1,126 research outputs found

    A Phenomenological Description of the Non-Fermi-Liquid Phase of MnSi

    Full text link
    In order to understand the non-Fermi-liquid behavior of MnSi under pressure we propose a scenario on the basis of the multispiral state of the magnetic moment. This state can describe the recent critical experiment of the Bragg sphere in the neutron scattering which is the key ingredient of the non-Fermi-liquid behavior.Comment: 3 page

    Limits on Phase Separation for Two-Dimensional Strongly Correlated Electrons

    Full text link
    From calculations of the high temperature series for the free energy of the two-dimensional t-J model we construct series for ratios of the free energy per hole. The ratios can be extrapolated very accurately to low temperatures and used to investigate phase separation. Our results confirm that phase separation occurs only for J/t greater than 1.2. Also, the phase transition into the phase separated state has Tc of approximately 0.25J for large J/t.Comment: 4 pages, 6 figure

    Discovery of Large-Scale Gravitational Infall in a Massive Protostellar Cluster

    Full text link
    We report Mopra (ATNF), Anglo-Australian Telescope, and Atacama Submillimeter Telescope Experiment observations of a molecular clump in Carina, BYF73 = G286.21+0.17, which give evidence of large-scale gravitational infall in the dense gas. From the millimetre and far-infrared data, the clump has mass ~ 2 x 10^4 Msun, luminosity ~ 2-3 x 10^4 Lsun, and diameter ~ 0.9 pc. From radiative transfer modelling, we derive a mass infall rate ~ 3.4 x 10^-2 Msun yr-1. If confirmed, this rate for gravitational infall in a molecular core or clump may be the highest yet seen. The near-infrared K-band imaging shows an adjacent compact HII region and IR cluster surrounded by a shell-like photodissociation region showing H2 emission. At the molecular infall peak, the K imaging also reveals a deeply embedded group of stars with associated H2 emission. The combination of these features is very unusual and we suggest they indicate the ongoing formation of a massive star cluster. We discuss the implications of these data for competing theories of massive star formation.Comment: v1: 23 pages single-column, 6 figures (some multipart) at end v2: 14 pages 2-column, 6 figures interspersed v3: edited to referee's comments with new sections and new figures; accepted to MNRAS, 20 pages 2-column, 8 figures (some multipart) intersperse

    Anomalous f-electron Hall Effect in the Heavy-Fermion System CeTIn5_{5} (T = Co, Ir, or Rh)

    Full text link
    The in-plane Hall coefficient RH(T)R_{H}(T) of CeRhIn5_{5}, CeIrIn5_{5}, and CeCoIn5_{5} and their respective non-magnetic lanthanum analogs are reported in fields to 90 kOe and at temperatures from 2 K to 325 K. RH(T)R_{H}(T) is negative, field-independent, and dominated by skew-scattering above ∌\sim 50 K in the Ce compounds. RH(H→0)R_{H}(H \to 0) becomes increasingly negative below 50 K and varies with temperature in a manner that is inconsistent with skew scattering. Field-dependent measurements show that the low-T anomaly is strongly suppressed when the applied field is increased to 90 kOe. Measurements on LaRhIn5_{5}, LaIrIn5_{5}, and LaCoIn5_{5} indicate that the same anomalous temperature dependence is present in the Hall coefficient of these non-magnetic analogs, albeit with a reduced amplitude and no field dependence. Hall angle (ΞH\theta_{H}) measurements find that the ratio ρxx/ρxy=cot⁥(ΞH)\rho_{xx}/\rho_{xy}=\cot(\theta_{H}) varies as T2T^{2} below 20 K for all three Ce-115 compounds. The Hall angle of the La-115 compounds follow this T-dependence as well. These data suggest that the electronic-structure contribution dominates the Hall effect in the 115 compounds, with ff-electron and Kondo interactions acting to magnify the influence of the underlying complex band structure. This is in stark contrast to the situation in most 4f4f and 5f5f heavy-fermion compounds where the normal carrier contribution to the Hall effect provides only a small, T-independent background to RH.R_{H}.Comment: 23 pages and 8 figure

    Triton binding energy calculated from the SU_6 quark-model nucleon-nucleon interaction

    Get PDF
    Properties of the three-nucleon bound state are examined in the Faddeev formalism, in which the quark-model nucleon-nucleon interaction is explicitly incorporated to calculate the off-shell T-matrix. The most recent version, fss2, of the Kyoto-Niigata quark-model potential yields the ground-state energy ^3H=-8.514 MeV in the 34 channel calculation, when the np interaction is used for the nucleon-nucleon interaction. The charge root mean square radii of the ^3H and ^3He are 1.72 fm and 1.90 fm, respectively, including the finite size correction of the nucleons. These values are the closest to the experiments among many results obtained by detailed Faddeev calculations employing modern realistic nucleon-nucleon interaction models.Comment: 10 pages, no figure

    An algorithm to obtain global solutions of the double confluent Heun equation

    Full text link
    A procedure is proposed to construct solutions of the double confluent Heun equation with a determinate behaviour at the singular points. The connection factors are expressed as quotients of Wronskians of the involved solutions. Asymptotic expansions are used in the computation of those Wronskians. The feasibility of the method is shown in an example, namely, the Schroedinger equation with a quasi-exactly-solvable potential

    Semiclassical Distorted Wave Model Analysis of the (π−,K+)(\pi^-,K^+) ÎŁ\Sigma Formation Inclusive Spectrum

    Full text link
    (π−,K+)(\pi^-,K^+) hyperon production inclusive spectra with pπ=1.2p_\pi =1.2 GeV/c measured at KEK on 12^{12}C and 28^{28}Si are analyzed by the semiclassical distorted wave model. Single-particle wave functions of the target nucleus are treated using Wigner transformation. This method is able to account for the energy and angular dependences of the elementary process in nuclear medium without introducing the factorization approximation frequently employed. Calculations of the (π+,K+)(\pi^+,K^+) Λ\Lambda formation process, for which there is no free parameter since the Λ\Lambda s.p. potential is known, demonstrate that the present model is useful to describe inclusive spectra. It is shown that in order to account for the experimental data of the Σ−\Sigma^- formation spectra a repulsive ÎŁ\Sigma-nucleus potential is necessary whose magnitude is not so strong as around 100 MeV previously suggested.Comment: 12 pages, 10 figures, accepted in Phys. Rev.

    Hall Coefficient in an Interacting Electron Gas

    Full text link
    The Hall conductivity in a weak homogeneous magnetic field, ωcτâ‰Ș1\omega_{c}\tau \ll 1, is calculated. We have shown that to leading order in 1/Ï”Fτ1/\epsilon_{F}\tau the Hall coefficient RHR_{H} is not renormalized by the electron-electron interaction. Our result explains the experimentally observed stability of the Hall coefficient in a dilute electron gas not too close to the metal-insulator transition. We avoid the currently used procedure that introduces an artificial spatial modulation of the magnetic field. The problem of the Hall effect is reformulated in a way such that the magnetic flux associated with the scattering process becomes the central element of the calculation.Comment: 23 pages, 15 figure
    • 

    corecore