296 research outputs found

    Weak Turbulent Kolmogorov Spectrum for Surface Gravity Waves

    Full text link
    We study the long-time evolution of gravity waves on deep water exited by the stochastic external force concentrated in moderately small wave numbers. We numerically implement the primitive Euler equations for the potential flow of an ideal fluid with free surface written in canonical variables, using expansion of the Hamiltonian in powers of nonlinearity of up to fourth order terms. We show that due to nonlinear interaction processes a stationary energy spectrum close to ∣k∣∼k−7/2|k| \sim k^{-7/2} is formed. The observed spectrum can be interpreted as a weak-turbulent Kolmogorov spectrum for a direct cascade of energy.Comment: 4 pages, 5 figure

    Freely decaying weak turbulence for sea surface gravity waves

    Full text link
    We study numerically the generation of power laws in the framework of weak turbulence theory for surface gravity waves in deep water. Starting from a random wave field, we let the system evolve numerically according to the nonlinear Euler equations for gravity waves in infinitely deep water. In agreement with the theory of Zakharov and Filonenko, we find the formation of a power spectrum characterized by a power law of the form of ∣k∣−2.5|{\bf k}|^{-2.5}.Comment: 4 pages, 3 figure

    Freak Waves in Random Oceanic Sea States

    Full text link
    Freak waves are very large, rare events in a random ocean wave train. Here we study the numerical generation of freak waves in a random sea state characterized by the JONSWAP power spectrum. We assume, to cubic order in nonlinearity, that the wave dynamics are governed by the nonlinear Schroedinger (NLS) equation. We identify two parameters in the power spectrum that control the nonlinear dynamics: the Phillips parameter α\alpha and the enhancement coefficient γ\gamma. We discuss how freak waves in a random sea state are more likely to occur for large values of α\alpha and γ\gamma. Our results are supported by extensive numerical simulations of the NLS equation with random initial conditions. Comparison with linear simulations are also reported.Comment: 7 pages, 6 figures, to be published in Phys. Rev. Let

    Changes in wave climate over the northwest European shelf seas during the last 12,000 years

    No full text
    Because of the depth attenuation of wave orbital velocity, wave-induced bed shear stress is much more sensitive to changes in total water depth than tidal-induced bed shear stress. The ratio between wave- and tidal-induced bed shear stress in many shelf sea regions has varied considerably over the recent geological past because of combined eustatic changes in sea level and isostatic adjustment. In order to capture the high-frequency nature of wind events, a two-dimensional spectral wave model is here applied at high temporal resolution to time slices from 12 ka BP to present using paleobathymetries of the NW European shelf seas. By contrasting paleowave climates and bed shear stress distributions with present-day conditions, the model results demonstrate that, in regions of the shelf seas that remained wet continuously over the last 12,000 years, annual root-mean-square (rms) and peak wave heights increased from 12 ka BP to present. This increase in wave height was accompanied by a large reduction in the annual rms wave- induced bed shear stress, primarily caused by a reduction in the magnitude of wave orbital velocity penetrating to the bed for increasing relative sea level. In regions of the shelf seas which remained wet over the last 12,000 years, the annual mean ratio of wave- to (M-2) tidal-induced bed shear stress decreased from 1 (at 12 ka BP) to its present-day value of 0.5. Therefore compared to present- day conditions, waves had a more important contribution to large-scale sediment transport processes in the Celtic Sea and the northwestern North Sea at 12 ka BP

    From community to assemblage? : ICT provides a site for inclusion and exclusion in the global south

    Get PDF
    The role of information and communication technology (ICT) in development has been discussed from two distinctly different perspectives: some view it as a means for opening new alleys for the facilitation of development and democracy, while others assess it as counterproductive. Furthermore, it has been emphasised that people in cities and rural areas utilise ICT in different ways, as do people with wealth and education compared to poor people. In Africa, Kenya has declared itself an ICT hub. The state has emphasised ICT in promoting services, much less freedom of expression. This article discusses ICT and development via the filter of assemblage, a key concept developed by Deleuze and Guattari (2004/1980. A Thousand Plateaus: Capitalism and Schizophrenia. London: Continuum.). They emphasised fluidity as well as micro- and macro-level dichotomies. When communities based on sharing and consistent social order meet new technology, the change goes deeper than that of improved services. The basic difference might be the fact that a community is constructed on cultural ties developed over time, which strengthens immobility and stability, while an assemblage is characterised by mobility and fluidity. Thus, a system of values, hierarchies, and inherited traditions is challenged, mixed with ‘new’ problems brought about by individualised behaviour.Peer reviewe

    The Role of Wind Waves in Dynamics of the Air-Sea Interface

    Full text link
    Wind waves are considered as an intermediate small-scale dynamic process at the air-sea interface,which modulates radically middle-scale dynamic processes of the boundary layers in water and air. It is shown that with the aim of a quantitative description of the impact said, one can use the numerical wind wave models which are added with the blocks of the dynamic atmosphere boundary layer (DABL) and the dynamic water upper layer (DWUL). A mathematical formalization for the problem of energy and momentum transfer from the wind to the upper ocean is given on the basis of the well known mathematical representations for mechanisms of a wind wave spectrum evolution. The problem is solved quantitatively by means of introducing special system parameters: the relative rate of the wave energy input, IRE, and the relative rate of the wave energy dissipation, DRE. For two simple wave-origin situations, the certain estimations for values of IRE and DRE are found, and the examples of calculating an impact of a wind sea on the characteristics of both the boundary layer of atmosphere and the water upper layer are given. The results obtained permit to state that the models of wind waves of the new (fifth) generation, which are added with the blocks of the DABL and the DWUL, could be an essential chain of the general model describing the ocean-atmosphere circulation.Comment: 11 pages, 4 figures, 1 tabl

    Neurovasculature of high and low tie ligation of the inferior mesenteric artery

    Get PDF
    PURPOSE: Controversy exists as to whether a high or low tie ligation of the inferior mesenteric artery (IMA) is the preferred technique in surgeries of the left colon and rectum. This study aims to contribute to the discussion as to which is the more beneficial technique by investigating the neurovasculature at each site. METHODS: Ten embalmed cadaveric donors underwent division of the inferior mesenteric artery at the level of the low tie. The artery was subsequently ligated at the root to render a section of tissue for histological analysis of the proximal (high tie), mid and distal (low tie) segments. RESULTS: Ganglia observed in the proximal end of seven specimens in the sample imply that there would be disruption to the innervation in a high tie procedure. CONCLUSION: This study suggests that a high tie should be avoided if the low tie is oncologically viable
    • …
    corecore