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Abstract

Tree stems are an overlooked source of volatile organic compounds (VOCs). Their

contribution to ecosystem processes and total VOC fluxes is not well studied, and

assessing it requires better understanding of stem emission dynamics and their driv-

ing processes. To gain more mechanistic insight into stem emission patterns, we mea-

sured monoterpene, methanol and acetaldehyde emissions from the stems of mature

Scots pines (Pinus sylvestris L.) in a boreal forest over three summers. We analysed

the effects of temperature, soil water content, tree water status, transpiration and

growth on the VOC emissions and used generalized linear models to test their rela-

tive importance in explaining the emissions. We show that Scots pine stems are con-

siderable sources of monoterpenes, methanol and acetaldehyde, and their emissions

are strongly regulated by temperature. However, even small changes in water avail-

ability affected the emission potentials: increased soil water content increased the

monoterpene emissions within a day, whereas acetaldehyde and methanol emissions

responded within 2–4 days. This lag corresponded to their transport time in the

xylem sap from the roots to the stem. Moreover, the emissions of monoterpenes,

methanol and acetaldehyde were influenced by the cambial growth rate of the stem

with 6–10-day lags.

K E YWORD S

acetaldehyde, methanol, monoterpene, Scots pine, stem emissions, tree–water relations, VOC

1 | INTRODUCTION

Forests are major sources of volatile organic compounds (VOCs) that

play important roles in tree defence, in plant–insect and plant-to-plant

interactions and in atmospheric chemistry (Niinemets & Monson, 2013).

However, VOC emissions have long been measured mainly from the

foliage, while emissions from the woody parts of trees remain little

explored. Concentrating on leaf emissions is reasonable in the case of

VOCs that are tightly linked to photosynthesis, such as isoprene (see

e.g., Kreuzwieser, Schnitzler, & Steinbrecher, 2008). However, other

compounds, such as methanol and acetaldehyde, are also produced in

the tree roots or stem (Kreuzwieser et al., 2008), and large pools of

monoterpenes and sesquiterpenes are stored in the resin of conifer

stems (Strömvall, 2000). Ignoring emissions from tree stems may bias

both long-term stand-level emission estimates and our understanding of

volatile signalling, for example, between trees and insects, as many
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VOCs act as chemical cues of a tree's stress. It is necessary to first

understand the dynamics and drivers of the stem emissions in various

conditions to assess their role in the stand-level emissions budget and in

forest ecosystem processes.

Studies that have measured VOC emissions from tree stems have

found that the stems may indeed be sources of monoterpenes (Amin

et al., 2013, 2012; Ghimire et al., 2016; Lusebrink, Erbilgin, &

Evenden, 2013; Kovalchuk et al., 2015; Rhoades, 1990; Staudt, Byron,

Piquemal, & Williams, 2019; Vanhatalo et al., 2015) and sesquiter-

penes (Ghimire et al., 2016; Kovalchuk et al., 2015) along with metha-

nol, acetone and acetaldehyde (Rissanen, Hölttä, & Bäck, 2018;

Vanhatalo et al., 2020). VOC emissions from stems may be small com-

pared with the emissions from foliage when the trees are unstressed;

for example, stem monoterpene emissions represent approximately

2% of the stand-level emissions in a Scots pine-dominated boreal for-

est (Vanhatalo et al., 2020). However, when biotic stresses are pre-

sent, stem VOC emissions increase (Amin et al., 2013, 2012; Ghimire

et al., 2016; Heijari, Blande, & Holopainen, 2011; Kovalchuk

et al., 2015; Lusebrink et al., 2013), even in relation to foliage emis-

sions (Amin et al., 2012; Heijari et al., 2011). In addition to stresses,

phenology-driven changes, such as springtime onset of transpiration,

may cause monoterpene emission peaks from the stems (Vanhatalo

et al., 2015).

Variables that drive foliage VOC emissions may also be expected

to affect stem emissions. Temperature is one of the strongest vari-

ables driving the foliage emissions (e.g., Guenther, Zimmerman,

Harley, Monson, & Fall, 1993; Shao et al., 2001; Tingey, Turner, &

Weber, 1991) and it also affects stem emissions (Rissanen

et al., 2016; Staudt et al., 2019; Vanhatalo et al., 2015, 2020). Other

important variables include light (e.g., Guenther et al., 1993; Shao

et al., 2001; Tingey et al., 1991), air humidity (Croteau, 1977; Llusià &

Peñuelas, 1999; Schade, Goldstein, & Lamanna, 1999; Tingey

et al., 1991), transpiration rate (Cojocariu, Kreuzwieser, &

Rennenberg, 2004; Kreuzwieser et al., 2001; Rissanen et al., 2018;

Seco, Peñuelas, & Filella, 2007), flooding (Copolovici &

Niinemets, 2010; Holzinger, Sandoval-Soto, Rottenberger, Crutzen, &

Kesselmeier, 2000; Kreuzwieser, Kühnemann, Martis, Rennenberg,

& Urban, 2000) and drought (Bertin & Staudt, 1996; Llusià &

Peñuelas, 2002; Lüpke, Leuchner, Steinbrecher, & Menzel, 2017;

Staudt, Rambal, Joffre, & Kesselmeier, 2002). However, the level at

which these environmental variables and physiological processes

affect the stem emissions is not known.

Provided that the connections between the measured stem VOC

emissions and the affecting physiological processes are strong, VOC

emissions could be used as a signal of the processes and conditions

occurring within the stem. For example, acetaldehyde or ethanol emis-

sions from the foliage are known to increase when the roots are

flooded as a result of anaerobic metabolism that produces ethanol

(Copolovici & Niinemets, 2010; Kreuzwieser et al., 2000). Anoxic con-

ditions may also occur in the stem, for example, near the heartwood

or because of limited oxygen diffusion due to high stem water content

(Sorz & Hietz, 2006) or rapid use of oxygen during high metabolic

activity (Kimmerer & Stringer, 1988). Stem anoxia may be difficult to

measure, but it could potentially be detected by following changes in

acetaldehyde and ethanol emissions from the stem. Moreover, metha-

nol production in plants is strongly connected to tissue growth, partic-

ularly the demethylation of pectin in cell wall formation processes

(Galbally & Kirstine, 2002; Hüve et al., 2007; MacDonald & Fall, 1993;

Nemecek-Marshall, MacDonald, Franzen, Wojciechowski, & Fall,

1995). Non-invasive stem methanol emission measurements may

prove useful for acquiring information on the timing of cell wall forma-

tion processes of the cambial growth.

We aimed to gain insight on stem VOC emission dynamics by

testing the environmental variables and tree processes that poten-

tially affect the stem emissions of a mature tree in field conditions.

We used 3 years of summertime data on stem monoterpene, metha-

nol and acetaldehyde emissions from mature Scots pine trees and

analysed the emissions and temperature-normalized emissions

against soil water availability and tree water relations along with

stem growth rate and metabolic activity. We hypothesized that

(a) increased soil water availability and xylem water potential would

increase the monoterpene emissions because of potentially

enhanced production and pressure changes within the stem, (b) an

increased transpiration rate would increase the emissions of the

water-soluble compounds methanol and acetaldehyde provided that

they are transported in the xylem sap and (c) radial stem growth and

stem carbon dioxide (CO2) efflux, used as a proxy for stem metabolic

activity, would correlate with high emissions of all measured com-

pounds, particularly methanol.

2 | MATERIALS AND METHODS

2.1 | Site

The measurements were conducted at the SMEAR II station (Station

for Measuring Ecosystem–Atmosphere Relations) in Hyytiälä, South-

ern Finland (61�510N, 24�170E, 181 m above sea level) (Hari &

Kulmala, 2005). The forest is dominated by approximately 55-year-old

Scots pine trees, with undergrowth of Norway spruce [Picea abies (L.)

H.Karst] and deciduous species. The dominant Scots pines are approx-

imately 20 m tall. The site is of medium fertility and has an annual

mean temperature of 3.5�C and an annual precipitation of 711 mm

(Ilvesniemi et al., 2010; Pirinen et al., 2012). The soil is podzolic and

rarely dry (mean soil water content [SWC] and soil water potential are

presented in Table 1).

2.2 | Stem flux measurements

We measured monoterpene, methanol and acetaldehyde stem emis-

sions during 3 years (2013, 2015 and 2017) and selected a time win-

dow from May to August because of the coherent availability of data

from each year. A different tree was measured each year (Table 1) to

see whether we could identify similar responses to environmental

drivers when investigating individual trees.
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The VOC emissions were captured using custom-made chambers

built around tree stems. Two chamber types were used in the mea-

surements: type 1 in 2013 and 2015, described in detail in Vanhatalo

et al. (2015) and type 2 in 2017, described in Vanhatalo (2018)

(Table 1, Figure S1, see description of the functional differences

between the chamber types in Section 2.3 below). The chamber cores

consisted of either a polyethylene-coated aluminium spiral (type 1) or

aluminium pieces covered with FEP-tape (fluorinated ethylene propyl-

ene; type 2) that supported the FEP foil wrapped around the tree

stem. The foil was tightened using elastic cable ties around the stem

at the top and bottom of an approximately 20–35 cm long section of

tree stem. The chambers were installed at a height of 12 m (2013 and

2015) or 15 m (2017), depending on accessibility from the measure-

ment scaffold. We chose to measure the top of the stem to gain a

strong VOC emission signal (Rissanen et al., 2018; Vanhatalo

et al., 2020). The measured stem section was straight and had smooth

bark, which ensured a tight fit of the chamber.

The stem chambers were measured in sequence with other cham-

bers and sampling locations at the research site, including frequent

measurements from ambient air. Every 3 hours in the measurement

sequence, the stem chamber was measured three times, with an

approximately 30-min pause between individual measurements. In

total, depending on the small changes in the measurement sequence,

the stem chambers were measured 24–32 times per day. During mea-

surement, 1 L min−1 of sample air was drawn from the chamber to the

analysers and replaced with 1 L min−1 of compressed ambient air. The

measurement time in type 1 chambers was 2 min 45 s and 1 min 30 s

in type 2 chamber. Between measurements, 0.4 L min−1 of com-

pressed ambient air was fed through the chamber to flush the cham-

ber air and tubing and to avoid a build-up of VOCs or humidity. Two

additional lids on the type 2 chamber surface equipped with small fans

were opened between measurements to improve flushing of the

chamber. Temperatures in the stem chambers were constantly mea-

sured with copper–constantan thermocouples.

The concentrations of monoterpenes (m/z 137), methanol (m/z

33) and acetaldehyde (m/z 45) in the chamber sample air were

analysed in a proton transfer reaction—quadrupole mass spectrometer

(PTR-QMS; IONICON, Innsbruck, Austria). The PTR-QMS was cali-

brated two to three times per month with a standard gas (Apel–

Riemer Environmental, Inc., Broomfield, CO, USA) containing the mea-

sured compounds (methanol, acetaldehyde, and α-pinene as the

monoterpene) along with a number of other compounds, such as ben-

zene (m/z 79), toluene (m/z 93) and 1,2,4-trichlorobenzene (m/z 182)

to monitor instrument sensitivity. The E/N was set to approximately

106 Td. The calibration procedure and maintenance of the PTR-QMS

and concentration calculations were conducted similarly over the

whole measurement period, and they are reported in Taipale

et al. (2008). The sample air was also measured with a Li-840 A ana-

lyser (Li-Cor, Lincoln, NE) to determine the CO2 and water (H2O) con-

centrations of the sample.

The VOC emissions from type 1 chambers were calculated by

subtracting the concentration of ambient replacement air from the

steady-state concentration of chamber air and multiplying theT
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difference by sample airflow (Kolari et al., 2012). In type 2 dynamic

chamber, the emissions were calculated based on the mass balance

equation (Equation [1])

C tð Þ=C0 + Cin−C0 +
E
F

� �
1−e

−Ft
V

� �
, ð1Þ

where C(t) is the concentration of measured chamber air (ng m−3) as a

function of time (t, in seconds), C0 is the initial concentration in the

chamber measured just before the chamber closure (ng m−3), Cin is the

concentration in the replacement air measured between chamber

measurements and interpolated over the chamber closure (ng m−3), V

is the chamber volume (m−3), E is the emissions from the source

(ng s−1) and F is the airflow rate through the chamber (m3 s−1) (Hari

et al., 1999; Kolari et al., 2012). The E for each chamber closure was

calculated by fitting the mass balance equation to the increasing con-

centration measured in the chamber. The CO2 efflux from the stem

was calculated similarly as the VOC emissions. Data on methanol and

acetaldehyde emissions and CO2 efflux were omitted when the rela-

tive humidity exceeded 75%. In high humidity, water may condense

on the chamber surfaces and adsorb and re-emit water-soluble VOCs

and CO2, which makes their measurements unreliable (Altimir

et al., 2006). Because of the higher night-time humidity, the remaining

data on methanol, acetaldehyde and CO2 fluxes more accurately rep-

resent day- than night-time conditions.

Due to instrument maintenance and a few system malfunctions,

there were short periods of missing data. To ensure that the daily data

were representative, the data from days that had less than 10 mea-

surement points on VOC emissions out of 24–32 were omitted from

the analysis.

2.3 | Chamber type effect on measured VOC
emissions

The main functional difference between stem chamber type 1, used in

2013 and 2015, and stem chamber type 2, used in 2017, was that

type 2 chamber was dynamic because of the opening and closing ven-

tilation holes, which allowed for the emission calculations with the

mass balance equation. Using the mass balance equation allowed for a

shorter measurement time, as the chamber did not need to reach a

steady state for emission calculations. The ventilation holes and fans

also made chamber flushing between measurements more efficient.

Because of the more efficient flushing, the relative humidity limit of

75% for methanol and acetaldehyde emissions could potentially have

been elevated for the type 2 chamber, but we decided to use the

same limit for both chamber types for consistency.

Comparing the emission dynamics measured by the two chamber

types, we did not have a reason to suspect that data from the two

chamber types would have been incomparable for the purpose of this

study: the emission dynamics measured by the two chamber types

were similar both on a daily scale and over the measurement periods.

It is possible that the type 2 chamber performed better in capturing

the emissions, thereby contributing to the higher measured emissions

in 2017, but the higher emissions may also have been caused by tree-

to-tree variation and the measurement location being higher on the

stem (Vanhatalo et al., 2020). Because we focused on dynamics rather

than on absolute values in this study, we did not compare the cham-

ber type effects on the absolute emissions further.

2.4 | Auxiliary measurements

We compared the emission patterns of monoterpenes, methanol and

acetaldehyde with the stem chamber temperature and a set of vari-

ables describing water status in the soil and within the tree: SWC,

transpiration and xylem diameter, and another set describing stem

growth and activity: cambial growth rate and stem CO2 efflux already

described above.

Data on SWC in the A-, B1-, B2- and C-horizons were continu-

ously measured at the SMEAR II station and are available at

SmartSMEAR (https://avaa.tdata.fi/web/smart/smear/download).

SWC was measured from horizons A, B1, B2 and C from five locations

over the measurement site using a Campbell TDR100 Time-Domain

reflectometer (Campbell Scientific, Logan, UT). We used the mean

SWC over all the locations and soil horizons to obtain a general pic-

ture of the root system's humidity conditions. We also used ambient

relative humidity data measured by a Rotronic MP102H relative

humidity sensor (Rotronic Measurement Solutions, Basserdorf, Swit-

zerland) at a height of 16 m, corresponding to humidity at the tree

canopy height.

Shoot transpiration was measured from the water vapour concen-

trations in shoot chambers installed in the upper canopy of the trees

equipped with stem chambers. The sample air from the shoot cham-

bers was directed into a Li-840 A analyser (Li-Cor, Lincoln, NE, USA)

to determine the water vapour concentration of the sample air, and

the fluxes were calculated using the mass balance equation

(Equation [1]). The shoot gas exchange measurement workflow and

shoot chambers are described in detail by Kolari et al. (2009, 2012)

and Aalto et al. (2014). We omitted the transpiration data when rela-

tive humidity in the chamber exceeded 75%, and the resulting gaps in

data were filled by the optimal stomatal control model (Hari, Mäkelä,

Korpilahti, & Holmberg, 1986). This model calculates stomatal conduc-

tance as a function of irradiation and vapour pressure deficit, and mul-

tiplying the obtained stomatal conductance by vapour pressure deficit

gives an estimate of transpiration. The vapour pressure deficit was

calculated from temperature and relative humidity inside the shoot

chamber and irradiation was measured from the top of the shoot

chamber with a Li-Cor Li-190 quantum sensor (Li-Cor; Lincoln, NE).

No irradiation measurements were made next to the stem chambers.

The measured irradiation may be unmeaningful for the measured stem

VOC emissions because the light conditions vary greatly on the differ-

ent sides of the chamber.

As a proxy for xylem water potential, we used xylem diameter

changes measured by linear variable displacement transducers (point

dendrometers, model AX/5.0/S; Solartron Inc., West Sussex, UK).
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Direct measurements with a psychrometer were not possible due to

the high liquid resin content of the pine trees. The diameter change

measurement describes the changes in xylem diameter due to

changes in xylem water potential (Dietrich, Zweifel, & Kahmen, 2018;

Irvine & Grace, 1997) but also includes changes in osmotic potential

of the living cells (Lintunen, Lindfors, Nikinmaa, & Hölttä, 2017).

Changes in whole-stem diameter were measured simultaneously.

Cambial growth of the stem was estimated from the changes in

living bark dimensions, calculated from the difference between the

whole-stem diameter and xylem diameter. From this value, we took

the derivate over 10 days as a proxy for the growth rate. To describe

stem metabolic activity related to growth and maintenance, we also

used CO2 efflux from the stem. As the CO2 efflux is strongly con-

nected to stem respiration and temperature, we normalized it to tem-

perature by using the residuals from an exponential temperature fit

made separately for each year.

2.5 | Data analysis

Firstly, we calculated correlations between measured daily mean stem

emissions of methanol, monoterpenes and acetaldehyde and chamber

temperature, SWC, xylem diameter, transpiration, stem CO2 efflux

and growth rate. However, as the stem VOC emissions are tempera-

ture dependent (Rissanen et al., 2016; Staudt et al., 2019; Vanhatalo

et al., 2020; Table S1), we also normalized the stem emission data to

30�C following the temperature equation by Guenther et al. (1993).

This normalization allows exploring effects that change VOC emis-

sions but that may be masked by the strong influence of temperature.

When using this temperature normalization, the temperature effect

coefficient (β parameter) is commonly fixed at 0.09 (Guenther

et al., 1993) or at another suitable value depending on the compound

and measured plant. However, in addition to using a fixed β to calcu-

late the normalized emissions, we wanted to allow flexibility in the β

over the growing seasons. The sensitivity of the temperature

response and thus the β of the measured stem emissions may shift

over the growing seasons because of, for example, potential changes

in the main VOC sources or stem growth that affects the VOC diffu-

sion pathways from their sources to ambient air. Thus, we optimized

the β parameter separately in three-day windows by fitting Equa-

tion (2) to the measured data.

E = E0 × eβ T−T0ð Þ: ð2Þ

In Equation (2), E is the measured emission rate (ng m−2 s−1), E0 is

the temperature-normalized emission rate, also called emission poten-

tial (ng m−2 s−1), β is the empirical coefficient describing the tempera-

ture impact (K−1), T0 is the standard temperature (303 K or 30�C) and

T is the temperature in the chamber (K). We omitted a window from

the analysis if the coefficient of determination (R2) of the equation fit

to the measured data was less than 0.40. We then smoothed the

fitted β values by calculating the mean β for each day over the previ-

ous 30 days (including data from May into the data for early June;

Figure 1a). We used the 30-day window because we detected the

changes in the temperature sensitivity between months (Figure 2). In

addition, any changes in temperature dependency of the emissions

are probably not rapid but gradual processes driven, for example, by

growth or enzyme activity (Vanhatalo et al., 2018). The smoothed β

F IGURE 1 A workflow illustration for calculating Scots pine (Pinus
sylvestris) stem monoterpene emission potential (E0). (a) Measured
stem monoterpene emission data (grey dots), chamber temperature
(dashed line) and fitted smoothed β parameter (βs) (solid line) for use
in Guenther et al. normalization (1993) to calculate emission potential,
(b) stem monoterpene emission potential (grey dots) calculated based
on chamber temperature and βs, and their daily mean values (black
dots), (c) daily mean monoterpene emission potential (black dots)
compared with daily mean soil water content (mean for the A–C
horizons) (white dots) and (d) detrended daily mean stem
monoterpene emission potential (black dots) compared with
detrended daily mean soil water content (white dots). Data measured

at the SMEAR II station from June to August 2015
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parameter, βs, was interpolated from daily values to the time stamps

of the original data. With the βs, we returned to Equation (2) and cal-

culated the final emission potential E0 over the studied periods

(Figure 1b).

Finally, we calculated the daily means of the emission potentials

E0 (Figure 1b) and compared them with the daily means of the explan-

atory variables separately for each year (Figure 1c). Because long-term

VOC emission trends may be related to processes in the stem that

were not considered in this study, we also tested detrending the daily

means of the esmissions potential and explanatory variables by sub-

tracting their 15-day moving means from the daily means (Figure 1d).

We used the 15-day window for the moving average, as it removed

the month-to-month trends but did not dampen the shorter-scale

changes in the environment.

VOC emissions measured from the bark surface may have a del-

ayed response to the environmental and physiological variables that is

related to time lags of temperature changes in the stem or time lags

of production and transport of the compounds. Thus, we used cross-

correlation analysis for each year separately to analyse possible lags

between the time series. This was done by shifting the emission

potential time series 1 day at a time in relation to the explanatory

variable and finding the lag that yielded the best correlation

(Figure S2). For the lag to be considered relevant, it needed to be less

than 11 days and it needed to occur in the same scale for at least two

of the three trees. We chose 11 days as the limit because with longer

time periods, the tested variable could possibly correlate with itself

again, which made interpreting the lag and correlation estimates with

other variables difficult. We chose the smaller lag in cases where two

lags gave local maximum correlations within the 11 days. If we did not

find a clear local maximum correlation or the correlation continuously

increased with the added lag beyond the 11 days, we assumed no lag.

To estimate the sensitivity of the correlation and lag to missing data,

we repeated the analysis while removing one data point at a time

(Figure S2), and to estimate the sensitivity of the correlation to the

lag, we calculated the correlations also with ±1 days of lag (Table S2).

To combine the effect of each explanatory variable over the

3 years, all the variables were normalized by scaling them from zero

to one, and we used repeated measures correlation Rmcorr

(Bakdash & Marusich, 2017) in R studio (RStudio team, 2019) to calcu-

late the correlations over the years. Rmcorr is an application of Analy-

sis of covariance (ANCOVA) that calculates a correlation over

repeated measures from several subjects considering that there are

individual differences between the measured subjects (Bakdash &

Marusich, 2017). The relevant time lags found in the cross-correlation

analysis were included in this calculation. We repeated these correla-

tion analysis steps also for E0 calculated with the β parameter that

was fixed to one value over the summer, separately for each year. In

the following, we will primarily report the results obtained by the flex-

ible β (fitted in three-day windows and smoothed) but discuss the dif-

ferences between the two approaches.

2.6 | Modelling emissions

To test the relative importance of the explanatory variables in

explaining the VOC emissions, we combined them with temperature

to explain the measured non-normalized stem VOC emissions. We

used a generalized linear model (GLM from R Stats v3.6.1, Vienna,

Austria) with gamma distribution and log link because the VOC emis-

sions data were closer to gamma than normal distribution and the

relation between temperature and the VOC emissions was log-linear,

as has been reported before (e.g., Guenther et al., 1993). To be able to

use gamma distribution, we had to remove any below-zero emission

values. Firstly, we added each explanatory variable separately to a

GLM explaining the VOC emissions of each year only with chamber

temperature and tested time lags from zero to 11 days between the

explanatory variable and the VOC emissions. To avoid the con-

founding effect of the inverse daily dynamics between certain explan-

atory variables and the VOC emissions, we used the daily mean values

of the explanatory variables. Secondly, for further modelling, we

chose the variables that had significant effects with a lag smaller than

11 days and combined these variables and temperature to the full

GLM explaining VOC emissions over the three summers. We added

year as a factor and interactions between the year and model

F IGURE 2 The relations between chamber temperature and
(a) monoterpene, (b) methanol and (c) acetaldehyde emissions from
Scots pine (Pinus sylvestris) stems measured at the SMEAR II station in
June (grey), July (red) and August (blue) 2017. The lines represent an
exponential regression for each month
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variables into the model. To allow changes in temperature effect dur-

ing the growing season, we also divided the summers into 15-day

periods and added an interaction between the period and tempera-

ture into the full model.

We tested the significance and relative importance of each vari-

able in the model by extracting them from the model and calculating

the Akaike information criterion (AIC) and a proxy for R2 for GLM

(1-[residual deviation/null deviation]) of the model when the variable

or interaction was removed. To analyse how much the explanatory

variables could explain the VOC emissions in a case where the tem-

perature effect was fixed over the summer, we tested the significance

and relative importance of the variables also in a reduced model,

where the period–temperature interaction was removed. The calcula-

tions were performed using Matlab (version R; R Core Team, 2017;

The MathWorks, Inc., Natick, MA) and Rmcorr analysis and GLM

modelling using R studio (version 1.1.463; RStudio Team, 2019,

Boston, MA).

3 | RESULTS

3.1 | Measured emissions

The measured stem emissions of all compounds, that is, methanol,

acetaldehyde and monoterpenes approximately followed the diurnal

pattern of temperature (Figure 3) and correlated positively with tem-

perature also over the growing seasons (Figure 2, Table S1). However,

the temperature sensitivity of the emissions appeared to change

slightly from month to month (Figure 2) and the emission dynamics

sometimes deviated from the temperature pattern over the growing

season (Figure S3). The correlations of the emissions with the other

environmental or physiological variables were typically smaller in rela-

tion to temperature (Table S1).

We detected occasional below zero values of methanol, acetalde-

hyde and monoterpene emissions indicating potential uptake of these

compounds, but measuring such small fluxes may be imprecise. Even

with the occasional below zero values, the daily mean emissions were

positive.

3.2 | Emission potentials

The emission potentials of monoterpenes, methanol and

acetaldehyde—normalized to temperature using the flexible β

parameter—varied both during the growing seasons 2013, 2015 and

2017 and between the trees and years (Figure S4). Tree 3 in 2017

showed the largest emission potentials of all compounds, monoter-

penes in particular (Figure S4).

Through all the years, the emission potentials of monoterpenes

and acetaldehyde, and to a lesser extent the emission potential of

methanol, were related to changes in SWC (Figure 4a,c,e; Table 2).

The detrended values of monoterpene emission potential and SWC

correlated consistently over all the years without lags or with a lag of

1 day, whereas the acetaldehyde emission potential without

detrending followed SWC with a lag of 2–4 days (Table 2). The

detrended methanol emission potential correlated with SWC with lags

of 3–5 days (Table 2). These time lags between SWC and acetalde-

hyde and methanol emission potentials corresponded approximately

to the time of water transport from the stem base to the top of the

stem, where the emissions were measured (12 or 15 m). The transport

times, calculated based on the mean transpiration rate over the

F IGURE 3 The daily dynamics of volatile organic compound
emissions from Scots pine (Pinus sylvestris) stems and the dynamics of
auxiliary variables. (a) Methanol (o) and acetaldehyde (x) emission
dynamics, (b) monoterpene emission dynamics, (c) temperature in the

chamber (black) and radiation above the canopy (PAR, grey), (d) soil
water content (black) and xylem diameter as a proxy for water
potential in the tree (grey), (e) transpiration (black) and relative
humidity within the canopy (grey), (f) normalized stem growth rate
(black) and temperature-normalized stem CO2 efflux (grey) measured
at the SMEAR II station in June 7–11, 2017 (representing the general
patterns of the emissions over the measured summers)
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measurement period and dimensions of each tree, ranged from

3–5 days depending on the tree (see Methods S1, Table S3).

In addition to the correlation with SWC, the detrended monoter-

pene emission potential correlated positively with xylem diameter

(proxy for water potential) with a lag of 1–2 days (Figure 4b, Table 2)

and with relative humidity with a lag of 1–3 days (Table 2). Acetalde-

hyde emission potential correlated positively with transpiration, both

with and without detrending, with a consistent lag of 1–2 days

(Figure 4f, Table 2). Similarly to the monoterpene emission potential,

acetaldehyde emission potential also correlated with xylem diameter

and ambient relative humidity, but the time lags associated with the

correlation varied between trees, ranging from 2 to 7 days (Table 2).

The detrended methanol emission potential was also connected to

xylem diameter and ambient relative humidity with lags of up to

4 days (Table 2). The correlations and lags involved in the correlations

between the methanol emission potential and transpiration varied

largely between the trees (Table 2).

We also found connections between the emission potentials of

monoterpenes, methanol and acetaldehyde and metabolic activity of

the stem. Cambial growth rate of the stem, measured in 2015 and

2017, positively related to the emission potential of monoterpenes

and to the detrended emission potentials of methanol and acetalde-

hyde, with lags of 6–10 days (Figure 5a,c,e; Table 2). Positive correla-

tions also existed between stem CO2 efflux and the monoterpene

emission potential with a lag of up to 3 days (Figure 5b, Table 2) and

between stem CO2 efflux and the detrended acetaldehyde emission

potential with a lag of up to 1 day (Figure 5f, Table 2). The detrended

methanol emission potential correlated with stem CO2 efflux with

inconsistent lags of 3–10 days (Figure 5d, Table 2).

The main results of the correlation analysis were similar when

using either the flexible or fixed β, both highlighting the correlations

with soil water potential and growth (Table S4). The relations between

monoterpene emission potential and transpiration, methanol emission

potential and relative humidity and acetaldehyde emission potential

and xylem diameter were clearer when using the fixed β, whereas

using the flexible β generally provided similar and slightly stronger

correlations over the trees regarding the other relations (Table 2,

Table S4). This was clear especially in the correlations between emis-

sion potentials and stem CO2 efflux and growth (Table 2, Table S4).

3.3 | Modelling VOC emissions

To determine the relative importance of the tree and soil water status

and variables describing the stem metabolic activity in explaining the

measured, non-normalized emissions of monoterpenes, methanol and

acetaldehyde from the stem, we combined them with temperature

using GLM. In addition to temperature, SWC, relative humidity and

temperature-normalized stem CO2 efflux explained the monoterpene

emissions; relative humidity, transpiration and temperature-

normalized stem CO2 efflux explained the methanol emissions and

SWC, relative humidity and transpiration explained the acetaldehyde

emissions (Table 3). Xylem diameter could not be used in the mono-

terpene or acetaldehyde models because of its strong correlation with

SWC. It was also omitted from the final methanol model despite its

correlations with detrended methanol emissions because it did not

have a significant effect. Although growth rate correlated with the

emission potentials, the missing 2013 data prevented it from being

used in the models.

In all three models, temperature was clearly the most important

variable explaining the emissions. Removing temperature caused the

greatest increases in AIC and the greatest reductions in R2 in both the

full models, where the temperature effect was allowed to change over

the growing seasons using an interaction with 15-day periods, and in

F IGURE 4 Correlations between temperature-normalized daily
mean values of stem monoterpene emission potential (E0) and
(a) detrended soil water content (SWC de) mean over the A–C
horizons, and (b) detrended water potential measured as xylem

diameter (Dxylem de); stem methanol emission potential and
(c) detrended soil water content, and (d) detrended water potential
measured as xylem diameter (Dxylem de); stem acetaldehyde emission
potential and (e) soil water content, and (f) transpiration. Emissions
measured from the stems of three different Scots pines (Pinus
sylvestris) in June–August 2013 (blue), 2015 (red) and 2017 (grey). For
presentation and Rmcorr calculation, values scaled to 0–1 and
detrended after normalization. Dashed lines represent linear
regression between the variables separately for each year, the solid
line, the rmcorr general regression line over the years. See Table 2 for
the correlation coefficients and lags
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TABLE 2 Pearson correlation coefficients for the separate years including time lag (in parenthesis) and Rmcorr correlation coefficients for the
combined years for relations between daily means of emission potentials and detrended emission potentials of monoterpene, methanol and
acetaldehyde from Scots pine (Pinus sylvestris) stems and measured and detrended explanatory variables

Years (Pearson's correlation)
Combined years
(Rmcorr)2013 2015 2017

Monoterpene E0

RH (%) 0.21 (2 d) 0.49 (2 d) −0.11 (1 d) 0.17

Detrended 0.14 (1 d) 0.38 (3 d) 0.34 (1 d) 0.31

SWC (m3 m−3) 0.35 (1 d) 0.19 0.54 0.33

Detrended 0.67 0.41 (1 d) 0.47 0.42

Dxylem (μm) 0.16 (1 d) 0.44 (3 d) 0.19 0.26

Detrended 0.17 (1 d) 0.56 (2 d) 0.21 (1 d) 0.42

Tr (mg m−2 s−1) 0.10 −0.12 0.08 0.02

Detrended 0.16 −0.07 −0.02 0.02

F CO2 norm (μg m−2 s−1) 0.03 (1 d) 0.28 0.44 (3 d) 0.28

Detrended 0.19 (1 d) 0.17 0.05 (2 d) 0.11

Growth rate (mm day−1) NA 0.36 (7 d) 0.82 (10 d) 0.56

Detrended NA 0.28 (7 d) 0.19 (6 d) 0.24

Methanol E0

RH (%) −0.01 (1 d) 0.59 (6 d) 0.66 0.22

Detrended 0.20 (1 d) 0.30 (4 d) 0.60 0.38

SWC (m3 m−3) −0.55 0.45 (4 d) −0.03 −0.13

Detrended 0.11 (3 d) 0.38 (3 d) 0.32 (5 d) 0.27

Dxylem (μm) −0.73 0.51 (4 d) −0.24 −0.27

Detrended 0.06 (1 d) 0.42 (4 d) 0.54 0.35

Tr (mg m−2 s−1) 0.29 (8 d) −0.01 0.62 (4 d) 0.22

Detrended 0.28 (8 d) 0.13 0.56 (4 d) 0.27

F CO2 norm (μg m−2 s−1) 0.52 (9 d) 0.08 0.11 (3 d) 0.22

Detrended 0.25 (8 d) 0.08 (10 d) 0.50 (3 d) 0.34

Growth rate (mm day−1) NA 0.67 (7 d) −0.52 0.18

Detrended NA 0.66 (7 d) 0.30 (7 d) 0.49

Acetaldehyde E0

RH (%) 0.27 (2 d) 0.26 (4 d) 0.36 (7 d) 0.28

Detrended 0.19 (2 d) 0.22 (4 d) 0.34 (7 d) 0.23

SWC (m3 m−3) 0.58 (4 d) 0.57 (2 d) 0.04 (4 d) 0.45

Detrended 0.56 (7 d) 0.27 (4 d) 0.56 (4 d) 0.42

Dxylem (μm) 0.71 (4 d) 0.45 (4 d) −0.59 0.11

Detrended 0.42 (2 d) 0.30 (4 d) 0.36 (7 d) 0.26

Tr (mg m−2 s−1) 0.13 (1 d) 0.28 (1 d) 0.44 (1 d) 0.30

Detrended 0.28 (1 d) 0.28 (1 d) 0.34 (2 d) 0.29

F CO2 norm (μg m−2 s−1) −0.35 0.65 (2 d) 0.02 0.08

Detrended 0.11 (1 d) 0.26 0.43 0.31

Growth rate (mm day−1) NA 0.67 (7 d) −0.52 0.05

Detrended NA 0.62 (10 d) 0.22 (8 d) 0.40

Note: When cross-correlation analysis indicated a significant, consistent lag in the emission response, the correlation coefficients are reported including the

lag (the time lag in days in parentheses). Emissions were measured from three different trees during three summers, 2013, 2015 and 2017 at the SMEAR II

station. Bold values are significant at p < .05. NA indicates missing data. RH: ambient relative humidity, SWC: soil water content mean over the A–C hori-

zons, Dxylem: xylem diameter, proxy for water potential, Tr: transpiration, F CO2 norm: temperature-normalized stem CO2 efflux, growth rate: derivate of

stem diameter over 10 days.
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the reduced models, where the period interaction was removed

(Table 3). Removing temperature decreased the R2 of the full mono-

terpene model from 0.93 to 0.81, the methanol model R2 from 0.95

to 0.84 and the acetaldehyde model R2 from 0.92 to 0.75. Removing

the period interaction of the temperature effect had a smaller impact

on the R2 of the full models (Table 3).

In all models, the variables other than temperature had very small

effects on R2, but they were not negligible because removing them

increased the model AIC (Table 3). The relative importance of these

variables was smaller in the full models than in the reduced models,

where the temperature effect was fixed. For example, removing all

variables except temperature reduced the R2 of the monoterpene

model from 0.93 to 0.92 in the full model and from 0.91 to 0.88 in the

reduced model (Table 3). Comparing the effects of tree and soil water

status and stem metabolic activity, we observed that SWC was most

important in the monoterpene model, causing the greatest AIC

increases when removed. In the acetaldehyde model, SWC was the

most important in the reduced model, but equally important with tran-

spiration in the full model (Table 3). In the methanol model, CO2 efflux

was the most important in the reduced model, but the effects of all

the variables other than temperature were equally miniscule in the full

model (Table 3).

The full models generally captured the variation in the emissions

of monoterpenes, methanol and acetaldehyde over the growing sea-

son (Figure 6, Table 3). However, in 2017, when emissions of mono-

terpenes were large, the monoterpene model did not capture the high

emission peaks in mid-June in particular, but produced a patch of

overestimations afterwards (Figure 6c, Figure S5c). This and other

unexplained patterns in 2017 caused some residual autocorrelation

that was not fixed by adding other explanatory variables or

interactions.

4 | DISCUSSION

4.1 | Effect of temperature on stem VOC
emissions

We found that emissions of monoterpenes, methanol and acetalde-

hyde from the three Scots pine stems over the three growing seasons

followed the diurnal dynamics of temperature but varied over the

growing season following changes in soil water potential and growth.

Compared to earlier reports of monoterpene emissions from

Scots pine stems: 0–30 ng m−2 s−1 (Rissanen et al., 2016) and

0–50 ng m−2 s−1 (Vanhatalo et al., 2020), the monoterpene emissions

measured here were of the same magnitude in 2013 and 2015:

0–30 ng m−2 s−1 or higher in 2017: 0–600 ng m−2 s−1. Thus, the con-

tribution of the stem monoterpene emissions to the ecosystem emis-

sions was probably close to the 2% reported by Vanhatalo

et al. (2020) or higher in 2017. Based on the resin composition of the

measured pines (Rissanen et al., 2019) and earlier point measurements

of monoterpene composition of the stem emissions (data not shown),

we assume that the monoterpenes emitted from the stem mainly con-

sist of α-pinene, Δ3-carene, myrcene and terpinolene.

The daily emission dynamics followed temperature, as reported

previously (Rissanen et al., 2016; Staudt et al., 2019; Vanhatalo

et al., 2015, 2020). The role of temperature was highlighted in the

GLM: the other tested variables—SWC, relative humidity, transpira-

tion and stem CO2 efflux—had small although not negligible effects on

the full model fit. Based on the temperature relations fitted separately

for each month of a growing season (Figure 3), it seemed probable

that the temperature sensitivity of the emissions measured from the

stem surface changed over the summer. Some of this apparent change

in temperature sensitivity could be replaced by the other variables in

F IGURE 5 Correlations between temperature-normalized daily
mean values of stem monoterpene emission potential (E0) and
(a) cambial growth rate and (b) temperature-normalized stem CO2

efflux (F CO2); stem methanol emission potential and (c) detrended
cambial growth rate and (d) detrended temperature-normalized stem
CO2 efflux; stem acetaldehyde emission potential and (e) detrended
cambial growth rate and (f) detrended temperature-normalized stem
CO2 efflux. Emissions measured from the stems of three different
Scots pines (Pinus sylvestris) in June–August 2013 (blue), 2015 (red)
and 2017 (grey). For presentation and Rmcorr calculation, values
scaled to 0–1 and detrended after normalization. Dashed lines
represent the linear regression between the variables separately for
each year, the solid line the Rmcorr general regression line over the
years. See Table 2 for the correlation coefficients and lags
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the GLMs, but the full models allowing for flexibility in the tempera-

ture effect still explained the emission patterns better.

Even with the important role of temperature in explaining the

emissions, temperature-normalized emission potentials of monoter-

penes, methanol and acetaldehyde varied considerably over the grow-

ing season. These variations are potentially responses to the

environmental or physiological variables that until now have remained

little studied.

4.2 | Effects of SWC and water potential on stem
VOC emission potential

The detrended day-to-day variation in monoterpene emission poten-

tial was strongly related to changes in SWC and xylem diameter or rel-

ative humidity with a lag of 1–2 days. These relations correspond to

results by Staudt et al. (2019), reporting highest emissions of α- and

β-pinene from maritime pine (Pinus pinaster Aiton) stems during humid

days. In contrast, Lusebrink et al. (2013) reported higher monoterpene

emissions from the stems of drying lodgepole × jack pine (Pinus con-

torta Douglas ex Loudon × Pinus banksiana Lamb.) stems compared to

well-watered controls. SWC surprisingly seemed to explain the mono-

terpene emission potential changes more directly compared to xylem

diameter. This discrepancy between SWC and xylem diameter effects

may be partly explained by the effects of osmotic regulation of living

cells in the stems, which affects xylem diameter (Lintunen

et al., 2017), at times deviating the diameter change signal from the

water potential in the stem.

The positive relations between water availability, water potential,

humidity and monoterpene emission potential may result from three

overlapping effects. Firstly, changes in water availability change turgor

pressures within the tree stem, which may enhance the diffusion of

monoterpenes from unspecific, temporary storage pools that have

been suggested to affect VOC emissions from leaves (Niinemets &

Reichstein, 2002; Noe, Ciccioli, Brancaleoni, Loreto, &

Niinemets, 2006). High water availability and water potential also

increase the resin pressure in pines (see Helseth & Brown, 1970;

Neher, 1993; Vité, 1961), although at a time scale of several days in

TABLE 3 The test of importance of the GLM model variables and interactions in explaining monoterpene, methanol and acetaldehyde
emissions from Scots pine (Pinus sylvestris) stems by removing the variable or interaction from the model and calculating the Akaike information
criterion (AIC) and R2 for the reduced model

Removed variable or interaction

Reduced model Full model

AIC R2 AIC R2

Monoterpenes (all variables included) 18,660 0.912 17,450 0.934

Tcuv 22,048 0.812 22,048 0.812

SWC 19,484 0.894 17,871 0.927

RH 18,765 0.910 17,608 0.931

F CO2 19,104 0.902 17,558 0.932

SWC, RH and F CO2 19,928 0.882 18,178 0.922

Methanol (all variables included) 5,104 0.894 3,912 0.945

Tcuv 5,914 0.837 5,914 0.837

RH 5,147 0.892 3,982 0.943

Tr 5,224 0.887 3,954 0.944

F CO2 5,436 0.874 3,942 0.944

RH, Tr and F CO2 5,537 0.866 4,097 0.939

Acetaldehyde (all variables included) −316 0.903 −695 0.920

Tcuv 1,670 0.752 1,670 0.752

SWC 109 0.881 −643 0.918

RH −281 0.901 −687 0.920

Tr −191 0.896 −655 0.918

SWC, RH and Tr 323 0.867 −561 0.914

Abbreviations: F CO2: temperature-normalized CO2 efflux from the stem, RH: relative humidity, SWC: soil water content mean over the A–C horizons,

Tcuv: temperature inside the chamber, Tr: transpiration.

Note: In the full model, a temperature interaction with 15-day periods is added; in the reduced model, all parameters have interaction only with year. The

model coefficients are presented in Tables S4–S10. Full models as used in R GLM:

EMmonoterpene = GLM(Emonoterpene � year + Tcuv + SWC + RH + F CO2 norm + Tcuv:year + SWC:year + RH:year + F CO2 norm: year).

EMmethanol = GLM(Emethanol � year + Tcuv + RH + Tr + F CO2 norm + Tcuv:year:period + RH:year + Tr:year + F CO2 norm: year).

EMacetaldehyde = GLM(Eacetaldehyde � year + Tcuv + SWC + RH + Tr + Tcuv:year:period + SWC:year + RH:year + Tr:year).
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boreal trees (Rissanen et al., 2019), which may increase the release of

monoterpenes from the resin ducts (Rissanen et al., 2016). Secondly,

high SWC and water potential in the stem probably support monoter-

pene production and emissions, as drought has been detected to

reduce monoterpene emissions from leaves (Bertin & Staudt, 1996;

Lüpke et al., 2017). Thirdly, as a more direct effect, changes in humid-

ity and water availability may cause changes in bark conductance, for

example, through wetting and swelling of bark tissues, as suggested

by Staudt et al. (2019). Humidity may also change leaf cuticular con-

ductance as suggested by Croteau (1977), Llusià and Peñuelas (1999)

and Tingey et al. (1991). Interestingly, higher monoterpene emissions

during high humidity have also been observed from freshly exuded

resin (Pio & Valente, 1998).

Unlike monoterpenes, acetaldehyde and methanol are not stored

in specific structures within the Scots pine stem, but as water-soluble

compounds, they can be transported dissolved in the xylem sap

(Fall, 2003; Folkers et al., 2008; Grabmer et al., 2006; Kreuzwieser

et al., 2000). Large acetaldehyde emissions are often measured in

flooded and anoxic conditions because acetaldehyde is oxidized from

ethanol that is a product of anaerobic metabolism (Fall, 2003;

Kreuzwieser et al., 2000, 2001; Kreuzwieser, Scheerer, &

Rennenberg, 1999). Both acetaldehyde and methanol are also

released during the decomposition of dead plant materials, which is

enhanced by moist soil conditions (Warneke et al., 1999). Released

methanol and acetaldehyde may be taken up into the roots and xylem

sap with soil water, and transported to the stem, contributing to the

measured stem emissions.

We found that even in non-flooded conditions, acetaldehyde

emissions from stems follow soil moisture dynamics with a lag of

2–4 days. The time lag corresponded to the time of water transport

from the base of the tree to the stem top, which was estimated based

on the mean transpiration rate. This suggests that even a moderate

increase in soil moisture triggered acetaldehyde production in the soil

or roots and, with a lag caused by the transport in the xylem sap,

increased acetaldehyde emissions from the stem. The increase in acet-

aldehyde production may be caused by local water logging of small

parts of the rooting system. The consistent correlations between the

acetaldehyde emission potential and the transpiration rate with an

approximately one-day lag give support to this hypothesis. Up to

1.5 days of discrepancies between the estimated water transport

times and the lags between SWC peaks and emissions probably result

from the fact that both estimates integrate 3 months. Controlled

experiments would be interesting for analysing the effect of transpira-

tion rate changes on the time lag of emissions. Coherently, shorter

lags between acetaldehyde emissions and soil moisture have been

detected in flooding experiments with potted seedlings, for example,

ethanol and acetaldehyde emissions increased approximately 24 hr

after flooding (Copolovici & Niinemets, 2010; Holzinger et al., 2000;

F IGURE 6 The fits of a generalized linear model (GLM) against measured values of (a–c) monoterpene, (d–f) methanol and (g–i) acetaldehyde
emissions from three Scots pine (Pinus sylvestris) stems at the SMEAR II station from June to August 2013 (a, d and g), 2015 (b, e and h) and 2017
(c, f and i). Note the different scales on the y-axis. Dashed lines represent a 1:1 line. See GLM parameters in Tables S5, S7 and S9
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Kreuzwieser et al., 2000), although the largest emissions may occur

later (Copolovici & Niinemets, 2010).

High water availability and high water content in the stem may

increase the local acetaldehyde emission potential also because of

slow oxygen diffusion (Sorz & Hietz, 2006) and subsequent anaerobic

conditions and ethanol production (Kimmerer & Stringer, 1988).

Indeed, we observed positive correlations between acetaldehyde

emission potential and xylem diameter—a proxy for the water content

and water potential in stem—with a lag of 2–7 days. However,

because xylem diameter and SWC also correlated with each other, we

could not separate the effects of transported and possibly locally pro-

duced acetaldehyde.

In addition to acetaldehyde emissions, we also observed peaks in

the methanol emission potential 2–5 days after anomalies of high

SWC, in agreement with methanol emission peaks detected in flooded

conditions (Copolovici & Niinemets, 2010; Holzinger et al., 2000). This

effect may be connected to increased methanol release from decaying

plant material (Warneke et al., 1999) and methanol transport from the

soil similarly as in the case of acetaldehyde. However, the relations

between methanol emission potential and SWC or transpiration were

not strong and varied between trees, suggesting that the transport of

methanol plays a minor role in explaining methanol emissions, as

reported by Folkers et al. (2008) for methanol leaf emissions.

4.3 | Effects of growth and stem respiration
on stem VOC emission potential

The role of growth in methanol emissions is well known at the leaf

level, and demethylation of pectin during cell wall development pro-

cesses is considered one of the main methanol sources in plant

metabolism (Galbally & Kirstine, 2002; Hüve et al., 2007). We

observed a clear effect of stem growth on the methanol emission

potentials in 2015 and a weaker effect in 2017, both with a lag of

approximately 1 week. This lag was probably connected to the offset

between the measured signal of stem radial growth and cell wall

development (Chan et al., 2016; Cuny et al., 2015; Cuny, Rathgeber,

Frank, Fonti, & Fournier, 2014). Such a clear connection between

methanol emission potential and stem growth in 2015 was surprising

because several sources and sinks affect stem methanol emissions.

Cell wall formation occurs in all growing tree parts, which means that

methanol emissions measured in one stem compartment partially orig-

inate from local production and partially from methanol that may have

been transported from all the lower tree parts or soil. Moreover, part

of the locally produced methanol may enter the xylem sap and be

transported away, and methanol may also be actively metabolized in

tree tissues (Jardine et al., 2017). Thus, the clear effect of stem growth

on the methanol emission potential suggests that local methanol pro-

duction is more important in relation to methanol transport or

metabolism.

The reasons for the lagged growth effect on monoterpene and

acetaldehyde emission potentials are less clear. Part of this effect may

be explained by their increased production during higher metabolic

activity in the stem. Acetaldehyde emissions may be increased by

rapid growth and high metabolic activity in the cambium because the

intense oxygen use may lead to anaerobic conditions and ethanol pro-

duction (Kimmerer & Stringer, 1988). Growth and subsequent forma-

tion of new resin ducts and production (Li, Wang, & Wu, 2009;

Schmidt et al., 2010) may increase monoterpene leakage from the

stem. Elongation of radial resin ducts occurs simultaneously with cam-

bial growth, potentially contributing to the increased monoterpene

emission potential during or slightly after the most rapid growth.

However, whether monoterpene production in the stem is limited to

the production of new resin remains unclear.

In conclusion, we found that emissions of monoterpenes, metha-

nol and acetaldehyde are strongly controlled by temperature, but their

temperature-normalized emission potentials are also affected by rela-

tively small changes in SWC and increased following stem cambial

growth. These results imply that in the short term, temperature is suf-

ficient for explaining and modelling stem emissions, but large varia-

tions in soil moisture and phenology should be taken into account if

aiming to quantify emissions over longer periods. To describe the

emissions with more accuracy, it is essential to gain more process-

based understanding of the emission dynamics and the time scales of

the various effects.
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