25 research outputs found
Rotating nonuniform black string solutions
We explore via linearized perturbation theory the Gregory-Laflamme
instability of rotating black strings with equal magnitude angular momenta. Our
results indicate that the Gregory-Laflamme instability persists up to
extremality for all even dimensions between six and fourteen. We construct
rotating nonuniform black strings with two equal magnitude angular momenta in
six dimensions. We see a first indication for the occurrence of a topology
changing transition, associated with such rotating nonuniform black strings.
Charged nonuniform black string configurations in heterotic string theory are
also constructed by employing a solution generation technique.Comment: 36 pages, 10 figures, final versio
New nonuniform black string solutions
We present nonuniform vacuum black strings in five and six spacetime
dimensions. The conserved charges and the action of these solutions are
computed by employing a quasilocal formalism. We find qualitative agreement of
the physical properties of nonuniform black strings in five and six dimensions.
Our results offer further evidence that the black hole and the black string
branches merge at a topology changing transition. We generate black string
solutions of the Einstein-Maxwell-dilaton theory by using a Harrison
transformation. We argue that the basic features of these solutions can be
derived from those of the vacuum black string configurations.Comment: 30 pages, 12 figures; v2: more details on numerical method,
references added; v3: references added, minor revisions, version accepted by
journa
Perturbative non uniform black strings in
We construct the non uniform AdS black string solution with a perturbation
theory in six dimensions, focusing on the backreacting second order correction.
The backreactions at second order give the first relevant corrections to the
thermodynamical quantities. Our results show that for configurations with
horizon radius and length in the extradimension small compared to the AdS
radius, the properties of the non uniform black string are similar to the
locally asymptotically flat case. For black strings with small horizon radial
coordinate but large length in the extradimension, the thermodynamical
properties of the solutions are affected by the AdS curvature.Comment: 10 pages, 2 figure
Harrison transformation and charged black objects in Kaluza-Klein theory
We generate charged black brane solutions in dimensions in a theory of
gravity coupled to a dilaton and an antisymmetric form, by using a
Harrison-type transformation. The seed vacuum solutions that we use correspond
to uplifted Kaluza-Klein black strings and black holes in -dimensions. A
generalization of the Marolf-Mann quasilocal formalism to the Kaluza-Klein
theory is also presented, the global charges of the black objects being
computed in this way. We argue that the thermodynamics of the charged solutions
can be derived from that of the vacuum configurations. Our results show that
all charged Kaluza-Klein solutions constructed by means of Harrison
transformations are thermodynamically unstable in a grand canonical ensemble.
The general formalism is applied to the case of nonuniform black strings and
caged black hole solutions in Einstein-Maxwell-dilaton gravity, whose
geometrical properties and thermodynamics are discussed. We argue that the
topology changing transition scenario, which was previously proposed in the
vacuum case, also holds in this case. Spinning generalizations of the charged
black strings are constructed in six dimensions in the slowly rotating limit.
We find that the gyromagnetic ratio of these solutions possesses a nontrivial
dependence on the nonuniformity parameter.Comment: 42 pages, 12 figure
Black Holes in Higher-Dimensional Gravity
These lectures review some of the recent progress in uncovering the phase
structure of black hole solutions in higher-dimensional vacuum Einstein
gravity. The two classes on which we focus are Kaluza-Klein black holes, i.e.
static solutions with an event horizon in asymptotically flat spaces with
compact directions, and stationary solutions with an event horizon in
asymptotically flat space. Highlights include the recently constructed
multi-black hole configurations on the cylinder and thin rotating black rings
in dimensions higher than five. The phase diagram that is emerging for each of
the two classes will be discussed, including an intriguing connection that
relates the phase structure of Kaluza-Klein black holes with that of
asymptotically flat rotating black holes.Comment: latex, 49 pages, 5 figures. Lectures to appear in the proceedings of
the Fourth Aegean Summer School, Mytiline, Lesvos, Greece, September 17-22,
200
Instabilities of Black Strings and Branes
We review recent progress on the instabilities of black strings and branes
both for pure Einstein gravity as well as supergravity theories which are
relevant for string theory. We focus mainly on Gregory-Laflamme instabilities.
In the first part of the review we provide a detailed discussion of the
classical gravitational instability of the neutral uniform black string in
higher dimensional gravity. The uniform black string is part of a larger phase
diagram of Kaluza-Klein black holes which will be discussed thoroughly. This
phase diagram exhibits many interesting features including new phases,
non-uniqueness and horizon-topology changing transitions. In the second part,
we turn to charged black branes in supergravity and show how the
Gregory-Laflamme instability of the neutral black string implies via a
boost/U-duality map similar instabilities for non- and near-extremal smeared
branes in string theory. We also comment on instabilities of D-brane bound
states. The connection between classical and thermodynamic stability, known as
the correlated stability conjecture, is also reviewed and illustrated with
examples. Finally, we examine the holographic implications of the
Gregory-Laflamme instability for a number of non-gravitational theories
including Yang-Mills theories and Little String Theory.Comment: 119 pages, 16 figures. Invited review for Classical and Quantum
Gravit
Shaping black holes with free fields
Starting from a metric Ansatz permitting a weak version of Birkhoff's theorem
we find static black hole solutions including matter in the form of free scalar
and p-form fields, with and without a cosmological constant \Lambda. Single
p-form matter fields permit multiple possibilities, including dyonic solutions,
self-dual instantons and metrics with Einstein-Kaelher horizons. The inclusion
of multiple p-forms on the other hand, arranged in a homogeneous fashion with
respect to the horizon geometry, permits the construction of higher dimensional
dyonic p-form black holes and four dimensional axionic black holes with flat
horizons, when \Lambda<0. It is found that axionic fields regularize black hole
solutions in the sense, for example, of permitting regular -- rather than
singular -- small mass Reissner-Nordstrom type black holes. Their cosmic string
and Vaidya versions are also obtained.Comment: 38 pages. v2: minor changes, published versio