136 research outputs found

    Clinical determinants of thirty-day mortality in a cohort of patients with severe alcoholic hepatitis

    Get PDF
    Background: Aim and objectives was to study clinical profile of patients with severe alcoholic hepatitis (SAH) and evaluate clinical factors associated with short term (30-day) mortality.Methods: This is a prospective study conducted from January 2016 to January 2017 at Liver Care Unit, Osmania General Hospital. This study was approved by ethics committee of the hospital and written informed consent was obtained from all subjects included in the study. Patients with clinical alcoholic hepatitis with serum bilirubin >5mg/dl, aspartate amino transferase (AST)/ alanine amino transferase (ALT) ratio >2 with an AST level >45 but <500U/L, Maddrey’s Discriminant function (MDF) ≥32 were included in the study.Results: The 30-day mortality of severe AH in the current study was 40%. Alcoholic hepatitis was most common in males between 40-50 years with a median age of 46.9±7.7 (31-60) years. The clinical complications consisted of hepatic encephalopathy (HE) in 40%, hepato renal syndrome (HRS) and renal failure in 18.2% and infections in 40%. HRS, bilirubin, ALT, AST, urea, creatinine, Na+ and all prognostic scores showed significant association with in hospital mortality at 30days on univariate analysis while United Kingdom end liver disease (UKELD) and Child-Turcotte-Pugh (CTP) scores showed most significance on multivariate regression analysis.Conclusions: The 30-day mortality of severe AH in the current study was 40%. High UKELD, CTP scores and presence of HRS/Renal dysfunction at time of admission are associated with high 30-day mortality. Patients with advanced age, decompensated cirrhosis, coagulopathy, renal injury, malnourished status and low sodium respond poorly to therapy

    Adaptive hysteresis band current control of grid connected PV inverter

    Get PDF
    In this paper, adaptive hysteresis band current controller is implemented to control the current injected into the grid. Initially it was implemented by B.K Bose for control of the machine drive. Now it is implemented for the grid connected PV inverter, to control the current injected into Grid. It is well suitable for the distribution generation. The adaptive hysteresis band controller changes the bandwidth based on the modulating frequency, supply voltage, input DC voltage and slope of the reference current. Consequently, the controller generates pulses to the inverter. It is advantageous over the conventional hysteresis controller, as the switching frequency is maintained almost constant. Thereby quality of grid current is also improved. It is verified in time domain analysis of simulation using MATLAB

    Time Domain Explorations With Digital Sky Surveys

    Get PDF
    One of the new frontiers of astronomical research is the exploration of time variability on the sky at different wavelengths and flux levels. We have carried out a pilot project using DPOSS data to study strong variables and transients, and are now extending it to the new Palomar-QUEST synoptic sky survey. We report on our early findings and outline the methodology to be implemented in preparation for a real-time transient detection pipeline. In addition to large numbers of known types of highly variable sources (e.g., SNe, CVs, OVV QSOs, etc.), we expect to find numerous transients whose nature may be established by a rapid follow-up. Whereas we will make all detected variables publicly available through the web, we anticipate that email alerts would be issued in the real time for a subset of events deemed to be the most interesting. This real-time process entails many challenges, in an effort to maintain a high completeness while keeping the contamination low. We will utilize distributed Grid services developed by the GRIST project, and implement a variety of advanced statistical and machine learning techniques.Comment: 5 pages, 2 postscript figures, uses adassconf.sty. To be published in: "ADASS XIV (2004)", Eds. Patrick Shopbell, Matthew Britton and Rick Ebert, ASP Conference Serie

    The SPLASH Survey: A Spectroscopic Portrait of Andromeda's Giant Southern Stream

    Get PDF
    The giant southern stream (GSS) is the most prominent tidal debris feature in M31's stellar halo. The GSS is composed of a relatively metal-rich, high surface-brightness "core" and a lower metallicity, lower surface brightness "envelope." We present Keck/DEIMOS spectroscopy of red giant stars in six fields in the vicinity of M31's GSS and one field on Stream C, an arc-like feature on M31's SE minor axis at R=60 kpc. Several GSS-related findings and measurements are presented here. We present the innermost kinematical detection of the GSS core to date (R=17 kpc). This field also contains the continuation of a second kinematically cold component originally seen in a GSS core field at R=21 kpc. The velocity gradients of the GSS and the second component in the combined data set are parallel over a radial range of 7 kpc, suggesting a possible bifurcation in the line-of-sight velocities of GSS stars. We also present the first kinematical detection of substructure in the GSS envelope. Using kinematically identified samples, we show that the envelope debris has a ~0.7 dex lower mean photometric metallicity and possibly higher intrinsic velocity dispersion than the GSS core. The GSS is also identified in the field of the M31 dSph satellite And I; the GSS in this field has a metallicity distribution identical to that of the GSS core. We confirm the presence of two kinematically cold components in Stream C, and measure intrinsic velocity dispersions of ~10 and ~4 km/s. This compilation of the kinematical (mean velocity, intrinsic velocity dispersion) and chemical properties of stars in the GSS core and envelope, coupled with published surface brightness measurements and wide-area star-count maps, will improve constraints on the orbit and internal structure of the dwarf satellite progenitor.Comment: Accepted for publication in Ap

    A rapid in vivo screen for pancreatic ductal adenocarcinoma therapeutics

    Get PDF
    Pancreatic ductal adenocarcinoma (PDA) is the fourth leading cause of cancer-related deaths in the United States, and is projected to be second by 2025. It has the worst survival rate among all major cancers. Two pressing needs for extending life expectancy of affected individuals are the development of new approaches to identify improved therapeutics, addressed herein, and the identification of early markers. PDA advances through a complex series of intercellular and physiological interactions that drive cancer progression in response to organ stress, organ failure, malnutrition, and infiltrating immune and stromal cells. Candidate drugs identified in organ culture or cell-based screens must be validated in preclinical models such as KIC (p48Cre;LSL-KrasG12D;Cdkn2af/f) mice, a genetically engineered model of PDA in which large aggressive tumors develop by 4 weeks of age. We report a rapid, systematic and robust in vivo screen for effective drug combinations to treat Kras-dependent PDA. Kras mutations occur early in tumor progression in over 90% of human PDA cases. Protein kinase and G-protein coupled receptor (GPCR) signaling activates Kras. Regulators of G-protein signaling (RGS) proteins are coincidence detectors that can be induced by multiple inputs to feedback-regulate GPCR signaling. We crossed Rgs16::GFP bacterial artificial chromosome (BAC) transgenic mice withKIC mice and show that the Rgs16::GFP transgene is a KrasG12D-dependent marker of all stages of PDA, and increases proportionally to tumor burden in KIC mice. RNA sequencing (RNA-Seq) analysis of cultured primary PDA cells reveals characteristics of embryonic progenitors of pancreatic ducts and endocrine cells, and extraordinarily high expression of the receptor tyrosine kinase Axl, an emerging cancer drug target. In proof-of-principle drug screens, we find that weanling KIC mice with PDA treated for 2 weeks with gemcitabine (with or without Abraxane) plus inhibitors of Axl signaling (warfarin and BGB324) have fewer tumor initiation sites and reduced tumor size compared with the standard-of-care treatment. Rgs16::GFP is therefore an in vivo reporter of PDA progression and sensitivity to new chemotherapeutic drug regimens such as Axl-targeted agents. This screening strategy can potentially be applied to identify improved therapeutics for other cancers

    Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development

    Get PDF
    With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality

    Systemic properties of metabolic networks lead to an epistasis-based model for heterosis

    Get PDF
    The genetic and molecular approaches to heterosis usually do not rely on any model of the genotype–phenotype relationship. From the generalization of Kacser and Burns’ biochemical model for dominance and epistasis to networks with several variable enzymes, we hypothesized that metabolic heterosis could be observed because the response of the flux towards enzyme activities and/or concentrations follows a multi-dimensional hyperbolic-like relationship. To corroborate this, we used the values of systemic parameters accounting for the kinetic behaviour of four enzymes of the upstream part of glycolysis, and simulated genetic variability by varying in silico enzyme concentrations. Then we “crossed” virtual parents to get 1,000 hybrids, and showed that best-parent heterosis was frequently observed. The decomposition of the flux value into genetic effects, with the help of a novel multilocus epistasis index, revealed that antagonistic additive-by-additive epistasis effects play the major role in this framework of the genotype–phenotype relationship. This result is consistent with various observations in quantitative and evolutionary genetics, and provides a model unifying the genetic effects underlying heterosis

    Taxane-Platin-Resistant Lung Cancers Co-develop Hypersensitivity to JumonjiC Demethylase Inhibitors

    Get PDF
    Although non-small cell lung cancer (NSCLC) patients benefit from standard taxane-platin chemotherapy, many relapse, developing drug resistance. We established preclinical taxane-platin-chemoresistance models and identified a 35-gene resistance signature, which was associated with poor recurrence-free survival in neoadjuvant-treated NSCLC patients and included upregulation of the JumonjiC lysine demethylase KDM3B. In fact, multi-drug-resistant cells progressively increased the expression of many JumonjiC demethylases, had altered histone methylation, and, importantly, showed hypersensitivity to JumonjiC inhibitors in vitro and in vivo. Increasing taxane-platin resistance in progressive cell line series was accompanied by progressive sensitization to JIB-04 and GSK-J4. These JumonjiC inhibitors partly reversed deregulated transcriptional programs, prevented the emergence of drug-tolerant colonies from chemo-naive cells, and synergized with standard chemotherapy in vitro and in vivo. Our findings reveal JumonjiC inhibitors as promising therapies for targeting taxane-platin-chemoresistant NSCLCs.Fil: Dalvi, Maithili P.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wang, Lei. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhong, Rui. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kollipara, Rahul K.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Park, Hyunsil. University of Texas. Southwestern Medical Center; Estados UnidosFil: Bayo Fina, Juan Miguel. University of Texas. Southwestern Medical Center; Estados Unidos. Universidad Austral. Facultad de Ciencias Biomédicas. Instituto de Investigaciones en Medicina Traslacional. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Medicina Traslacional; ArgentinaFil: Yenerall, Paul. University of Texas. Southwestern Medical Center; Estados UnidosFil: Zhou, Yunyun. University of Texas. Southwestern Medical Center; Estados UnidosFil: Timmons, Brenda C.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Rodriguez Canales, Jaime. University of Texas; Estados UnidosFil: Behrens, Carmen. Md Anderson Cancer Center; Estados UnidosFil: Mino, Barbara. University of Texas; Estados UnidosFil: Villalobos, Pamela. University of Texas; Estados UnidosFil: Parra, Edwin R.. University of Texas; Estados UnidosFil: Suraokar, Milind. University of Texas; Estados UnidosFil: Pataer, Apar. University of Texas; Estados UnidosFil: Swisher, Stephen G.. University of Texas; Estados UnidosFil: Kalhor, Neda. University of Texas; Estados UnidosFil: Bhanu, Natarajan V.. University of Pennsylvania; Estados UnidosFil: Garcia, Benjamin A.. University of Pennsylvania; Estados UnidosFil: Heymach, John V.. University of Texas; Estados UnidosFil: Coombes, Kevin. University of Texas; Estados UnidosFil: Xie, Yang. University of Texas. Southwestern Medical Center; Estados UnidosFil: Girard, Luc. University of Texas. Southwestern Medical Center; Estados UnidosFil: Gazdar, Adi F.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Kittler, Ralf. University of Texas. Southwestern Medical Center; Estados UnidosFil: Wistuba, Ignacio I.. University of Texas; Estados UnidosFil: Minna, John D.. University of Texas. Southwestern Medical Center; Estados UnidosFil: Martinez, Elisabeth D.. University of Texas. Southwestern Medical Center; Estados Unido
    corecore