7 research outputs found

    Many Facets of Strangeness Nuclear Physics with Stored Antiprotons

    Full text link
    Stored antiprotons beams in the GeV range represent a unparalleled factory for hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of strange hadronic systems with unprecedented precision. The behavior of hyperons and -- for the first time -- of antihyperons in nuclear systems can be studied under well controlled conditions. The exclusive production of ΛΛˉ\Lambda\bar{\Lambda} and ΣΛˉ\Sigma^-\bar{\Lambda} pairs in antiproton-nucleus interactions probe the neutron and proton distribution in the nuclear periphery and will help to sample the neutron skin. For the first time, high resolution γ\gamma-spectroscopy of doubly strange nuclei will be performed, thus complementing measurements of ground state decays of double hypernuclei with mesons beams at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ\Xi-atoms are feasible and even the production of Ω\Omega^--atoms will be within reach. The latter might open the door to the s|s|=3 world in strangeness nuclear physics, by the study of the hadronic Ω\Omega^--nucleus interaction and the very first measurement of a spectroscopic quadrupole moment of a baryon which will be a benchmark test for our understanding of hadron structure.Comment: Proceddings of HYP201

    Study of doubly strange systems using stored antiprotons

    Get PDF
    Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the P‾ANDA experiment at FAIR. For the first time, high resolution γ-spectroscopy of doubly strange ΛΛ-hypernuclei will be performed, thus complementing measurements of ground state decays of ΛΛ-hypernuclei at J-PARC or possible decays of particle unstable hypernuclei in heavy ion reactions. High resolution spectroscopy of multistrange Ξ−-atoms will be feasible and even the production of Ω−-atoms will be within reach. The latter might open the door to the |S|=3 world in strangeness nuclear physics, by the study of the hadronic Ω−-nucleus interaction. For the first time it will be possible to study the behavior of Ξ‾+ in nuclear systems under well controlled conditions

    Design of short low speed Göttingen type wind tunnel: CFD simulation

    No full text
    The paper is focused on design simulations by the means of commercial software for a low speed circuit wind tunnel with an open test section, recently built at the Department of Mechanical Engineering, Mechatronics and Materials Technology at THM University of Applied Sciences in Friedberg. The proposed wind tunnel has a test section with cross sectional area of 1 X 1 m2 and a length of 1.6 m. The maximum achievable speed is about 50 m/s with empty test section. The simulation had the target to propose and to verify various geometries - test chamber, tunnel contraction, diffuser etc. as well the tunnel corner including the vanes. In addition, the influence of the vanes number and their shape on the ventilator power needed and the flow velocity uniformity as well, have been subjects of the investigation. Also the ventilator type (rotational segment) impact on the flow pattern within the operational area has been scrutinized

    Design of short low speed Göttingen type wind tunnel: CFD simulation

    No full text
    The paper is focused on design simulations by the means of commercial software for a low speed circuit wind tunnel with an open test section, recently built at the Department of Mechanical Engineering, Mechatronics and Materials Technology at THM University of Applied Sciences in Friedberg. The proposed wind tunnel has a test section with cross sectional area of 1 X 1 m2 and a length of 1.6 m. The maximum achievable speed is about 50 m/s with empty test section. The simulation had the target to propose and to verify various geometries - test chamber, tunnel contraction, diffuser etc. as well the tunnel corner including the vanes. In addition, the influence of the vanes number and their shape on the ventilator power needed and the flow velocity uniformity as well, have been subjects of the investigation. Also the ventilator type (rotational segment) impact on the flow pattern within the operational area has been scrutinized

    Design of short low speed Göttingen type wind tunnel: CFD simulation

    No full text
    The paper is focused on design simulations by the means of commercial software for a low speed circuit wind tunnel with an open test section, recently built at the Department of Mechanical Engineering, Mechatronics and Materials Technology at THM University of Applied Sciences in Friedberg. The proposed wind tunnel has a test section with cross sectional area of 1 X 1 m2 and a length of 1.6 m. The maximum achievable speed is about 50 m/s with empty test section. The simulation had the target to propose and to verify various geometries - test chamber, tunnel contraction, diffuser etc. as well the tunnel corner including the vanes. In addition, the influence of the vanes number and their shape on the ventilator power needed and the flow velocity uniformity as well, have been subjects of the investigation. Also the ventilator type (rotational segment) impact on the flow pattern within the operational area has been scrutinized
    corecore