40 research outputs found

    Concentrations and sources of polycyclic aromatic hydrocarbons in surface coastal sediments of the northern Gulf of Mexico

    Get PDF
    Zucheng Wang is with the Department of Geography, Northeast Normal University, Changchun, China. -- Zucheng Wang and Zhanfei Liu are with the Marine Science Institute, The University of Texas at Austin, Port Aransas, TX, USA. -- Kehui Xu is with the Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA, USA – and – the Coastal Studies Institute, Louisiana State University, Baton Rouge, LA, USA. -- Lawrence M Mayer is with the School of Marine Sciences, University of Maine, Walpole, ME, USA. -- Zulin Zhang is with The James Hutton Institute, Aberdeen, UK. -- Alexander S. Kolker is with Louisiana Universities Marine Consortium, Chauvin, LA, USA. -- Wei Wu is with the Department of Coastal Sciences, Gulf Coast Research Laboratory, The University of Southern Mississippi, Ocean Springs, MS, USA.Background: Coastal sediments in the northern Gulf of Mexico have a high potential of being contaminated by petroleum hydrocarbons, such as polycyclic aromatic hydrocarbons (PAHs), due to extensive petroleum exploration and transportation activities. In this study we evaluated the spatial distribution and contamination sources of PAHs, as well as the bioavailable fraction in the bulk PAH pool, in surface marsh and shelf sediments (top 5 cm) of the northern Gulf of Mexico. Results: PAH concentrations in this region ranged from 100 to 856 ng g−1, with the highest concentrations in Mississippi River mouth sediments followed by marsh sediments and then the lowest concentrations in shelf sediments. The PAH concentrations correlated positively with atomic C/N ratios of sedimentary organic matter (OM), suggesting that terrestrial OM preferentially sorbs PAHs relative to marine OM. PAHs with 2 rings were more abundant than those with 5–6 rings in continental shelf sediments, while the opposite was found in marsh sediments. This distribution pattern suggests different contamination sources between shelf and marsh sediments. Based on diagnostic ratios of PAH isomers and principal component analysis, shelf sediment PAHs were petrogenic and those from marsh sediments were pyrogenic. The proportions of bioavailable PAHs in total PAHs were low, ranging from 0.02% to 0.06%, with higher fractions found in marsh than shelf sediments. Conclusion: PAH distribution and composition differences between marsh and shelf sediments were influenced by grain size, contamination sources, and the types of organic matter associated with PAHs. Concentrations of PAHs in the study area were below effects low-range, suggesting a low risk to organisms and limited transfer of PAHs into food web. From the source analysis, PAHs in shelf sediments mainly originated from direct petroleum contamination, while those in marsh sediments were from combustion of fossil fuels.Marine [email protected]

    An appeal to the global health community for a tripartite innovation: an ‘‘Essential Diagnostics List,’’ ‘‘Health in All Policies,’’ and ‘‘See-Through 21st Century Science and Ethics"

    Get PDF
    Diagnostics spanning a wide range of new biotechnologies, including proteomics, metabolomics, and nanotechnology, are emerging as companion tests to innovative medicines. In this Opinion, we present the rationale for promulgating an ‘‘Essential Diagnostics List.’’ Additionally, we explain the ways in which adopting a vision for ‘‘Health in All Policies’’ could link essential diagnostics with robust and timely societal outcomes such as sustainable development, human rights, gender parity, and alleviation of poverty. We do so in three ways. First, we propose the need for a new, ‘‘see through’’ taxonomy for knowledge-based innovation as we transition from the material industries (e.g., textiles, plastic, cement, glass) dominant in the 20th century to the anticipated knowledge industry of the 21st century. If knowledge is the currency of the present century, then it is sensible to adopt an approach that thoroughly examines scientific knowledge, starting with the production aims, methods, quality, distribution, access, and the ends it purports to serve. Second, we explain that this knowledge trajectory focus on innovation is crucial and applicable across all sectors, including public, private, or public–private partnerships, as it underscores the fact that scientific knowledge is a co-product of technology, human values, and social systems. By making the value systems embedded in scientific design and knowledge co-production transparent, we all stand to benefit from sustainable and transparent science. Third, we appeal to the global health community to consider the necessary qualities of good governance for 21st century organizations that will embark on developing essential diagnostics. These have importance not only for science and knowledge based innovation, but also for the ways in which we can build open, healthy, and peaceful civil societies today and for future generations

    Treatment of osteochondral lesions of the talus: a systematic review

    Get PDF
    The aim of this study was to summarize all eligible studies to compare the effectiveness of treatment strategies for osteochondral defects (OCD) of the talus. Electronic databases from January 1966 to December 2006 were systematically screened. The proportion of the patient population treated successfully was noted, and percentages were calculated. For each treatment strategy, study size weighted success rates were calculated. Fifty-two studies described the results of 65 treatment groups of treatment strategies for OCD of the talus. One randomized clinical trial was identified. Seven studies described the results of non-operative treatment, 4 of excision, 13 of excision and curettage, 18 of excision, curettage and bone marrow stimulation (BMS), 4 of an autogenous bone graft, 2 of transmalleolar drilling (TMD), 9 of osteochondral transplantation (OATS), 4 of autologous chondrocyte implantation (ACI), 3 of retrograde drilling and 1 of fixation. OATS, BMS and ACI scored success rates of 87, 85 and 76%, respectively. Retrograde drilling and fixation scored 88 and 89%, respectively. Together with the newer techniques OATS and ACI, BMS was identified as an effective treatment strategy for OCD of the talus. Because of the relatively high cost of ACI and the knee morbidity seen in OATS, we conclude that BMS is the treatment of choice for primary osteochondral talar lesions. However, due to great diversity in the articles and variability in treatment results, no definitive conclusions can be drawn. Further sufficiently powered, randomized clinical trials with uniform methodology and validated outcome measures should be initiated to compare the outcome of surgical strategies for OCD of the talus

    Clonal Vegetation Patterns Mediate Shoreline Erosion

    No full text
    Understanding processes governing coastal erosion is becoming increasingly urgent because highly valued ecosystems like salt marshes are being lost at accelerating rates. Here we examine the role of biotic interactions in mediating marsh shoreline erosion under wind wave forces. We parameterized analytical and cellular automata models with field data to assess how soil heterogeneity among clonal patches of an ecosystem engineer mediates spatiotemporal patterns of marsh shoreline erosion. We found that spatial heterogeneity accelerates erosion, especially when it is organized in patches of intermediate size. Patch size also mediated interannual variability in erosion and strongly controlled shoreline roughness. Our results indicate that shoreline roughness can be diagnostic of internal biological structure and spatiotemporal variability in erosion. Hence, measures of shoreline roughness may inform the timeframe and spatial extent needed to accurately monitor erosion. These findings highlight how the physical response of marsh shorelines to wind wave erosion is a function of landscape ecology

    Clonal Vegetation Patterns Mediate Shoreline Erosion

    No full text
    Understanding processes governing coastal erosion is becoming increasingly urgent because highly valued ecosystems like salt marshes are being lost at accelerating rates. Here we examine the role of biotic interactions in mediating marsh shoreline erosion under wind wave forces. We parameterized analytical and cellular automata models with field data to assess how soil heterogeneity among clonal patches of an ecosystem engineer mediates spatiotemporal patterns of marsh shoreline erosion. We found that spatial heterogeneity accelerates erosion, especially when it is organized in patches of intermediate size. Patch size also mediated interannual variability in erosion and strongly controlled shoreline roughness. Our results indicate that shoreline roughness can be diagnostic of internal biological structure and spatiotemporal variability in erosion. Hence, measures of shoreline roughness may inform the timeframe and spatial extent needed to accurately monitor erosion. These findings highlight how the physical response of marsh shorelines to wind wave erosion is a function of landscape ecology

    Fluvial sediment transport degradation after dam construction in North Africa

    No full text
    International audienceRecent reductions of sediment transport are observed in Bouregreg River and estuary close to the city of Rabat in Morocco. The cause of this evolution in sediment transport which may be due to human activities (dam, pollution), climate variability and natural events has been investigated from a paleo-hydrological approach. Sedimentological and geochemical analyses of slackwater flood deposits are used to assess the impact of a dam installed in 1974 and the climate change on the evolution of sediment transport during about 60 years. Higher accumulation rate of about 3,64 cm/year is observed between 1950 and 1978, whereas it was much lower about 0,41 cm/year between 1990 and 2017. This strong decrease in sediment rate appears much more due to the impact of dam construction rather than to climate change, however climate change in an increasing concern for the future

    Saltmarsh pool and tidal creek morphodynamics: Dynamic equilibrium of northern latitude saltmarshes?

    No full text
    Many saltmarsh platforms in New England and other northern climates (e.g. Canada, northern Europe) exhibit poor drainage, creating waterlogged regions where short-form Spartina alterniflora dominates and stagnant pools that experience tidal exchange only during spring tides and storm-induced flooding events. The processes related to pool formation and tidal creek incision (via headward erosion) that may eventually drain these features are poorly understood, however it has been suggested that an increase in pool occurrence in recent decades is due to waterlogging stress from sea-level rise. We present evidence here that saltmarshes in Plum Island Estuary of Massachusetts are keeping pace with sea-level rise, and that the recent increase in saltmarsh pool area coincides with changes in drainage density from a legacy of anthropogenic ditching (reversion to natural drainage conditions). Gradients, in addition to elevation and hydroperiod, are critical for saltmarsh pool formation. Additionally, elevation and vegetative changes associated with pool formation, creek incision, subsequent drainage of pools, and recolonization by S. alterniflora are quantified. Pool and creek dynamics were found to be cyclic in nature, and represent platform elevation in dynamic equilibrium with sea level whereby saltmarsh elevation may be lowered (due to degradation of organic matter and formation of a pool), however may be regained on short timescales (10 yr) with creek incision into pools and restoration of tidal exchange. Rapid vertical accretion is associated with sedimentation and S. alterniflora plant recolonization. © 2014 Elsevier B.V. 1-
    corecore