63 research outputs found

    MACHINE LEARNING FOR CLASSIFICATION OF AN ERODING SCARP SURFACE USING TERRESTRIAL PHOTOGRAMMETRY WITH NIR AND RGB IMAGERY

    Get PDF
    Abstract. Increasingly advanced and affordable close-range sensing techniques are employed by an ever-broadening range of users, with varying competence and experience. In this context a method was tested that uses photogrammetry and classification by machine learning to divide a point cloud into different surface type classes. The study site is a peat scarp 20 metres long in the actively eroding river bank of the Rotmoos valley near Obergurgl, Austria. Imagery from near-infra red (NIR) and conventional (RGB) sensors, georeferenced with coordinates of targets surveyed with a total station, was used to create a point cloud using structure from motion and dense image matching. NIR and RGB information were merged into a single point cloud and 18 geometric features were extracted using three different radii (0.02 m, 0.05 m and 0.1 m) totalling 58 variables on which to apply the machine learning classification. Segments representing six classes, dry grass, green grass, peat, rock, snow and target, were extracted from the point cloud and split into a training set and a testing set. A Random Forest machine learning model was trained using machine learning packages in the R-CRAN environment. The overall classification accuracy and Kappa Index were 98% and 97% respectively. Rock, snow and target classes had the highest producer and user accuracies. Dry and green grass had the highest omission (1.9% and 5.6% respectively) and commission errors (3.3% and 3.4% respectively). Analysis of feature importance revealed that the spectral descriptors (NIR, R, G, B) were by far the most important determinants followed by verticality at 0.1 m radius

    Clear cell chondrosarcoma of the head and neck

    Get PDF
    Clear cell chondrosarcoma is a rare variant of chondrosarcoma that mostly involves the end of long bones. However, nine cases have been reported in the head and neck: four in larynx, two in nasal septum, two in maxilla and one in the skull. These cases form the basis of this review. Head and neck cases accounts for less than 5% of Clear cell chondrosarcomas in the whole body and the larynx is the most common place. The histological findings of head and neck cases are consistent with general features of this entity in the whole body and nearly all tumors in this case series had a component of conventional chondrosarcoma. Clear cell chondrosarcoma is an intracompartmental tumor and retains "Grenz zone" just beneath the epithelium. Therefore, the overlying mucosa remained intact in all laryngeal cases. Nasal tumor caused ballooning of the septum and the maxillary lesion did not involve the oral mucosa. This tumor presents various radiographic features in the head and neck area. Chondroblastoma, chondroma, osteoblastoma, osteosarcoma and metastatic renal cell carcinoma are included in the histologic differential diagnoses. Differentiation from chondroblastic osteosarcoma is important in the maxilla. A wide resection is adequate in most cases. However, some laryngeal cases show tendency to recur. Clear cell chondrosarcoma is a slow growing tumor and this necessitates a long time follow-up of patients. Due to the extreme rarity in the head and neck, diagnosis of Clear cell chondrosarcoma in this area, must be confirmed by histochemical and immunohistochemical studies

    Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study macrophage heterogeneity using the M2-marker CD163 and selected pro- and anti-inflammatory mediators in bronchoalveolar lavage (BAL) fluid and induced sputum from current smokers and ex-smokers with COPD.</p> <p>Methods</p> <p>114 COPD patients (72 current smokers; 42 ex-smokers, median smoking cessation 3.5 years) were studied cross-sectionally and underwent sputum induction (M/F 99/15, age 62 ± 8 [mean ± SD] years, 42 (31-55) [median (range)] packyears, post-bronchodilator FEV<sub>1 </sub>63 ± 9% predicted, no steroids past 6 months). BAL was collected from 71 patients. CD163<sup>+ </sup>macrophages were quantified in BAL and sputum cytospins. Pro- and anti-inflammatory mediators were measured in BAL and sputum supernatants.</p> <p>Results</p> <p>Ex-smokers with COPD had a higher percentage, but lower number of CD163<sup>+ </sup>macrophages in BAL than current smokers (83.5% and 68.0%, p = 0.04; 5.6 and 20.1 ×10<sup>4</sup>/ml, p = 0.001 respectively). The percentage CD163<sup>+ </sup>M2 macrophages was higher in BAL compared to sputum (74.0% and 30.3%, p < 0.001). BAL M-CSF levels were higher in smokers than ex-smokers (571 pg/ml and 150 pg/ml, p = 0.001) and correlated with the number of CD163<sup>+ </sup>BAL macrophages (Rs = 0.38, p = 0.003). No significant differences were found between smokers and ex-smokers in the levels of pro-inflammatory (IL-6 and IL-8), and anti-inflammatory (elafin, and Secretory Leukocyte Protease Inhibitor [SLPI]) mediators in BAL and sputum.</p> <p>Conclusions</p> <p>Our data suggest that smoking cessation partially changes the macrophage polarization <it>in vivo </it>in the periphery of the lung towards an anti-inflammatory phenotype, which is not accompanied by a decrease in inflammatory parameters.</p

    Cell Recovery in Bronchoalveolar Lavage Fluid in Smokers Is Dependent on Cumulative Smoking History

    Get PDF
    Background: Smoking is a risk factor for various lung diseases in which BAL may be used as a part of a clinical investigation. Interpretation of BAL fluid cellularity is however difficult due to high variability, in particular among smokers. In this study we aimed to evaluate the effect of smoking on BAL cellular components in asymptomatic smokers. The effects of smoking cessation, age and gender were also investigated in groups of smokers and exsmokers. Methods: We performed a retrospective review of BAL findings, to our knowledge the largest single center investigation, in our department from 1999 to 2009. One hundred thirty two current smokers (48 males and 84 females) and 44 ex-smokers (16 males and 28 females) were included. A group of 295 (132 males and 163 females) never-smokers served as reference. Result: The median [5–95 pctl] total number of cells and cell concentration in current smokers were 63.4 [28.6–132.1]610 6 and 382.1 [189.7–864.3]610 6 /L respectively and correlated positively to the cumulative smoking history. Macrophages were the predominant cell type (96.7 % [90.4–99.0]) followed by lymphocytes (2 % [0.8–7.7]) and neutrophils (0.6 % [0–2.9]). The concentration of all inflammatory cells was increased in smokers compared to never smokers and ex-smokers. BAL fluid recovery was negatively correlated with age (p,0.001). Smoking men had a lower BAL fluid recovery than smoking women. Conclusion: Smoking has a profound effect on BAL fluid cellularity, which is dependent on smoking history. Our results performed on a large group of current smokers and ex-smokers in a well standardized way, can contribute to bette

    CUP-Syndrom im Kopf-Hals-Bereich - Diagnostik, Therapie und Nachsorge

    No full text

    The protein tyrosine phosphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling an controls B cell autoimmunity

    No full text
    Tyrosine phosphorylation of signaling molecules that mediate B cell activation in response to various stimuli is tightly regulated by protein tyrosine phosphatases (PTPs). PTP1B is a ubiquitously expressed tyrosine phosphatase with well-characterized functions in metabolic signaling pathways. We show here that PTP1B negatively regulates CD40, B cell activating factor receptor (BAFF-R), and TLR4 signaling in B cells. Specifically, PTP1B counteracts p38 mitogen-activated protein kinase (MAPK) activation by directly dephosphorylating Tyr182 of this kinase. Mice with a B cell-specific PTP1B deficiency show increased T cell-dependent immune responses and elevated total serum IgG. Furthermore, aged animals develop systemic autoimmunity with elevated serum anti-dsDNA, spontaneous germinal centers in the spleen, and deposition of IgG immune complexes and C3 in the kidney. In a clinical setting, we observed that B cells of rheumatoid arthritis patients have significantly reduced PTP1B expression. Our data suggest that PTP1B plays an important role in the control of B cell activation and the maintenance of immunological tolerance

    Buchbesprechungen

    No full text

    The protein tyrosine phsphatase PTP1B is a negative regulator of CD40 and BAFF-R signaling and controls B cell autoimmunity

    No full text
    Tyrosine phosphorylation of signaling molecules that mediate B cell activation in response to various stimuli is tightly regulated by protein tyrosine phosphatases (PTPs). PTP1B is a ubiquitously expressed tyrosine phosphatase with well-characterized functions in metabolic signaling pathways. We show here that PTP1B negatively regulates CD40, B cell activating factor receptor (BAFF-R), and TLR4 signaling in B cells. Specifically, PTP1B counteracts p38 mitogen-activated protein kinase (MAPK) activation by directly dephosphorylating Tyr(182) of this kinase. Mice with a B cell-specific PTP1B deficiency show increased T cell-dependent immune responses and elevated total serum IgG. Furthermore, aged animals develop systemic autoimmunity with elevated serum anti-dsDNA, spontaneous germinal centers in the spleen, and deposition of IgG immune complexes and C3 in the kidney. In a clinical setting, we observed that B cells of rheumatoid arthritis patients have significantly reduced PTP1B expression. Our data suggest that PTP1B plays an important role in the control of B cell activation and the maintenance of immunological tolerance
    corecore