43 research outputs found

    CHD1L: a new candidate gene for congenital anomalies of the kidneys and urinary tract (CAKUT)

    Get PDF
    Background. Recently, we identified a microduplication in chromosomal band 1q21.1 encompassing the CHD1L/ALC1 gene encoding a chromatin-remodelling enzyme in congenital anomalies of the kidneys and urinary tract (CAKUT) patient. Methods. To explore the role of CHD1L in CAKUT, we screened 85 CAKUT patients for mutations in the CHD1L gene and performed functional analyses of the three heterozygous missense variants detected. In addition, we quantitatively determined CHD1L expression in multiple human fetal and adult tissues and analysed expression of CHD1L protein in human embryonal, adult and hydronephrotic kidney sections. Results. Two of three novel heterozygous missense variants identified in three patients were not found in >400 control chromosomes. All variants lead to amino acid substitutions in or near the CHD1L macro domain, a poly-ADP-ribose (PAR)-binding module interacting with PAR polymerase 1 (PARP1), and showed decreased interaction with PARP1 by pull-down assay of transfected cell lysates. Quantitative messenger RNA analysis demonstrated high CHD1L expression in human fetal kidneys, and levels were four times higher than in adult kidneys. In the human embryo at 7-11 weeks gestation, CHD1L immunolocalized in the early ureteric bud and the S- and comma-shaped bodies, critical stages of kidney development. In normal postnatal sections, CHD1L was expressed in the cytoplasm of tubular cells in all tubule segments. CHD1L expression appeared higher in the hydronephrotic kidney of one patient with a hypofunctional CHD1L variant than in normal kidneys, recapitulating high fetal levels. Conclusion. Our data suggest that CHD1L plays a role in kidney development and may be a new candidate gene for CAKU

    Heterozygous Vangl2(Looptail) mice reveal novel roles for the planar cell polarity pathway in adult lung homeostasis and repair

    Get PDF
    Lung diseases impose a huge economic and health burden worldwide. A key aspect of several adult lung diseases, such as idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD), including emphysema, is aberrant tissue repair, which leads to an accumulation of damage and impaired respiratory function. Currently, there are few effective treatments available for these diseases and their incidence is rising. The planar cell polarity (PCP) pathway is critical for the embryonic development of many organs, including kidney and lung. We have previously shown that perturbation of the PCP pathway impairs tissue morphogenesis, which disrupts the number and shape of epithelial tubes formed within these organs during embryogenesis. However, very little is known about the role of the PCP pathway beyond birth, partly because of the perinatal lethality of many PCP mouse mutant lines. Here, we investigate heterozygous Looptail (Lp) mice, in which a single copy of the core PCP gene, Vangl2, is disrupted. We show that these mice are viable but display severe airspace enlargement and impaired adult lung function. Underlying these defects, we find that Vangl2Lp/+ lungs exhibit altered distribution of actin microfilaments and abnormal regulation of the actin-modifying protein cofilin. In addition, we show that Vangl2Lp/+ lungs exhibit many of the hallmarks of tissue damage, including an altered macrophage population, abnormal elastin deposition and elevated levels of the elastin-modifying enzyme, Mmp12, all of which are observed in emphysema. In vitro, disruption of VANGL2 impairs directed cell migration and reduces the rate of repair following scratch wounding of human alveolar epithelial cells. Moreover, using population data from a birth cohort of young adults, all aged 31, we found evidence of an interactive effect between VANGL2 and smoking on lung function. Finally, we show that PCP genes VANGL2 and SCRIB are significantly downregulated in lung tissue from patients with emphysema. Our data reveal an important novel role for the PCP pathway in adult lung homeostasis and repair and shed new light on the genetic factors which may modify destructive lung diseases such as emphysema.Peer reviewe

    Expression of Fraser syndrome genes in normal and polycystic murine kidneys

    Get PDF
    BACKGROUND: Fraser syndrome (FS) features renal agenesis and cystic kidneys. Mutations of FRAS1 (Fraser syndrome 1)and FREM2 (FRAS1-related extracellular matrix protein 2)cause FS. They code for basement membrane proteins expressed in metanephric epithelia where they mediate epithelial/mesenchymal signalling. Little is known about whether and where these molecules are expressed in more mature kidneys. METHODS: In healthy and congenital polycystic kidney (cpk)mouse kidneys we sought Frem2 expression using a LacZ reporter gene and quantified Fras family transcripts. Fras1 immunohistochemistry was undertaken in cystic kidneys from cpk mice and PCK (Pkhd1 mutant) rats (models of autosomal recessive polycystic kidney disease) and in wildtype metanephroi rendered cystic by dexamethasone. RESULTS: Nascent nephrons transiently expressed Frem2 in both tubule and podocyte epithelia. Maturing and adult collecting ducts also expressed Frem2. Frem2 was expressed in cpk cystic epithelia although Frem2 haploinsufficiency did not significantly modify cystogenesis in vivo. Fras1 transcripts were significantly upregulated, and Frem3 downregulated, in polycystic kidneys versus the non-cystic kidneys of littermates. Fras1 was immunodetected in cpk, PCK and dexamethasone-induced cystepithelia. CONCLUSIONS: These descriptive results are consistent with the hypothesis that Fras family molecules play diverse roles in kidney epithelia. In future, this should be tested by conditional deletion of FS genes in nephron segments and collecting ducts

    Loss of endogenous thymosin β4 accelerates glomerular disease

    Get PDF
    Glomerular disease is characterized by morphologic changes in podocyte cells accompanied by inflammation and fibrosis. Thymosin β4\beta_4 regulates cell morphology, inflammation, and fibrosis in several organs and administration of exogenous thymosin β4\beta_4 improves animal models of unilateral ureteral obstruction and diabetic nephropathy. However, the role of endogenous thymosin β4\beta_4 in the kidney is unknown. We demonstrate that thymosin β4 is expressed prominently in podocytes of developing and adult mouse glomeruli. Global loss of thymosin β4\beta_4 did not affect healthy glomeruli, but accelerated the severity of immune-mediated nephrotoxic nephritis with worse renal function, periglomerular inflammation, and fibrosis. Lack of thymosin β4\beta_4 in nephrotoxic nephritis led to the redistribution of podocytes from the glomerular tuft toward the Bowman capsule suggesting a role for thymosin β4\beta_4 in the migration of these cells. Thymosin β4\beta_4 knockdown in cultured podocytes also increased migration in a wound-healing assay, accompanied by F-actin rearrangement and increased RhoA activity. We propose that endogenous thymosin β4\beta_4 is a modifier of glomerular injury, likely having a protective role acting as a brake to slow disease progression

    Lithium induces mesenchymal-epithelial differentiation during human kidney development by activation of the Wnt signalling system

    Get PDF
    Abstract Kidney function is directly linked to the number of nephrons which are generated until 32–36 weeks gestation in humans. Failure to make nephrons during development leads to congenital renal malformations, whilst nephron loss in adulthood occurs in progressive renal disease. Therefore, an understanding of the molecular processes which underlie human nephron development may help design new treatments for renal disease. Mesenchyme to epithelial transition (MET) is critical for forming nephrons, and molecular pathways which control rodent MET have been identified. However, we do not know whether they are relevant in human kidney development. In this study, we isolated mesenchymal cell lines derived from human first trimester kidneys in monolayer culture and investigated their differentiation potential. We found that the mesenchymal cells could convert into osteogenic, but not adipogenic or endothelial lineages. Furthermore, addition of lithium chloride led to MET which was accompanied by increases in epithelial (CDH1) and tubular (ENPEP) markers and downregulation of renal progenitor (SIX2, EYA1, CD133) and mesenchymal markers (HGF, CD24). Prior to phenotypic changes, lithium chloride altered Wnt signalling with elevations in AXIN2, GSK3β phosphorylation and β-catenin. Collectively, these studies provide the first evidence that lithium-induced Wnt activation causes MET in human kidneys. Therapies targeting Wnts may be critical in the quest to regenerate nephrons for human renal diseases

    Histological observations fourteen days after FA nephropathy.

    No full text
    <p>Immunohistochemistry with collagen I (A–C) and III (D–F) demonstrated patchy fibrotic areas 14 days following FA administration (brown signals, g =  glomerulus) and quantification revealed a marked increase compared to sham controls. Collagen I staining, but not collagen III was reduced in FA-animals administered MCP in their drinking water compared to those drinking normal water. The area of the kidney containing macrophages was increased in animals exposed to FA versus sham controls as assessed by F4/80 staining (G–I) and this increase was attenuated in MCP FA mice. Bars are 50 µm in A–F and 100 µm in G–I.</p

    Kidney histology two days after FA exposure.

    No full text
    <p>A–C. PAS staining on a representative sham control and FA kidneys after 2 days. Marked kidney damage was noted in all animals administered FA, with flattened proximal and distal tubule epithelia with casts in tubule lumens (indicated by *, g  =  glomerulus). There was no observed difference between FA animals administered normal drinking water (B) or those supplemented with 1% modified citrus pectin (C). D–F. Assessment of proliferation by PCNA immunostaining. D. Occasional positive cells (brown signal, arrows indicate some of these positive cells) were observed in sham controls. E. Kidneys of animals injected with FA showed markedly increased numbers of PCNA positive cells predominately in tubular epithelium. Kidneys from FA animals provided with MCP in the drinking water had significantly decreased numbers of PCNA positive cells (F, p<0.05). Bars are 50 µm.</p

    Kidney weights and renal excretory function.

    No full text
    <p>Modified citrus pectin (MCP) or normal drinking water was administered seven days prior to the injection of either FA or vehicle only (NaHCO<sub>3</sub>) at Day 0. All data are given as mean ± SEM. a  =  p<0.01 compared to Group I, b =  p<0.05 compared to Group I, c =  p<0.01 compared to Group II at day 2, d = p<0.05 compared to Group II at day 2, e =  p<0.01 compared to Group II at day 14, f =  p<0.01 compared to Group III at day 2.</p

    Effect of MCP on galectin expression in FA nephropathy.

    No full text
    <p>Quantitative RT-PCR for renal galectin-3 (A), galectin-1 (B) and galectin-9 (C) on kidney RNA from animals in Group I (water throughout, NaHCO<sub>3</sub> injection), Group II (water throughout, FA injection) and Group III (MCP throughout and FA injection), two and fourteen days after FA administration (n = 4 in Group I, 6–7 at each time-point in Group II and Group III). All galectins were significantly upregulated in FA-treated animals at both time-points, but MCP only diminished galectin-3 levels fourteen days after induction of FA nephropathy. (D) Western blotting for galectin-3 in kidney samples from Groups II and III collected 14 days after induction of FA nephropathy. Following densitometry analysis (n = 6–7 in each group), galectin-3 protein levels were shown to be significantly decreased in FA animals administered MCP. ** indicates p<0.01 between Groups while * indicates p<0.05 between Groups.</p
    corecore