357 research outputs found

    Finite Element Modelling of Pulsatile Blood Flow in Idealized Model of Human Aortic Arch: Study of Hypotension and Hypertension

    Get PDF
    A three-dimensional computer model of human aortic arch with three branches is reproduced to study the pulsatile blood flow with Finite Element Method. In specific, the focus is on variation of wall shear stress, which plays an important role in the localization and development of atherosclerotic plaques. Pulsatile pressure pulse is used as boundary condition to avoid flow entry development, and the aorta walls are considered rigid. The aorta model along with boundary conditions is altered to study the effect of hypotension and hypertension. The results illustrated low and fluctuating shear stress at outer and inner wall of aortic arch, proximal wall of branches, and entry region. Despite the simplification of aorta model, rigid walls and other assumptions results displayed that hypertension causes lowered local wall shear stresses. It is the sign of an increased risk of atherosclerosis. The assessment of hemodynamics shows that under the flow regimes of hypotension and hypertension, the risk of atherosclerosis localization in human aorta may increase

    Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest

    Get PDF
    Nighttime vegetative uptake of carbonyl sulfide (COS) can exist due to the incomplete closure of stomata and the light independence of the enzyme carbonic anhydrase, which complicates the use of COS as a tracer for gross primary productivity (GPP). In this study we derived nighttime COS fluxes in a boreal forest (the SMEAR II station in Hyytiälä, Finland; 61°51′ N, 24°17′ E; 181 m a.s.l.) from June to November 2015 using two different methods: eddy-covariance (EC) measurements (FCOS-EC) and the radon-tracer method (FCOS-Rn). The total nighttime COS fluxes averaged over the whole measurement period were −6.8 ± 2.2 and −7.9 ± 3.8 pmol m−2 s−1 for FCOS-Rn and FCOS-EC, respectively, which is 33–38 % of the average daytime fluxes and 21 % of the total daily COS uptake. The correlation of 222Rn (of which the source is the soil) with COS (average R2  =  0.58) was lower than with CO2 (0.70), suggesting that the main sink of COS is not located at the ground. These observations are supported by soil chamber measurements that show that soil contributes to only 34–40 % of the total nighttime COS uptake. We found a decrease in COS uptake with decreasing nighttime stomatal conductance and increasing vapor-pressure deficit and air temperature, driven by stomatal closure in response to a warm and dry period in August. We also discuss the effect that canopy layer mixing can have on the radon-tracer method and the sensitivity of (FCOS-EC) to atmospheric turbulence. Our results suggest that the nighttime uptake of COS is mainly driven by the tree foliage and is significant in a boreal forest, such that it needs to be taken into account when using COS as a tracer for GPP

    Onset of photosynthesis in spring speeds up monoterpene synthesis and leads to emission bursts

    Get PDF
    Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality, with low emission rates during photosynthetically inactive winter and increasing rates towards summer. Yet, the regulation of this seasonality remains unclear. We measured in situ monoterpene emissions from Scots pine shoots during several spring periods and analysed their dynamics in connection with the spring recovery of photosynthesis. We found high emission peaks caused by enhanced monoterpene synthesis consistently during every spring period (monoterpene emission bursts, MEB). The timing of the MEBs varied relatively little between the spring periods. The timing of the MEBs showed good agreement with the photosynthetic spring recovery, which was studied with simultaneous measurements of chlorophyll fluorescence, CO2 exchange and a simple, temperature history-based proxy for state of photosynthetic acclimation, S. We conclude that the MEBs were related to the early stages of photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is still low whereas the light harvesting machinery actively absorbs light energy. This suggests that the MEBs may serve a protective functional role for the foliage during this critical transitory state and that these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime. Emissions of biogenic volatile organic compounds (BVOC) by boreal evergreen trees have strong seasonality. We measured high emission peaks from Scots pine shoots caused by enhanced monoterpene synthesis taking place simultaneously with the photosynthetic spring recovery. We conclude that the increased emissions were related to the photosynthetic recovery, when the efficiency of photosynthetic carbon reactions is low whereas the light harvesting machinery actively absorbs light energy. Increased emissions may serve a protective functional role for the foliage during the transitory state, and these high emission peaks may contribute to atmospheric chemistry in the boreal forest in springtime.Peer reviewe

    Wealth effect of geographical deregulation: the case of Illinois

    Get PDF
    Bank holding companies ; Illinois ; Banking structure

    Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide

    Get PDF
    Carbonyl sulfide (COS) flux measurements with the eddy covariance (EC) technique are becoming popular for estimating gross primary productivity. To compare COS flux measurements across sites, we need standardized protocols for data processing. In this study, we analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we provide a method for gap-filling COS fluxes. Different methods for determining the time lag between COS mixing ratio and the vertical wind velocity (w) resulted in a maximum of 15.9 % difference in the median COS flux over the whole measurement period. Due to limited COS measurement precision, small COS fluxes (below approximately 3 pmol m(-2) s(-1)) could not be detected when the time lag was determined from maximizing the covariance between COS and w. The difference between two high-frequency spectral corrections was 2.7 % in COS flux calculations, whereas omitting the high-frequency spectral correction resulted in a 14.2 % lower median flux, and different detrending methods caused a spread of 6.2 %. Relative total uncertainty was more than 5 times higher for low COS fluxes (lower than +/- 3 pmol m(-2) s(-1)) than for low CO2 fluxes (lower than +/- 1.5 mu mol m(-2) s(-1)), indicating a low signal-to-noise ratio of COS fluxes. Due to similarities in ecosystem COS and CO2 exchange, we recommend applying storage change flux correction and friction velocity filtering as usual in EC flux processing, but due to the low signal-to-noise ratio of COS fluxes, we recommend using CO2 data for time lag and high-frequency corrections of COS fluxes due to the higher signal-to-noise ratio of CO2 measurements.Peer reviewe

    Inefficient or just different? Effects of heterogeneity on bank efficiency scores

    Get PDF
    In this paper, we show the importance of accounting for heterogeneity among sample firms in stochastic frontier analysis. For a fairly homogenous sample of German savings and cooperative banks, we analyze how alternative theoretical assumptions regarding the nature of heterogeneity can be modeled and the extent to which the respective empirical specifications affect estimated efficiency levels and rankings. We find that the level of efficiency scores is affected in the case of both cost and profitmodels. On the cost side especially, level and rank correlations show that different specifications identify different banks as being best or worst performers. Our main conclusion is that efficiency studies in general and bank efficiency studies in particular should account for heterogeneity across sample firms. Especially when efficiency measures are employed for policy purposes, a careful choice of models and transparency regarding maximization methods are essential to be able to make inferences about managerial behavior. --Heterogeneity,X-efficiency,benchmarking,bank production

    Intercomparison of methods to estimate gross primary production based on CO2 and COS flux measurements

    Get PDF
    Separating the components of ecosystem-scale carbon exchange is crucial in order to develop better models and future predictions of the terrestrial carbon cycle. However, there are several uncertainties and unknowns related to current photosynthesis estimates. In this study, we evaluate four different methods for estimating photosynthesis at a boreal forest at the ecosystem scale, of which two are based on carbon dioxide (CO2) flux measurements and two on carbonyl sulfide (COS) flux measurements. The CO2-based methods use traditional flux partitioning and artificial neural networks to separate the net CO2 flux into respiration and photosynthesis. The COS-based methods make use of a unique 5-year COS flux data set and involve two different approaches to determine the leaf-scale relative uptake ratio of COS and CO2 (LRU), of which one (LRUCAP) was developed in this study. LRUCAP was based on a previously tested stomatal optimization theory (CAP), while LRUPAR was based on an empirical relation to measured radiation. For the measurement period 2013-2017, the artificial neural network method gave a GPP estimate very close to that of traditional flux partitioning at all timescales. On average, the COS-based methods gave higher GPP estimates than the CO2-based estimates on daily (23 % and 7 % higher, using LRUPAR and LRUCAP, respectively) and monthly scales (20 % and 3 % higher), as well as a higher cumulative sum over 3 months in all years (on average 25 % and 3 % higher). LRUCAP was higher than LRU estimated from chamber measurements at high radiation, leading to underestimation of midday GPP relative to other GPP methods. In general, however, use of LRUCAP gave closer agreement with CO2-based estimates of GPP than use of LRUPAR. When extended to other sites, LRUCAP may be more robust than LRUPAR because it is based on a physiological model whose parameters can be estimated from simple measurements or obtained from the literature. In contrast, the empirical radiation relation in LRUPAR may be more site-specific. However, this requires further testing at other measurement sites.Peer reviewe

    Stem emissions of monoterpenes, acetaldehyde, and methanol from Scots pine (Pinus sylvestris L.) affected by tree water relations and cambial growth

    Get PDF
    Abstract Tree stems are an overlooked source of volatile organic compounds (VOCs). Their contribution to ecosystem processes and total VOC fluxes is not well studied, and assessing it requires better understanding of stem emission dynamics and their driving processes. To gain more mechanistic insight into stem emission patterns, we measured monoterpene, methanol, and acetaldehyde emissions from the stems of mature Scots pines (Pinus sylvestris L.) in a boreal forest over three summers. We analysed the effects of temperature, soil water content, tree water status, transpiration, and growth on the VOC emissions, and used generalized linear models to test their relative importance in explaining the emissions. We show that Scots pine stems are considerable sources of monoterpenes, methanol, and acetaldehyde, and their emissions are strongly regulated by temperature. However, even small changes in water availability affected the emission potentials: increased soil water content increased the monoterpene emissions within a day, whereas acetaldehyde and methanol emissions responded within two to four days. This lag corresponded to their transport time in the xylem sap from the roots to the stem. Moreover, the emissions of monoterpenes, methanol, and acetaldehyde were influenced by the cambial growth rate of the stem with six- to ten-day lags. This article is protected by copyright. All rights reserved.Peer reviewe
    corecore