110 research outputs found

    Evolving, dynamic clustering of spatio/spectro-temporal data in 3D spiking neural network models and a case study on EEG data

    Get PDF
    Clustering is a fundamental data processing technique. While clustering of static (vector based) data and of fixed window size time series have been well explored, dynamic clustering of spatiotemporal data has been little researched if at all. Especially when patterns of changes (events) in the data across space and time have to be captured and understood. The paper presents novel methods for clustering of spatiotemporal data using the NeuCube spiking neural network (SNN) architecture. Clusters of spatiotemporal data were created and modified on-line in a continuous, incremental way, where spatiotemporal relationships of changes in variables are incrementally learned in a 3D SNN model and the model connectivity and spiking activity are incrementally clustered. Two clustering methods were proposed for SNN, one performed during unsupervised and one—during supervised learning models. Before submitted to the models, the data is encoded as spike trains, a spike representing a change in the variable value (an event). During the unsupervised learning, the cluster centres were predefined by the spatial locations of the input data variables in a 3D SNN model. Then clusters are evolving during the learning, i.e. they are adapted continuously over time reflecting the dynamics of the changes in the data. In the supervised learning, clusters represent the dynamic sequence of neuron spiking activities in a trained SNN model, specific for a particular class of data or for an individual instance. We illustrate the proposed clustering method on a real case study of spatiotemporal EEG data, recorded from three groups of subjects during a cognitive task. The clusters were referred back to the brain data for a better understanding of the data and the processes that generated it. The cluster analysis allowed to discover and understand differences on temporal sequences and spatial involvement of brain regions in response to a cognitive task

    Inflammatory expression profiles in monocyte-to-macrophage differentiation in patients with systemic lupus erythematosus and relationship with atherosclerosis

    Get PDF
    Introduction: Our objectives were to examine mononuclear cell gene expression profiles in patients with systemic lupus erythematosus (SLE) and healthy controls and to compare subsets with and without atherosclerosis to determine which genes' expression is related to atherosclerosis in SLE.Methods: Monocytes were obtained from 20 patients with SLE and 16 healthy controls and were in vitro-differentiated into macrophages. Subjects also underwent laboratory and imaging studies to evaluate for subclinical atherosclerosis. Whole-genome RNA expression microarray was performed, and gene expression was examined.Results: Gene expression profiling was used to identify gene signatures that differentiated patients from controls and individuals with and without atherosclerosis. In monocytes, 9 out of 20 patients with SLE had an interferon-inducible signature compared with 2 out of 16 controls. By looking at gene expression during monocyte-to-macrophage differentiation, we identified pathways which were differentially regulated between SLE and controls and identified signatures based on relevant intracellular signaling molecules which could differentiate SLE patients with atherosclerosis from controls. Among patients with SLE, we used a previously defined 344-gene atherosclerosis signature in monocyte-to-macrophage differentiation to identify patient subgroups with and without atherosclerosis. Interestingly, this signature further classified patients on the basis of the presence of SLE disease activity and cardiovascular risk factors.Conclusions: Many genes were differentially regulated during monocyte-to-macrophage differentiation in SLE patients compared with controls. The expression of these genes in mononuclear cells is important in the pathogenesis of SLE, and molecular profiling using gene expression can help stratify SLE patients who may be at risk for development of atherosclerosis

    Highlights from ASCO-GI 2021 from EORTC Gastrointestinal tract cancer group.

    Get PDF
    Last year the field of immunotherapy was finally introduced to GI oncology, with several changes in clinical practice such as advanced hepatocellular carcinoma or metastatic colorectal MSI-H. At the virtual ASCO-GI symposium 2021, several large trial results have been reported, some leading to a change of practice. Furthermore, during ASCO-GI 2021, results from early phase trials have been presented, some with potential important implications for future treatments. We provide here an overview of these important results and their integration into routine clinical practice

    Optimized low-dose combinatorial drug treatment boosts selectivity and efficacy of colorectal carcinoma treatment.

    Get PDF
    The current standard of care for colorectal cancer (CRC) is a combination of chemotherapeutics, often supplemented with targeted biological drugs. An urgent need exists for improved drug efficacy and minimized side effects, especially at late-stage disease. We employed the phenotypically driven therapeutically guided multidrug optimization (TGMO) technology to identify optimized drug combinations (ODCs) in CRC. We identified low-dose synergistic and selective ODCs for a panel of six human CRC cell lines also active in heterotypic 3D co-culture models. Transcriptome sequencing and phosphoproteome analyses showed that the mechanisms of action of these ODCs converged toward MAP kinase signaling and cell cycle inhibition. Two cell-specific ODCs were translated to in vivo mouse models. The ODCs reduced tumor growth by ~80%, outperforming standard chemotherapy (FOLFOX). No toxicity was observed for the ODCs, while significant side effects were induced in the group treated with FOLFOX therapy. Identified ODCs demonstrated significantly enhanced bioavailability of the individual components. Finally, ODCs were also active in primary cells from CRC patient tumor tissues. Taken together, we show that the TGMO technology efficiently identifies selective and potent low-dose drug combinations, optimized regardless of tumor mutation status, outperforming conventional chemotherapy

    Perioperative mortality after hemiarthroplasty related to fixation method: A study based on the Australian Orthopaedic Association National Joint Replacement Registry

    Get PDF
    Background and purpose: The appropriate fixation method for hemiarthroplasty of the hip as it relates to implant survivorship and patient mortality is a matter of ongoing debate. We examined the influence of fixation method on revision rate and mortality.----- ----- Methods: We analyzed approximately 25,000 hemiarthroplasty cases from the AOA National Joint Replacement Registry. Deaths at 1 day, 1 week, 1 month, and 1 year were compared for all patients and among subgroups based on implant type.----- ----- Results: Patients treated with cemented monoblock hemiarthroplasty had a 1.7-times higher day-1 mortality compared to uncemented monoblock components (p < 0.001). This finding was reversed by 1 week, 1 month, and 1 year after surgery (p < 0.001). Modular hemiarthroplasties did not reveal a difference in mortality between fixation methods at any time point.----- ----- Interpretation: This study shows lower (or similar) overall mortality with cemented hemiarthroplasty of the hip

    COGENT (COlorectal cancer GENeTics): an international consortium to study the role of polymorphic variation on the risk of colorectal cancer

    Get PDF
    It is now recognised that a part of the inherited risk of colorectal cancer (CRC) can be explained by the co-inheritance of low-penetrance genetic variants. The accumulated experience to date in identifying these variants has served to highlight difficulties in conducting statistically and methodologically rigorous studies and follow-up analyses. The COGENT (COlorectal cancer GENeTics) consortium includes 20 research groups in Europe, Australia, the Americas, China and Japan. The overarching goal of COGENT is to identify and characterise low-penetrance susceptibility variants for CRC through association-based analyses. In this study, we review the rationale for identifying low-penetrance variants for CRC and our proposed strategy for establishing COGENT
    corecore