704 research outputs found

    INTESTINAL DYSBIOSIS IN YOUNG CHILDREN; POSSIBILITIES OF ITS CORRECTION

    Get PDF
    The problem of intestinal dysbiosis and its correction with the use of preand probiotics remains a subject of on-going debate. Current data on intestinal dysbiosis, its clinical manifestations, the role of the intestinal microbiota in the life of the organism are presented in the article. The characteristic of proand prebiotics, symbiotic have been given. The methods of diagnosis of intestinal dysbiosis have been presented, their informativeness has been assessed. The author presents results of his own research of the effectiveness of the symbiotic drug with infants (n = 24) having intestinal dysbiosis. It has been found that the use of a symbiotic led to normalization of stool biochemical parameters, as well as to the decrease of growth of conditionally pathogenic intestinal biota

    Problems and prospects of development of ecological tourism in Ireland

    Get PDF
    The paper presents the research on the development of ecological tourism in Ireland. The basic directions and problems of development of ecotourism. Income from ecotourism in the country was analyzed in the article, as well as the model for the attraction of tourists to Irelan

    Student readiness formation for activities oriented to health saving

    Full text link
    The relevance of the studied problem is caused by the need of formation and development among students of educational organizations of the personal qualities directed to updating of their potential concerning preservation and promotion of health, organization of own style of a healthy lifestyle, i.e. formation of readiness for healthoriented activity - HOA. The purpose of the article consists in the development of conceptual aspects of readiness formation of students for HOA. The leading methodological approach to the research of this problem is a personal and activity approaches, allowing us to disclose the features of organization of an educational process directed to readiness formation of students for HOA. Conceptual aspects of students’ readiness formation for HOA conclude in the fact that health is considered as a target resource of a person which can be operated; the basis of this resource is the health saving potential of the person, its components and phases of development are presented; the model of student readiness for HOA is developed. Materials of the article can be useful to pedagogical workers regarding the organization of activities for preservation and promotion of student health in educational organizations, by means of change of intrinsic and substantial components of this activity. © 2016 Tretyakova et al

    Bioactive Calcium Phosphate Coatings on Metallic Implants

    Get PDF
    Biocomposites based on bioinert metals or alloys and bioactive calcium phosphate coatings are a promising tendency of the new-generation implants development. In recent years, the approach of regenerative medicine based on the use of biodegradable biomaterials has been priority direction. Such materials are capable of initiating the bone tissue regeneration and replaced by the newly formed bone. The microarc oxidation (MAO) method allows obtaining the bioactive coatings with a porous structure, special functional properties, and modified by the essential elements. During the last decade, the investigations in the field of the nanostructured biocomposites based on bioinert Ti, Zr, Nb and their alloys with a calcium phosphate coatings deposited by the MAO method have been studied in the Institute of Strength Physics and Materials Science SB RAS, Tomsk. In this article the possibility to produce the bioactive coatings with high antibacterial and osseoconductive properties due to the introduction in the coatings of Zn, Cu, Ag, La, Si elements and wollastonite CaSiO[3] was shown. The high hydrophilic and bioresorbed coatings stimulate the processes of osseointegration of the implant into the bone tissue. A promising direction in the field of the medical material science is a development of the metallic implants with good biomechanical compatibility to the bone, such as Ti-Nb alloys with a low elastic modulus that can be classified as biomaterials of the second generation. Zr and its alloys are promising materials for the dentistry and orthopedic surgery due to their high strength and corrosion resistance. Biodegradable Mg alloys are biomaterials of third generation. Such materials can dissolve with a certain speed in human body and excreted from the body thereby excluding the need for reoperation. This article presents the analysis of the study results of bioactive MAO coatings on Ti, Ti-Nb, Zr-Nb and Mg alloys and their promising medical application

    LONG-LIVED BONE MARROW PLASMA CELLS DURING IMMUNE RESPONSE TO ALPHA (1→3) DEXTRAN

    Get PDF
    Production kinetics and some functional properties of long-lived marrow plasma cells were studied in mice immunized with T-independent type 2 antigens. Alpha (1→3) dextran was used as an antigen for immunization. The mice were immunized by dextran, and the numbers of IgM antibody producing cells were determined by ELISPOT method. The cell phenotype was determined by cytofluorimetric technique. In the area of normal bone marrow lymphocytes ~4% of T and ~85% of B cells were detected. About 35% of the cells expressed a plasmocyte marker (CD138); 3% were CD138+IgM+, and about 6% of the lymphocytes were double-positive for CD138+IgA+. Among spleen lymphocytes, 50% of T and 47% of B cells were detected. About 1.5% lymphocytes were CD138+, and 0.5% were positive for CD138 and IgM. Time kinetics of antibody-producing cells in bone marrow and spleen was different. In spleen populations, the peak amounts of antibody-secreting cells have been shown on the day 4; the process abated by the day 28. Vice versa, the numbers of the antibody-producing cells in bone marrow started to increase on the day 4. The process reached its maximum on day 14, and after 28th day became stationary. The in vitro experiments have shown that supplementation of bone marrow cells from immune mice with dextran did not influence their functional activity. It was previously shown for cells responding to T-dependent antigens only. A specific marker for the long-lived plasma cells is still unknown. However, these cells possess a common CD138 marker specific for all plasma cells. A method for isolation of bone marrow CD138+ cells was developed. The CD138+ cells were of 87-97% purity, being enriched in long-lived bone marrow cells, and produced monospecific antibodies

    Mammalian end binding proteins control persistent microtubule growth

    Get PDF
    © 2009 Komarova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0. The definitive version was published in Journal of Cell Biology 184 (2009): 691-706, doi:10.1083/jcb.200807179.End binding proteins (EBs) are highly conserved core components of microtubule plus-end tracking protein networks. Here we investigated the roles of the three mammalian EBs in controlling microtubule dynamics and analyzed the domains involved. Protein depletion and rescue experiments showed that EB1 and EB3, but not EB2, promote persistent microtubule growth by suppressing catastrophes. Furthermore, we demonstrated in vitro and in cells that the EB plus-end tracking behavior depends on the calponin homology domain but does not require dimer formation. In contrast, dimerization is necessary for the EB anti-catastrophe activity in cells; this explains why the EB1 dimerization domain, which disrupts native EB dimers, exhibits a dominant-negative effect. When microtubule dynamics is reconstituted with purified tubulin, EBs promote rather than inhibit catastrophes, suggesting that in cells EBs prevent catastrophes by counteracting other microtubule regulators. This probably occurs through their action on microtubule ends, because catastrophe suppression does not require the EB domains needed for binding to known EB partners.This work was supported by the Netherlands Organization for Scientifi c Research grants to A.A., by Funda ç ã o para a Ci ê ncia e a Tecnologia fellowship to S.M. Gouveia, by a FEBS fellowship to R.M. Buey, by the National Institutes of Health grant GM25062 to G.G. Borisy and by the Swiss National Science Foundation through grant 3100A0-109423 and by the National Center of Competence in Research Structural Biology program to M.O. Steinmetz

    Nonlinear deterministic equations in biological evolution

    Full text link
    We review models of biological evolution in which the population frequency changes deterministically with time. If the population is self-replicating, although the equations for simple prototypes can be linearised, nonlinear equations arise in many complex situations. For sexual populations, even in the simplest setting, the equations are necessarily nonlinear due to the mixing of the parental genetic material. The solutions of such nonlinear equations display interesting features such as multiple equilibria and phase transitions. We mainly discuss those models for which an analytical understanding of such nonlinear equations is available.Comment: Invited review for J. Nonlin. Math. Phy

    Optimizing Combination Therapies with Existing and Future CML Drugs

    Get PDF
    Small-molecule inhibitors imatinib, dasatinib and nilotinib have been developed to treat Chromic Myeloid Leukemia (CML). The existence of a triple-cross-resistant mutation, T315I, has been a challenging problem, which can be overcome by finding new inhibitors. Many new compounds active against T315I mutants are now at different stages of development. In this paper we develop an algorithm which can weigh different combination treatment protocols according to their cross-resistance properties, and find the protocols with the highest probability of treatment success. This algorithm also takes into account drug toxicity by minimizing the number of drugs used, and their concentration. Although our methodology is based on a stochastic model of CML microevolution, the algorithm itself does not require measurements of any parameters (such as mutation rates, or division/death rates of cells), and can be used by medical professionals without a mathematical background. For illustration, we apply this algorithm to the mutation data obtained in [1], [2]
    corecore