

Relationship between Strain Effect and Martensitic Transformation in Multifilamentary Nb3Sn Wires

著者	渡辺和雄
journal or	Journal of Applied Physics
publication title	
volume	75
number	11
page range	7404-7407
year	1994
URL	http://hdl.handle.net/10097/47256

doi: 10.1063/1.357033

Relationship between strain effect and martensitic transformation in multifilamentary Nb₃Sn wires

K. Watanabe, K. Katagiri,^{a)} K. Noto,^{a)} S. Awaji, K. Goto,^{b)} N. Sadakata,^{b)} T. Saito,^{b)} and O. Kohno^{b)}

Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980, Japan

(Received 21 October 1993; accepted for publication 17 February 1994)

For bronze-processed multifilamentary pure Nb₃Sn and 2.3 at. % Ti added (Nb,Ti)₃Sn wires, which were prepared under the condition of the same wire parameters such as the filament size, filament number, and bronze ratio, the strain effects on the critical current density were measured. The large difference of the residual strain between Nb₃Sn and (Nb,Ti)₃Sn wires was obtained. It was found that the martensitic transformation for Nb₃Sn compound largely contributes to the residual strain through the variation of the elastic modulus in bronze-processed multifilamentary Nb₃Sn wires. It was verified that the ternary element addition of Ti surely suppresses the martensitic transformation in the bronze processed multifilamentary Nb₃Sn wire.

I. INTRODUCTION

In multifilamentary Nb₃Sn superconducting wires, many efforts for improvement of the critical current density J_c in high magnetic fields up to 20 T have been made. The flux pinning mechanism which is responsible for J_c is well known to be due to grain boundaries in Nb₃Sn.¹ Since the J_c value in fields largely depends on the characteristics of pinning centers, it is of importance to control the microstructure such as stoichiometric composition or fine grain boundaries. In addition, the upper critical field B_{c2} principally affects the performance of J_c in high fields. Therefore, the effects of ternary element addition such as Ti or Ta in the bronzeprocessed Nb₃Sn wires have been investigated, in order to improve pinning centers and increase B_{c2}^{2-4} Up to now, Ti-added Nb₃Sn superconducting wires successfully contribute to realization of high-field superconducting magnets over 20 T.^{5,6}

On the other hand, the martensitic transformation from a cubic to a tetragonal phase for the A15-Nb₃Sn compound has been widely identified at low temperatures.⁷⁻¹⁰ When the martensitic transformation occurs at low temperature, the B_{c2} value at 4.2 K for tetragonal Nb₃Sn is by about 5 T lower than that for cubic one.¹¹ This lower B_{c2} value is the inferior point for the improvement of the high-field J_c characteristics. The transition temperature of the martensitic transformation sensitively depends on the specimen quality. The transformation can be suppressed by deviation from the stoichiometry⁹ or by the ternary element addition¹² such as Ti or Ta. From the standpoint mentioned above, a detailed investigation on the martensitic transformation in Nb₃Sn wires using an internal friction technique was reported by Kumakura et al.¹³ The point of interest in their report is that the suppression of the martensitic transformation by the ternary element additions is not a dominant factor in the improvement of B_{c2} . Their results suggest that the improvement of B_{c2} is mainly attributed to the increase of the resistivity ρ_n which is related to the temperature slope of B_{c2} . In the practical multifilamentary Nb₃Sn wires, it is very difficult to directly measure the resistivity of Nb₃Sn and the martensitic transformation temperature of Nb₃Sn by a resistive method because of a Cu stabilizer and a bronze matrix. Therefore, the subject on the effect of ternary element additions in Nb₃Sn still remains unsettled for the martensitic transformation.

Moreover, there exists a strain effect on the superconducting properties such as T_c , B_{c2} , and J_c in A15 compound. Especially, the large strain effect in Nb₃Sn wires¹⁴ attracts special attention as a crucial issue for practical use. The martensitic transformation is also sensitive to such strain, and the uniaxial stress for multifilamentary Nb₃Sn wires induces a cubic-to-tetragonal phase transition.¹⁵ Thereby, in the case of the bronze-processed multifilamentary Nb₃Sn wires accompanying a large residual strain, the influence due to the martensitic transformation for the strain effect on J_c must be made clear. This is because the effect of the ternary element addition for the B_{c2} enhancement is complicatedly changed by both phenomena of the martensitic transformation and the strain effect.

The aim of the present work is to clarify the relationship between the martensitic transformation and the strain effect in bronze-processed multifilamentary Nb₃Sn superconducting wires. The strain effects on J_c for pure Nb₃Sn and Tiadded (Nb,Ti)₃Sn wires were studied in detail. The residual strains obtained for Nb₃Sn and (Nb,Ti)₃Sn wires are elucidated, and the relationship between the martensitic transformation and the strain effect is discussed.

II. EXPERIMENT

Two kinds of typical bronze-processed multifilamentary Nb_3Sn superconducting wires were prepared for comparison. Table I lists the characteristics of the multifilamentary wires fabricated by a 13 wt. % Sn bronze route. Pure Nb_3Sn and Ti-added (Nb,Ti)₃Sn wires consist of the same structural configuration such as the filament size, filament number, Ta barrier, and Cu ratio with each other, except for a ternary ele-

0021-8979/94/75(11)/7404/4/\$6.00

© 1994 American Institute of Physics

^{a)}Also with: Faculty of Engineering, Iwate University, 4-3-1 Ueda, Morioka 020, Japan.

^{b)}Also with: Materials Research Laboratory, Fujikura Ltd., 1-5-1 Kiba, Koto-ku, Tokyo 135, Japan.

TABLE I. Characteristics of bronze-processed multifilamentary Nb_3Sn and $(Nb,Ti)_3Sn$ superconducting wires.

	Nb ₃ Sn	(Nb,Ti) ₃ Sn
Wire diameter (mm)	0.8	4
Bronze	Cu-13 wt % Sn	
Core	Nb	Nb-1.2 wt % T
Filament diameter (μ m)	3.4	←
Number of filaments	5587	~~~
Bronze/core ratio	4.1 -	· • • • • • • • • • • • • • • • • • • •
Cu/non-Cu ratio	0.78	←
Barrier	Ta	~~~

14 A.

ment addition of Ti in the $(Nb,Ti)_3Sn$ wire. The quantity of Ti addition into a Nb core is 1.2 wt. % Ti, which corresponds to 2.3 at. % Ti. The heat treatments were carried out at 750 °C for 192 h in the Nb₃Sn wire and at 670 °C for 192 h in the $(Nb,Ti)_3Sn$ wire, respectively.

Figure 1 shows a cross-sectional view of the multifilamentary wires with the same wire structure, and Fig. 2(a) exhibits its magnification. There is no problem to form Nb₃Sn compound with the Ta barrier. One notes that Nb cores fully reacted and entirely changed into Nb₃Sn or (Nb,Ti)₃Sn compound. There remains no unreacted Nb core in the A15 compound. For comparison, a (Nb,Ti)₃Sn wire with unreacted Nb cores which was heat treated at 670 °C for 120 h is presented in Fig. 2(b).

In order to evaluate the stress-strain effect on J_c , a measuring apparatus equipped with a 15 T superconducting magnet was used.¹⁶ Magnetic fields were applied perpendicular to the transport current. Short straight samples about 40 mm in length and with a gauge length of 17.5 mm were measured. Both ends of the wire sample were soldered to a Cu grip of a current terminal. The axial load of less than 50 kg and the transport current of less than 200 A were applicable. The strain measurement was detected by use of an extensometer, and the accuracy of the strain measurement was within

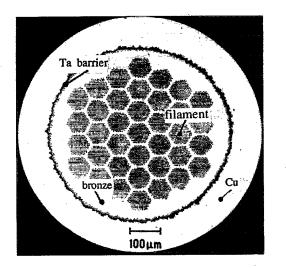
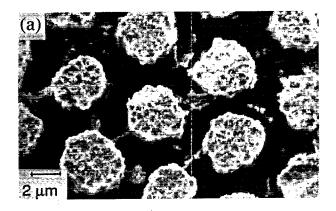



FIG. 1. Cross-sectional view in the bronze-route multifilamentary superconducting Nb_3Sn or $(Nb_7Ti)_3Sn$ wire.

to 2 µm

FIG. 2. Scanning electron microscope (SEM) photographs in the bronzeroute multifilamentary (Nb,Ti)₃Sn superconducting wires heat treated at 670 °C (a) for 192 h and (b) for 120 h.

0.05%. The critical current I_c was determined by a 1 μ V/cm criterion between voltage taps soldered at a distance of about 5 mm.

III. RESULTS AND DISCUSSION

The J_c properties in fields up to 23 T for Nb₃Sn and (Nb,Ti)₃Sn wires are shown in Fig. 3. The J_c values of about 200 A/mm² in a cross-sectional area excloding the Cu stabilizer is obtained at 14 T for the Nb₃Sn wire and at 17 T for the (Nb,Ti)₃Sn wire, respectively. J_c for the Nb₃Sn wire is slightly lower than that for ordinary bronze-processed multifilamentary Nb₃Sn wires, while J_c for the (Nb,Ti)₃Sn wire is comparable with the value reported so far.¹⁷ The irreversibility field B^* at which J_c goes to zero¹⁸ is measured to be about 21.8 T at 4.2 K for the Nb₃Sn wire and also is lower in comparison with ~23 T for the typical Nb₃Sn compound. This degradation of the superconducting properties for the Nb₃Sn wire comes from a large strain effect, which is discussed below.

Figures 4(a) and 4(b) show the strain dependence of I_c for Nb₃Sn and (Nb,Ti)₃Sn wires, respectively. The measurements were performed at 14 T and 4.2 K. I_c measured without applied axial strain corresponds to that shown in Fig. 3. The (Nb,Ti)₃Sn wire exhibits the weaker strain dependence

J. Appl. Phys., Vol. 75, No. 11, 1 June 1994

Downloaded 11 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

FIG. 3. Critical current density as a function of magnetic field in the bronzeroute multifilamentary Nb₃Sn and (Nb,Ti)₃Sn wires.

of J_c than the Nb₃Sn wire, owing to the higher B_{c2} value in the (Nb,Ti)₃Sn wire. The peak of I_c as a function of axial strain represents a strain-free state in bronze-processed multifilamentary Nb₃Sn wires. The value of the residual strain was obtained to be 0.44% for the Nb₃Sn wire and 0.35% for the (Nb,Ti)₃Sn wire. Note that the residual strain for the

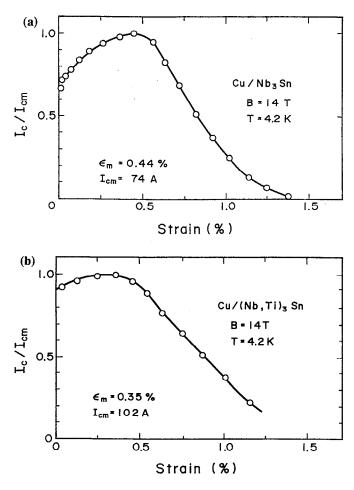


FIG. 4. Strain effect on the critical current in the bronze-route multifilamentary wires of (a) Nb₃Sn and (b) (Nb,Ti)₃Sn.

7406 J. Appl. Phys., Vol. 75, No. 11, 1 June 1994

TABLE II. Volume fractions (in %) for each component in Nb_3Sn composites.

	Nb ₃ Sn	(Nb,Ti) ₃ Sn
V _{Cu}	43.8	<i>←</i>
V _{Cu} V _{BZ}	41.3	(
V _{Nb}	0	←
V _{Nb3} Sn V _{Ta}	10.1	←
V _{Ta}	4.84	(

Nb₃Sn wire is larger than that for the (Nb,Ti)₃Sn wire. The large residual strain for the Nb₃Sn wire is consistent with slightly lower J_c and B^* values.

Now a great interest was focused on the difference between the residual strains obtained for Nb₃Sn and (Nb,Ti)₃Sn wires. In order to calculate the residual strain in bronzeprocessed multifilamentary Nb₃Sn superconducting wires, we follow a simple analytical method presented by Easton et al.¹⁹ The model is based on the volume fraction of each component treated individually in multifilamentary composites. It is considered that the Cu stabilizer and bronze matrix have much larger thermal contraction than the Nb₃Sn compound, Nb core, and Ta barrier from reaction temperature to 4.2 K. Since the thermal-expansion coefficients of Nb₃Sn, Nb, and Ta are nearly equal, the filament system combined with the Nb₃Sn compound, Nb core, and Ta barrier can be regarded as undergoing the compressive stress. Therefore, the force balance in the absence of external applied stress is described as follows:

$$-\sigma_f = (V_{\rm Cu}\sigma_{\rm Cu} + V_{\rm BZ}\sigma_{\rm BZ})/V_f, \qquad (1)$$

where V_f , V_{Cu} , and V_{BZ} and σ_f , σ_{Cu} , and σ_{BZ} are the volume fraction and the residual stress of the filament system, Cu stabilizer, and bronze matrix, respectively. In addition, the combined modulus E_f in the filament system with the similar values of the thermal-expansion coefficient is given by

$$E_f = (V_{\rm Nb}E_{\rm Nb} + V_{\rm Nb_3Sn}E_{\rm Nb_3Sn} + V_{\rm Ta}E_{\rm Ta})/V_f, \qquad (2)$$

where $V_{\rm Nb}$, $V_{\rm Nb_3Sn}$, and $V_{\rm Ta}$ and $E_{\rm Nb}$, $E_{\rm Nb_3Sn}$, and $E_{\rm Ta}$ are the volume fraction and the elastic modulus of the Nb core, Nb₃Sn compound, and Ta barrier, respectively. Then the residual strain ϵ_r in the filament system of Nb, Nb₃Sn, and Ta is derived from Hooke's law,

$$\varepsilon_r = \sigma_f / E_f. \tag{3}$$

To perform the analytical method for the prediction of the residual strain in bronze processed multifilamentary Nb₃Sn wires, the volume fractions of each component were obtained from the conductor structure shown in Table I and Fig. 1. Table II lists the volume percentages of each component in Nb₃Sn and (Nb,Ti)₃Sn wires. Since there is no unreacted Nb core in both wire samples as already mentioned, the volume faction of Nb is $V_{\rm Nb}=0$. Therefore, the volume fraction of the filament system ($V_{\rm Nb_3Sn} + V_{\rm Ta}$) is $V_f = 14.9\%$ in both wires.

It is estimated that the bronze matrix of Cu-13 wt % Sn before reaction changes into the bronze of Cu-4.3 wt % Sn

Watanabe et al.

Downloaded 11 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp

TABLE III. Elastic modulus for various Nb₃Sn.

Elastic modulus E (GPa)	Ref.	
165	19, 20	
51	21	
109	21	
	165 51	

after reaction assuming Nb entirely converted to Nb_3Sn in the wires with the bronze ratio of 4.1. According to the useful relationship¹⁹ in the form of

$$\sigma_{\rm BZ} = 18.37 \times (\text{wt \% Sn in bronze}) + 82.7 \text{ MPa},$$
 (4)

the yield stress of the bronze matrix in both Nb₃Sn and (Nb,Ti)₃Sn wires is calculated to be $\sigma_{BZ}=159$ MPa. Further, assuming the typical value of $\sigma_{Cu}=20.7$ MPa in the plastic behavior, $\sigma_f=501$ MPa is obtained by use of Eq. (1).

Here we focus on the value of the elastic modulus for Nb₃Sn compound. Various values of E_{Nb_3Sn} have been reported in single crystals^{19,20} and bronze route wires.²¹ The important point is that the modulus E in bronze-processed Nb₃Sn wires, which was reported by Bussiere et al.,²¹ is extremely low due to the martensitic transformation. It is noteworthy that there exists a large difference of E between Nb₃Sn and (Nb,Ti)₃Sn wires. Comparisons of the values of Eare made among the Nb₃Sn single crystal, Nb₃Sn wire, and (Nb,Ti)₃Sn wire as indicated in Table III. Using the value of $E_{\text{Ta}} = 186 \text{ GPa}$,²¹ $E_f = 172$, 94.6, and 134 GPa are obtained for $E_{\text{Nb},\text{Sn}} = 165$, 51, and 109 GPa from Eq. (2). Then the prediction of the residual strain in bronze-processed multifilamentary Nb₃Sn wires is exhibited using Hooke's law of Eq. (3). As a result, $\epsilon_r = 0.29\%$, 0.53%, and 0.37% are estimated for $E_{\text{Nb}_3\text{Sn}} = 165$, 51, and 109 GPa.

Utilizing analytically derived residual strains, one can compare these values with experimentally measured residual strains for bronze-processed multifilamentary Nb₃Sn and (Nb,Ti)₃Sn wires. It is found that the value of $\epsilon_r = 0.35\%$ measured for the Ti-added (Nb,Ti)₃Sn wire is in good agreement with the prediction of $\epsilon_r = 0.37\%$ in the case of the elastic modulus with no martensitic transformation. On the other hand, the experimental result of $\epsilon_r = 0.44\%$ for the pure Nb₃Sn wire is clearly different from $\epsilon_r = 0.29\%$ for Nb₃Sn with E = 165 GPa, and is reasonably close to the calculated residual strain of $\epsilon_r = 0.53\%$ for the Nb₃Sn wire with the low E value due to the martensitic transformation. Therefore, in the compressive residual strain state the bronze-processed Nb₃Sn wire surely exhibits the martensitic transformation. It is found that the martensitic tetragonal phase transformation is effectively suppressed in the bronzeprocessed Ti-added (Nb,Ti)₃Sn wire.¹² The point is that the martensitic transformation is detectable by the comparison

between the analytical result and the direct measurement of the strain effect on J_c for the bronze-processed Nb₃Sn wires with the strain-sensitive character.

IV. CONCLUSION

The clearly different residual strains were obtained from the strain effect on the critical current density J_c for bronzeprocessed multifilamentary pure Nb₃Sn and 2.3 at. % Tiadded (Nb,Ti)₃Sn wires, which were prepared under the condition of the same wire parameters such as the filament size, filament number, and bronze ratio. It was found that the martensitic transformation for the Nb₃Sn compound largely contributes to the residual strain through the variation of the elastic modulus in bronze processed multifilamentary Nb₃Sn wires. The martensitic transformation is detectable by the strain effect on J_c for the strain-sensitive bronze-route Nb₃Sn composites.

ACKNOWLEDGMENT

The authors would like to thank Professor T. Fukase, Director of High Field Laboratory for Superconducting Materials, IMR, Tohoku University for his important discussion on the martensitic transformation.

- ¹R. E. Enstrom and J. R. Appert, J. Appl. Phys. 43, 1915 (1972).
- ²J. D. Livingston, IEEE Trans. Magn. MAG-14, 611 (1978).
- ³K. Tachikawa, T. Asano, and T. Takeuchi, Appl. Phys. Lett. **39**, 766 (1981).
- ⁴M. Suenaga, S. Okuda, R. Sabatini, K. Itoh, and T. S. Luhman, Adv. Cryo. Eng. **28**, 379 (1982).
- ⁵P. Turowski and Th. Schneider, Physica B 155, 87 (1989).
- ⁶T. Kiyoshi, K. Inoue, K. Itoh, T. Takeuchi, H. Wada, H. Maeda, K. Kuroishi, F. Suzuki, T. Takizawa, N. Tada, and H. Mori, IEEE Trans. Appl. Supercond. 3, 78 (1993).
- ⁷R. Mailfert, B. W. Batterman, and J. J. Hanak, Phys. Lett. A 24, 315 (1967).
- ⁸L. J. Vieland, R. W. Cohen, and W. Rehwald, Phys. Rev. Lett. 26, 373 (1971).
- ⁹H. Devantary, J. L. Jorda, M. Decroux, J. Muller, and R. Flükiger, J. Mater. Sci. 16, 2145 (1981).
- ¹⁰N. Toyota, T. Kobayashi, M. Kataoka, H. F. J. Watanabe, T. Fukase, Y. Muto, and F. Takei, J. Phys. Soc. Jpn. 57, 3089 (1988).
- ¹¹S. Foner and E. J. McNiff, Jr., Solid State Commun. 39, 959 (1981).
- ¹²D. O. Welch, Adv. Cryo. Eng. 30, 671 (1984).
- ¹³H. Kumakura, K. Tachikawa, C. L. Snead, Jr., and M. Suenaga, J. Jpn. Inst. Met. 49, 792 (1985) (in Japanese).
- ¹⁴J. W. Ekin, Cryogenics 20, 611 (1980).
- ¹⁵ R. Flükiger, W. Schauer, W. Specking, L. Oddi, L. Pintschovius, W. Müllner, and B. Lachal, Adv. Cryo. Eng. 28, 361 (1982).
- ¹⁶K. Katagiri, T. Okada, K. Noto, A. Nagata, and K. Watanabe, Sci. Rep. RITU A 37, 92 (1992).
- ¹⁷ K. Watanabe, K. Noto, and Y. Muto, IEEE Trans. Magn. 27, 1759 (1991).
- ¹⁸ K. Watanabe, Jpn. J. Appl. Phys. **31**, L1586 (1992),
- ¹⁹D. S. Easton, D. M. Kroeger, W. Specking, and C. C. Koch, J. Appl. Phys. 51, 2748 (1980).
- ²⁰ W. Rehwald, M. Rayl, R. W. Cohen, and G. D. Cody, Phys. Rev. B 6, 363 (1972).
- ²¹J. F. Bussiere, B. Faucher, C. L. Snead, Jr., and M. Suenaga, Adv. Cryo. Eng. 28, 453 (1982).

Downloaded 11 Mar 2010 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp