31 research outputs found

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Molecular Quantity Variations in Human-Mandibular-Bone Osteoid

    No full text
    Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone.Metabolic health: pathophysiological trajectories and therap

    Molecular Quantity Variations in Human-Mandibular-Bone Osteoid

    No full text
    Osteoid is a layer of new-formed bone that is deposited on the bone border during the process of new bone formation. This deposition process is crucial for bone tissue, and flaws in it can lead to bone diseases. Certain bone diseases, i.e. medication related osteonecrosis, are overexpressed in mandibular bone. Because mandibular bone presents different properties than other bone types, the data concerning osteoid formation in other bones are inapplicable for human-mandibular bone. Previously, the molecular distribution of other bone types has been presented using Fourier-transform infrared (FTIR) spectroscopy. However, the spatial distribution of molecular components of healthy-human-mandibular-bone osteoid in relation to histologic landmarks has not been previously presented and needs to be studied in order to understand diseases that occur human-mandibular bone. This study presents for the first time the variation in molecular distribution inside healthy-human-mandibular-bone osteoid by juxtaposing FTIR data with its corresponding histologic image obtained by autofluorescence imaging of its same bone section. During new bone formation, bone-forming cells produce an osteoid constituted primarily of type I collagen. It was observed that in mandibular bone, the collagen type I increases from the osteoblast line with the distance from the osteoblasts, indicating progressive accumulation of collagen during osteoid formation. Only later inside the collagen matrix, the osteoid starts to mineralize. When the mineralization starts, the collagen accumulation diminishes whereas the collagen maturation still continues. This chemical-apposition process in healthy mandibular bone will be used in future as a reference to understand different pathologic conditions that occur in human-mandibular bone

    Abnormalities in Beat-to-Beat Dynamics of Heart Rate Before the Spontaneous Onset of Life-Threatening Ventricular Tachyarrhythmias in Patients With Prior Myocardial Infarction

    No full text
    Background Beat-to-beat analysis of RR intervals can reveal patterns of heart-rate dynamics, which are not easily detected by summary measures of heart-rate variability. This study was designed to test the hypothesis that alterations in RR-interval dynamics occur before the spontaneous onset of ventricular tachyarrhythmias (VT). Methods and Results Ambulatory ECG recordings from 15 patients with prior myocardial infarction (MI) who had spontaneous episodes of sustained VT during the recording and VT inducible by programmed electrical stimulation (VT group) were analyzed by plotting each RR interval of a sinus beat as a function of the previous one (Poincaré plot). Poincaré plots were also generated for 30 post-MI patients who had no history of spontaneous VT events and no inducible VT (MI control subjects) and for 30 age-matched subjects without heart disease (normal control subjects). The MI control subjects and VT group were matched with respect to age and severity of underlying heart disease. All the healthy subjects and MI control subjects showed fan-shaped Poincaré plots characterized by an increased next-interval difference for long RR intervals relative to short ones. All the VT patients had abnormal plots: 9 with a complex pattern, 3 ball-shaped, and 3 torpedo-shaped. Quantitative analysis of the Poincaré plots showed the SD of the long-term RR-interval variability (SD2) to be smaller in all VT patients (52±14 ms; range, 31 to 75 ms) than in MI control subjects (110±24 ms; range, 78 to 179 ms, P &lt;.001) or the normal control subjects (123±38 ms, P &lt;.001), but the SD of the instantaneous beat-to-beat variability (SD1) did not differ between the groups. The complex plots were caused by periods of alternating sinus intervals, resulting in an increased SD1/SD2 ratio in the VT group. This ratio increased during the 1-hour period preceding the onset of 27 spontaneous VT episodes (0.43±0.20) compared with the 24-hour average ratio (0.33±0.19) ( P &lt;.01). Conclusions Reduced long-term RR-interval variability, associated with episodes of beat-to-beat sinus alternans, is a highly specific sign of a propensity for spontaneous onset of VT, suggesting that abnormal beat-to-beat heart-rate dynamics may reflect a transient electrical instability favoring the onset of VT in patients conditioned by structurally abnormal hearts. </jats:p

    Long-term changes in mandibular bone microchemical quality after radiation therapy and underlying systemic malignancy: A pilot study

    No full text
    © 2021 The Author(s).Radiation therapy (RT) is a treatment option for head and neck cancer (HNC), but 2% of RT patients may experience damage to the jawbone, resulting in osteoradionecrosis (ORN). The ORN can manifest years after RT exposure. Changes in the local microchemical bone quality prior to the clinical manifestation of ORN could play a key role in ORN pathogenesis. Chemical bone quality can be analyzed using Fourier transform infrared spectroscopy (FTIR), that is applied to examine the effects of cancer, chemotherapy, and RT on the quality of human mandibular bone. Cortical mandibular bone samples were harvested from dental implant beds of 23 individuals, i.e., patients with surgically and radiotherapeutically treated HNC (RT-HNC, n=7), surgically and radiochemotherapeutically treated HNC (CH-RT-HNC, n=3), only surgically treated HNC (SRG-HNC, n=4), and healthy controls (n=9). Infrared spectra were acquired from two representative regions of interest in cortical mandibular bone. Spectral parameters, i.e., mineral-to-matrix ratio (MM), carbonate-to-matrix ratio (CM), carbonate-to-phosphate ratio (CP), collagen maturity (cross-linking), crystallinity, acid phosphate substitution (APS), and advanced glycation end products (AGEs), were analyzed for each sample. Amide I region of the CH-RT-HNC group differed from the control group in cluster analysis (p=0.02). Apart from a minor variation trend in collagen maturity (p=0.07), there were no other significant differences between the groups. Thus, the effect of radiochemotherapy on mandibular bone composition should be further investigated. In future trials, this study design is potential when the effects of the cancer burden and different HNC treatment modalities on jawbone composition are studied, in order to reveal ORN pathogenesis
    corecore