties gynogenetische inteeltmodel is, 
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dat slechts één keer (in de eerste generatie) op de meest vitale maar ook meest 

interessante genotypen geselecteerd hoeft te worden. De geselecteerde ouderdieren 

kunnen gynogenetisch voortgeplant worden om inteeltlijnen te produceren welke qua 

prestatie niet afwijken van de uitgangspopulatie. 

Om echter mannelijke vissen binnen de inteeltlijnen te verkrijgen dient een deel van de 

gynogenetische dieren hormonaal geinduceerde geslachtsomkeer te ondergaan. Teneinde 

hiervoor een optimale procedure te ontwikkelen werden juveniele karpers, afkomstig uit 

niet ingeteelde lijnen, op verschillende leeftijden gedurende 5 weken behandeld met via 

het voer toegediend 17a-methyltestosteron. De geteste perioden waren 3-8 weken na 

uitkomen van het ei, 6-11 weken na uitkomen, en 10-15 weken na uitkomen. De geteste 

concentraties hormoon in het voer waren respectievelijk 50, en 100 ppm. Voor de 

periode 6-11 weken werd tevens een concentratie van 150 ppm getest. Bij inspectie van 

de gonaden na 6 maanden bleek dat een vroege behandeling tussen 3 en 8 weken 

resulteerde in een hoog percentage sterile vissen. Een late behandeling, 10-15 weken na 

uitkomen, resulteerde in een hoog percentage intersex gonaden. De beste resultaten, 92.7 

% mannelijke gonaden, werden verkregen indien karpers gedurende 6-11 weken na 

uitkomen 50 ppm 17a methyltestosteron in het voer kregen toegediend. Interessant was 

dat een identieke proefopzet, uitgevoerd met 17ß oestradiol in de concentraties 25 ,75 

en 125 ppm, geen enkel feminiserend effect sorteerde (hoofdstuk 7). 

De optimale behandelings methode met methyltestosteron werd vervolgens toegepast op 

de geproduceerde inteeltlijnen en Fl hybriden (hoofdstuk 8). De onbehandelde 

inteeltlijnen en Fl hybriden bevatten na 6 maanden uitsluitend vrouwelijke vissen. Bij 

de behandelde groepen werden echter voornamelijk intersex gonaden aangetroffen. 

Slechts één Fl hybride groep bevatte meer dan 60 % mannetjes, wat duidde op een 

geslaagde behandeling. Deze resultaten worden vooralsnog verklaard door aan te nemen 

dat het succes van de hormonale geslachtsinductie mede genetisch bepaald is. Het 

mannelijke geslacht bij de karper wordt verondersteld te zijn bepaald door dominante 

geslachtsdeterminerende genen. Het feit dat de onbehandelde gynogenetische groepen 

normaal uitsluitend vrouwelijk zijn ondersteunt deze aanname. Het optreden van 

mannetjes en dieren met intersexgonaden in sommige gynogenetische groepen duidde 

er echter op dat mannelijkheid in deze groepen mogelijk veroorzaakt werd door mutaties 

in andere geslachtsdeterminerende genen. Onder de aanname dat de moeder van de 
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gynogenetische mannetjes heterozygoot was voor een dergelijke mutatie, werd zij 

gekruisd met een niet verwant gynogenetisch mannetje uit een andere proefgroep. De 

nakomelingen waren wederom allen vrouwelijk maar kruisingen van deze dochters met 

hun oorspronkelijke gynogenetische broertjes leverde weer 50 % mannetjes en dieren 

met intersexgonaden op. Dit bevestigde dat mannelijkheid in de bewuste gynogenetische 

groepen veroorzaakt werd door een recessieve mutatie, genaamd mas-1. Voor zover ons 

bekend zijn dergelijke mutaties nog niet eerder bij vissen beschreven (hoofdstuk 8). 

Concluderend kan worden gesteld dat gynogenese een zeer snelle en effectieve methode 

is voor het produceren van homozygote inteeltlijnen bij de karper, Cyprinus carpio. Der

gelijke gynogenetische inteeltlijnen zijn tot op heden alleen bij twee aquariumvissen, het 

zebravisje (Brachydanio rerio) en het rijstvisje (Oryzias latipes), geproduceerd. 

De nieuwe karper inteeltlijnen zijn van groot belang voor het wetenschappelijk 

onderzoek aan vissen. Het gebruik van geselecteerde Fl hybriden in endocrinologische 

en immunologische bio-assay's zal tot een verhoogde standaardisatie leiden met een 

daaraan gekoppelde reductie van het aantal benodigde proefdieren. De inteeltlijnen 

kunnen bovendien mogelijk een alternatief bieden voor het gebruik van warmbloedige 

vertebraten, zoals knaagdieren. 

Uit het onderzoek is tevens gebleken dat gynogenese een efficiënte manier kan 

zijn om de genetische achtergrond van complexe biologische processen op te helderen. 

Met name de snelle isolatie van mutaties, welke de normale ontwikkeling van het 

individu verstoren, biedt hierbij interessante mogelijkheden voor de toekomst. De 

beschrijving van de genetische principes van de transplantaatafstoting en de mutaties in 

het geslachts-bepalend systeem bij de karper zijn hiervan een goede illustratie. 
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