122 research outputs found

    Photocatalytic processes as a potential solution for plastic waste management

    Get PDF
    Plastics have become a critical environmental problem due to their widespread use, high physico-chemical stability and the inefficiency of wastewater treatments. Despite the efforts to reduce production and to increase reuse and recycling, the current strategies for plastic waste treatment are not suitable to handle with the growing demand of plastics and the concomitant waste in an environmentally friendly manner. Herein, we review the existing strategies for the treatment of plastic waste, highlighting photocatalytic processes as a potential solution for the degradation of plastics. The possibility of incorporating photocatalysts to plastics during the production process could enhance their light-activated biodegradability. Parallelly, photocatalysts can be employed during waste treatment processes of non-biodegradable stable plastics. The scarcely studied factors affecting plastic photocatalytic degradation, namely catalyst type, reactor configuration, and radiation source (intensity and wavelength), are discussed, highlighting the role that photocatalytic processes can play in the future of plastic management. Finally, relevant quantification methods for measuring the photo-degradation of plastics are overviewed. We believe that photocatalysis can be an environmentally friendly strategy both to increase the biodegradability of plastics and to treat plastic waste. With this novel comprehensive overview, we hope to stimulate further research and innovation in this field.Xunta de Galicia | Ref. ED481B 2019/091Universidade de Vigo/CISU

    Tailored magnetic and magnetoelectric responses of polymer-based composites

    Get PDF
    The manipulation of electric ordering with applied magnetic fields has been realized on magnetoelectric (ME) materials, however, their ME switching is often accompanied by significant hysteresis and coercivity that represents, for some applications, a severe weakness. To overcome this obstacle, this work focus on the development of a new type of ME polymer nanocomposites that exhibits tailored ME response at room temperature. The multiferroic nanocomposites are based on three different ferrite nanoparticles, Zn0.2Mn0.8Fe2O4 (ZMFO), CoFe2O4 (CFO) and Fe3O4 (FO), dispersed in a piezoelectric co-polymer poly(vinylindene fluoride-trifluoroethylene), P(VDF-TrFE), matrix. No substantial differences were detected on the time-stable piezoelectric response of the composites (≈ -28 pC.N−1) with distinct ferrite fillers and for the same ferrite content of 10wt.%. Magnetic hysteresis loops from pure ferrite nanopowders showed different magnetic responses. ME results of the nanocomposite films with 10wt.% ferrite content revealed that the ME induced voltage increases with increasing DC magnetic field until a maximum of 6.5 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.26 T, and 0.8 mV∙cm−1∙Oe−1, at an optimum magnetic field of 0.15T, for the CFO/P(VDF-TrFE) and FO/P(VDF-TrFE) composites, respectively. On the contrary, the ME response of the ZMFO/P(VDF-TrFE) exposed no hysteresis and high dependence on the ZMFO filler content. Possible innovative applications such as memories and information storage, signal processing, ME sensors and oscillators have been addressed for such ferrite/PVDF nanocomposites.We thank Dr. E. Carbó-Argibay for his assistance with TEM analysis. This work is funded by FEDER funds through the “Programa Operacional Factores de Competitividade – COMPETE” and by national funds from FCT – Portuguese Foundation for Science and Technology in the framework of the strategic project Strategic Project PEST-C/FIS/UI607/2014. The authors also thank funding from Matepro –Optimizing Materials and Processes”, ref. NORTE-07-0124 FEDER-000037”, co-funded by the “Programa Operacional Regional do Norte” (ON.2 – O Novo Norte), under the “Quadro de Referência Estratégico Nacional” (QREN), through the “Fundo Europeu de Desenvolvimento Regional” (FEDER). P. Martins acknowledges also support from FCT GRANT SFRH/BPD/96227/201

    Merging solution processing and printing for sustainable fabrication of Cu(In,Ga)Se2 photovoltaics

    Get PDF
    The targeted global decarbonization demands the urgent replacement of conventional fossil fuel with low carbon technologies. For instance, solar energy is abundant, inexhaustible, non-polluting, and low-priced; however, to produce energy on a large scale with reliable, cost-efficient, and environmentally friendly methods remains a challenge. The outstanding optical properties of Cu(In,Ga)Se2 thin film photovoltaics and their intrinsic compatibility with industrial-scale production are paving the way towards this technology. However, most of the activity in the field relies on the use of non-environmentally friendly methodologies to achieve solution-processed flexible and lightweight photovoltaics with significant efficiencies. Importantly, there is a search for more sustainable alternatives that are compatible with roll-to-roll industry to improve the cost-effectiveness and sustainability of photovoltaics without compromising the photovoltaic performance. Herein, we review cost-efficient and sustainable fabrication methodologies that complement the current high- energy-demanding vacuum-based fabrication of Cu(In,Ga)Se2 photovoltaics. The existent non-vacuum deposition methods of Cu(In,Ga)Se2 photoabsorbers are presented and precursors and solvents used in ink formulations are discussed in terms of sustainability. The approaches resulting in most efficient photovoltaic cells are highlighted. Finally, all-solution-processed Cu(In,Ga)Se2 photovoltaics are reviewed, along with the non-vacuum deposition methods of the individual layers, contributing to an even higher throughput and low-cost production. This review highlights the relevance and potential of sustainable non-vacuum methodologies, as well as the need of further investigation in this field to ultimately give access to high-end CIGS PVs with low-cost fabrication.We thank the members of the Nanochemistry Research Group (http://nanochemgroup.org) at INL for insightful discussions and support. This study was conducted with financial support from the Portuguese funding institution FCT – Fundaç ̃ao para Ciˆencia e Tecnologia (PTDC/CTM-ENE/5387/2014, PTDC/NAN-MAT/28745/2017, UID/FIS/04650/2020, UID/QUI/0686/2020, PTDC/FIS-MAC/28157/2017 and SFRH/BD/121780/2016) and Basque Government Industry Department (ELKARTEK and HAZITEK)

    Crystallographic Facet Selective HER Catalysis: Exemplified in FeP and NiP2 Single Crystals

    Get PDF
    How the crystal structures of ordered transition-metal phosphide catalysts affect the hydrogen-evolution reaction (HER) is investigated by measuring the anisotropic catalytic activities of selected crystallographic facets on large (mm-sized) single crystals of iron-phosphide (FeP) and monoclinic nickel-diphosphide (m-NiP2). We find that different crystallographic facets exhibit distinct HER activities, in contrast to a commonly held assumption of severe surface restructuring during catalytic activity. Moreover, density-functional-theory-based computational studies show that the observed facet activity correlates well with the H-binding energy to P atoms on specific surface terminations. Direction dependent catalytic properties of two different phosphides with different transition metals, crystal structures, and electronic properties (FeP is a metal, while m-NiP2 is a semiconductor) suggests that the anisotropy of catalytic properties is a common trend for HER phosphide catalysts. This realization opens an additional rational design for highly efficient HER phosphide catalysts, through the growth of nanocrystals with specific exposed facets. Furthermore, the agreement between theory and experimental trends indicates that screening using DFT methods can accelerate the identification of desirable facets, especially for ternary or multinary compounds. The large single-crystal nature of the phosphide electrodes with well-defined surfaces allows for determination of the catalytically important double-layer capacitance of a flat surface, Cdl = 39(2) μF cm−2 for FeP, useful for an accurate calculation of the turnover frequency (TOF). X-ray photoelectron spectroscopy (XPS) studies of the catalytic crystals that were used show the formation of a thin oxide/phosphate overlayer, presumably ex situ due to air-exposure. This layer is easily removed for FeP, revealing a surface of pristine metal phosphide

    Compositional fluctuations mediated by excess of tellurium in bismuth antimony telluride nanocomposite yields high thermoelectric performance

    Get PDF
    A high thermoelectric figure of merit (ZT) in state-of-the-art bismuth antimony telluride (BST) composites was attained by an excess tellurium-assisted liquid-phase compaction approach. Herein, we report a maximum ZT of approximate to 1.4 at 500 K attained for BST bulk nanocomposites fabricated by spark plasma sintering of colloidally synthesized (Bi,Sb)(2)Te-3 platelets and Te-rich rods. The Terich nanodomains and antimony precipitation during sintering result in compositional fluctuations and atomic ordering within the BST-Te eutectic microstructure, which provides additional phonon scattering and hole contributions. The electrical transport measurement and theoretical calculations corroborate the altered free carrier density via lattice defects and atomic ordering under Te-rich conditions, resulting in a higher power factor. Microstructural studies suggest that reduction in lattice thermal conductivity is due to composite interfaces and defects in the closely packed (Bi,Sb)(2)Te-3 matrix with unevenly distributed Sband Te-rich nanodomains. This work provides an unconventional chemical synthesis route with large scalability for developing high-performance chalcogenide-based bulk nanocomposites for thermoelectric applications.- We thank the members of the Nanochemistry Research Group (http://nanochemgroup.org) at INL for insightful discussions and support. This work was supported by the Portuguese national funding agency for science, research, and technology (FCT) under the UT-BORN-PT project (UTAP-EXPL/CTE/0050/2017), strategic project UID/FIS/04650/2020, Project SATRAP (POCI-01-0145-FEDER-028108) and Advanced Computing Project CPCA/A2/4513/2020 for access to MACC-BOB HPC resources. B.A.K. acknowledges funding of this work by the Robert A. Welch Foundation (grant no. F1464). N.S.C. and T.M. acknowledge SERB, India (project no. SPO/SERB/MET/2018547) for financial support

    Synergistic Computational–Experimental Discovery of Highly Selective PtCu Nanocluster Catalysts for Acetylene Semihydrogenation

    Get PDF
    Semihydrogenation of acetylene (SHA) in an ethylene-rich stream is an important process for polymer industries. Presently, Pd-based catalysts have demonstrated good acetylene conversion (XC2H2), however, at the expense of ethylene selectivity (SC2H4). In this study, we have employed a systematic approach using density functional theory (DFT) to identify the best catalyst in a Cu–Pt system. The DFT results showed that with a 55 atom system at ∼1.1 Pt/Cu ratio for Pt28Cu27/Al2O3, the d-band center shifted −2.2 eV relative to the Fermi level leading to electron-saturated Pt, which allows only adsorption of ethylene via a π-bond, resulting in theoretical 99.7% SC2H4 at nearly complete XC2H2. Based on the DFT results, Pt–Cu/Al2O3 (PtCu) and Pt/Al2O3 (Pt) nanocatalysts were synthesized via cluster beam deposition (CBD), and their properties and activities were correlated with the computational predictions. For bimetallic PtCu, the electron microscopy results show the formation of alloys. The bimetallic PtCu catalyst closely mimics the DFT predictions in terms of both electronic structure, as confirmed by X-ray photoelectron spectroscopy, and catalytic activity. The alloying of Pt with Cu was responsible for the high C2H4 specific yield resulting from electron transfer between Cu and Pt, thus making PtCu a promising catalyst for SHA

    A thermosyphon-driven hydrothermal flow-through cell for in situ and time-resolved neutron diffraction studies

    Get PDF
    A flow-through cell for hydrothermal phase transformation studies by in situ and time-resolved neutron diffraction has been designed and constructed. The cell has a large internal volume of 320 ml and can operate at temperatures up to 573 K under autogenous vapor pressures (ca 8.5 106 Pa). The fluid flow is driven by a thermosyphon, which is achieved by the proper design of temperature difference around the closed loop. The main body of the cell is made of stainless steel (316 type), but the sample compartment is constructed from non-scattering Ti–Zr alloy. The cell has been successfully commissioned on Australia’s new high-intensity powder diffractometer WOMBAT at the Australian Nuclear Science and Technology Organization, using two simple phase transformation reactions from KAlSi2O6 (leucite) to NaAlSi2O6H2O (analcime) and then back from NaAlSi2O6H2O to KAlSi2O6 as examples. The demonstration proved that the cell is an excellent tool for probing hydrothermal crystallization. By collecting diffraction data every 5 min, it was clearly seen that KAlSi2O6 was progressively transformed to NaAlSi2O6H2O in a sodium chloride solution, and the produced NaAlSi2O6H2O was progressively transformed back to KAlSi2O6 in a potassium carbonate solution

    Covalent organic frameworks as catalyst support: A case study of thermal, hydrothermal, and mechanical pressure stability of β-ketoenamine-linked TpBD-Me2

    Get PDF
    Covalent organic frameworks (COFs) are crystalline, ordered networks, that, due to their high surface areas and the opportunity for periodic placement of catalytically active sites, are interesting materials for catalysis. Despite the great interest in the use of COFs for this application, there is currently a lack of fundamental understanding on how catalytically relevant conditions affect the integrity of the materials. To gain insight into the stability of COFs as catalyst supports, we herein subjected a β-ketoenamine-linked COF to thermal treatment at high temperatures, to autogenous pressure in water at different temperatures, and to mechanical pressure during pelletizing, after which the materials were thoroughly characterized to gain insight into the structural changes occurring during these catalytically relevant treatments. The COF was largely stable under all hydrothermal conditions studied, highlighting the applicability of β-ketoenamine-linked COFs under aqueous and vapor conditions. On the other hand, thermal and pressure treatments led to a rapid decline in the surface area already at the lowest temperatures and pressures studied. Theoretical calculations indicated this loss to stem from interlayer rearrangement or buckling of the COF layers induced by the applied conditions. This study demonstrates the suitability of β-ketoenamine-linked COFs for use under hydrothermal conditions, and sheds light on the degradation pathways under thermal and pressure treatments, opening the path to the design of COFs with increased stability under such conditions.Fundação para a Ciência e a Tecnologia | Ref. UTA-EXPL/NPN/0055/2019Fundação para a Ciência e a Tecnologia | Ref. PTDC/QUI-OUT/2095/2021Fundação para a Ciência e a Tecnologia | Ref. PTDC/EQU-EQU/1707/2020Agencia Estatal de Investigación | Ref. RYC2020-030414-IUniversidade de Vigo/CISU

    Discovery of Colossal Breathing-Caloric Effect under Low Applied Pressure in the Hybrid Organic–Inorganic MIL-53(Al) Material

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract] In this work, “breathing-caloric” effect is introduced as a new term to define very large thermal changes that arise from the combination of structural changes and gas adsorption processes occurring during breathing transitions. In regard to cooling and heating applications, this innovative caloric effect appears under very low working pressures and in a wide operating temperature range. This phenomenon, whose origin is analyzed in depth, is observed and reported here for the first time in the porous hybrid organic–inorganic MIL-53(Al) material. This MOF compound exhibits colossal thermal changes of ΔS ∼ 311 J K–1 kg–1 and ΔH ∼ 93 kJ kg–1 at room temperature (298 K) and under only 16 bar, pressure which is similar to that of common gas refrigerants at the same operating temperature (for instance, p(CO2) ∼ 64 bar and p(R134a) ∼ 6 bar) and noticeably lower than p > 1000 bar of most solid barocaloric materials. Furthermore, MIL-53(Al) can operate in a very wide temperature range from 333 K down to 254 K, matching the operating requirements of most HVAC systems. Therefore, these findings offer new eco-friendly alternatives to the current refrigeration systems that can be easily adapted to existing technologies and open the door to the innovation of future cooling systems yet to be developed.This work was financially supported by Ministerio de Economía y Competitividad MINECO and EU-FEDER (projects MAT2017-86453-R and PDC2021-121076-I00), Xunta de Galicia and IACOBUS Programme. Funding for open access fee was provided by Universidade da Coruña/CISU

    A post-synthetic modification strategy for the synthesis of pyrene-fused azaacene covalent organic frameworks

    Get PDF
    Post-synthetic modification strategy is presented to extend the π-system of covalent organic framework (COF) backbone giving access to boronic ester based pyrene-fused azaacene COFs. Optimized catalyst-free reaction conditions yield COFs post-synthetically modified with up to 33% conversion and corresponding intriguing optical properties. The presented chemistry is expected to find application in post-synthetic tailoring of the optical properties of COFs.S.P.S.F. acknowledges the FCT − Fundação para a Ciência e Tecnologia for the Ph.D. scholarship SFRH/BD/131791/2017. This work received funding from the COFforH2 project (UTA-EXPL/NPN/0055/2019) through the Portuguese Foundation for Science and Technology funds under UT Austin Portugal, Charm project (PTDC/QUI-OUT/2095/2021) through the Portuguese Foundation for Science and Technology funds, The Excellence Clusters ‘Nanosystems Initiative Munich (NIM)’, and from the Free State of Bavaria through the Research Network ‘Solar Technologies go Hybrid’.Peer reviewe
    corecore