11 research outputs found

    MEDLEM database, a data collection on large elasmobranchs in the Mediterranean and Black Seas

    Get PDF
    The Mediterranean Large Elasmobranchs Monitoring (MEDLEM) database contains more than 3,000 records (with more than 4,000 individuals) of large elasmobranch species from 21 different countries around the Mediterranean and Black seas, observed from 1666 to 2017. The principal species included in the archive are the devil ray (1,868 individuals), the basking shark (935 individuals), the blue shark (622 individuals), and the great white shark (342 individuals). In the last decades, other species such as the thresher shark (187 individuals), the shortfin mako (180 individuals), and the spiny butterfly ray (138) were reported with increasing frequency. This was possibly due to increased public awareness on the conservation status of sharks, and the consequent development of new monitoring programs. MEDLEM does not have homogeneous reporting coverage throughout the Mediterranean and Black seas and it should be considered as a database of observed species presence. Scientific monitoring efforts in the south-eastern Mediterranean and Black seas are generally lower than in the northern sectors and the absence of some species in our database does not imply their actual absence in these regions. However, the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected species, the overall area coverage, and which species are involved as bycatch by different fishing gears

    Mediterranean demersal resources and ecosystems : 25 years of MEDITS trawl surveys

    No full text
    Trawling pressure and environmental changes may affect the composition of fish assemblages. Our knowledge on large spatio-temporal patterns of demersal fish composition remains incomplete for the Mediterranean Sea. We investigated (1) the spatio-temporal stability of demersal assemblages, (2) the relationships between these assemblages and potential structuring factors (trawling pressure and environmental conditions) in order to assess the dynamic of the assemblage structure at the scale of the northern Mediterranean Sea. We analysed a dataset of 18062 hauls from 10 to 800 m depth performed annually during the last two decades across 17 Geographical Sub-Areas (GSAs) (MEDITS program). A multi-table analysis (STATICO-CoA) evidenced a strong inter-GSAs stability in the organization of assemblages, with specificities for some GSAs. The most stable structuring factors were linked to combined gradients of chlorophyll a, phytoplancton carbon biomass and temperature, inversely correlated with depth, salinity and nutrient gradients (axis 1 of the STATICO-CoA compromise, 93.74% of the total variability). A common pattern linking the distribution of species to these environmental gradients was evidenced for most of the 17 GSAs. Estimate of trawling pressure showed a minor role in the organization of the assemblages for the spatial scale and years investigated (axis 2. 4.67%)

    Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea [plus corrigendum 2015, vol.138, p.322-323]

    No full text
    Increasing human pressures and global environmental change may severely affect the diversity of species assemblages and associated ecosystem services. Despite the recent interest in phylogenetic and functional diversity, our knowledge on large spatio-temporal patterns of demersal fish diversity sampled by trawling remains still incomplete, notably in the Mediterranean Sea, one of the most threatened marine regions of the world. We investigated large spatio-temporal diversity patterns by analysing a dataset of 19,886 hauls from 10 to 800 m depth performed annually during the last two decades by standardised scientific bottom trawl field surveys across the Mediterranean Sea, within the MEDITS program. A multicomponent (eight diversity indices) and multi-scale (local assemblages, biogeographic regions to basins) approach indicates that only the two most traditional components (species richness and evenness) were sufficient to reflect patterns in taxonomic, phylogenetic or functional richness and divergence. We also put into question the use of widely computed indices that allow comparing directly taxonomic, phylogenetic and functional diversity within a unique mathematical framework. In addition, demersal fish assemblages sampled by trawl do not follow a continuous decreasing longitudinal/latitudinal diversity gradients (spatial effects explained up to 70.6% of deviance in regression tree and generalised linear models), for any of the indices and spatial scales analysed. Indeed, at both local and regional scales species richness was relatively high in the Iberian region, Malta, the Eastern Ionian and Aegean seas, meanwhile the Adriatic Sea and Cyprus showed a relatively low level. In contrast, evenness as well as taxonomic, phylogenetic and functional divergences did not show regional hotspots. All studied diversity components remained stable over the last two decades. Overall, our results highlight the need to use complementary diversity indices through different spatial scales when developing conservation strategies and defining delimitations for protected areas

    Large-scale spatio-temporal monitoring highlights hotspots of demersal fish diversity in the Mediterranean Sea

    Get PDF
    Increasing human pressures and global environmental change may severely affect the diversity of species assemblages and associated ecosystem services. Despite the recent interest in phylogenetic and functional diversity, our knowledge on large spatio-temporal patterns of demersal fish diversity sampled by trawling remains still incomplete, notably in the Mediterranean Sea, one of the most threatened marine regions of the world. We investigated large spatio-temporal diversity patterns by analysing a dataset of 19,886 hauls from 10 to 800 m depth performed annually during the last two decades by standardised scientific bottom trawl field surveys across the Mediterranean Sea, within the MEDITS program. A multicomponent (eight diversity indices) and multi-scale (local assemblages, biogeographic regions to basins) approach indicates that only the two most traditional components (species richness and evenness) were sufficient to reflect patterns in taxonomic, phylogenetic or functional richness and divergence. We also put into question the use of widely computed indices that allow comparing directly taxonomic, phylogenetic and functional diversity within a unique mathematical framework. In addition, demersal fish assemblages sampled by trawl do not follow a continuous decreasing longitudinal/latitudinal diversity gradients (spatial effects explained up to 70.6% of deviance in regression tree and generalised linear models), for any of the indices and spatial scales analysed. Indeed, at both local and regional scales species richness was relatively high in the Iberian region, Malta, the Eastern Ionian and Aegean seas, meanwhile the Adriatic Sea and Cyprus showed a relatively low level. In contrast, evenness as well as taxonomic, phylogenetic and functional divergences did not show regional hotspots. All studied diversity components remained stable over the last two decades. Overall, our results highlight the need to use complementary diversity indices through different spatial scales when developing conservation strategies and defining delimitations for protected areas.Versión del editor3,269

    MEDLEM database, a data collection on large Elasmobranchs in the Mediterranean and Black seas

    No full text
    The Mediterranean Large Elasmobranchs Monitoring (MEDLEM) database contains more than 3,000 records (with more than 4,000 individuals) of large elasmobranch species from 21 different countries around the Mediterranean and Black seas, observed from 1666 to 2017. The principal species included in the archive are the devil ray (1,868 individuals), the basking shark (935 individuals), the blue shark (622 individuals), and the great white shark (342 individuals). In the last decades, other species such as the thresher shark (187 individuals), the shortfin mako (180 individuals), and the spiny butterfly ray (138) were reported with increasing frequency. This was possibly due to increased public awareness on the conservation status of sharks, and the consequent development of new monitoring programs. MEDLEM does not have homo-geneous reporting coverage throughout the Mediterranean and Black seas and it should be considered as a database of observed species presence. Scientific monitoring efforts in the south-eastern Mediterranean and Black seas arc generally lower than in the northern sectors and the absence of some species in our database does not imply their actual absence in these regions. However, the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected species, the overall area coverage, and which species are involved as bycatch by different fishing gears

    MEDLEM database, a data collection on large elasmobranchs in the Mediterranean and Black Seas

    No full text
    The Mediterranean Large Elasmobranchs Monitoring (MEDLEM) database contains more than 3,000 records (with more than 4,000 individuals) of large elasmobranch species from 21 different countries around the Mediterranean and Black seas, observed from 1666 to 2017. The principal species included in the archive are the devil ray (1,868 individuals), the basking shark (935 individuals), the blue shark (622 individuals), and the great white shark (342 individuals). In the last decades, other species such as the thresher shark (187 individuals), the shortfin mako (180 individuals), and the spiny butterfly ray (138) were reported with increasing frequency. This was possibly due to increased public awareness on the conservation status of sharks, and the consequent development of new monitoring programs. MEDLEM does not have homogeneous reporting coverage throughout the Mediterranean and Black seas and it should be considered as a database of observed species presence. Scientific monitoring efforts in the south-eastern Mediterranean and Black seas are generally lower than in the northern sectors and the absence of some species in our database does not imply their actual absence in these regions. However, the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected the available data allowed us to analyse the frequency and spatial distribution of records, the size frequencies for a few selected species, the overall area coverage, and which species are involved as bycatch by different fishing gears. © 2020 Mediterranean Marine Science
    corecore