550 research outputs found

    Experimental study of formwork tightness as a function of rheological properties of SCC

    No full text
    Several studies relating formwork pressure to rheology exist, however the relationship between rheology and leakage through formwork joints remains to be investigated. In practice, standard documents are used to define formwork tightness requirements, typically using a qualitative approach. To try bridge this gap in knowledge, we developed a test set-up to study tightness of formwork joints under pressure as a function of varying rheological properties. Coupled with standard rheology tests, this new test set-up provides means of linking flow rate, formwork pressure, flow area, and the rheological properties. The study seeks to provide insight on measurable governing parameters and thus inform formwork tightness requirements in a more quantifiable manner. This paper presents a test set-up designed to study the flow of fresh paste through small openings. It highlights a preliminary study on the pressure-driven flow of limestone paste through a bottom orifice in a cylindrical container. While this new device may not be directly representative of the actual conditions in formwork, it provides a good base for a fundamental study that can then be extrapolated to a more representative test operation. Preliminary results show a linear relationship between the flow rate and the applied pressure. The results also show that increasing the flow area by a factor of 2.33 had a higher impact than an increase in yield stress and viscosity by a factor of 2.54 and 3.80 respectively. However, more tests need to be carried out to obtain clear trends

    Fibro-Vascular Coupling in the Control of Cochlear Blood Flow

    Get PDF
    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained.We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation.The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity

    VennPlex--a novel Venn diagram program for comparing and visualizing datasets with differentially regulated datapoints.

    Get PDF
    With the development of increasingly large and complex genomic and proteomic data sets, an enhancement in the complexity of available Venn diagram analytical programs is becoming increasingly important. Current freely available Venn diagram programs often fail to represent extra complexity among datasets, such as regulation pattern differences between different groups. Here we describe the development of VennPlex, a program that illustrates the often diverse numerical interactions among multiple, high-complexity datasets, using up to four data sets. VennPlex includes versatile output features, where grouped data points in specific regions can be easily exported into a spreadsheet. This program is able to facilitate the analysis of two to four gene sets and their corresponding expression values in a user-friendly manner. To demonstrate its unique experimental utility we applied VennPlex to a complex paradigm, i.e. a comparison of the effect of multiple oxygen tension environments (1–20% ambient oxygen) upon gene transcription of primary rat astrocytes. VennPlex accurately dissects complex data sets reliably into easily identifiable groups for straightforward analysis and data output. This program, which is an improvement over currently available Venn diagram programs, is able to rapidly extract important datasets that represent the variety of expression patterns available within the data sets, showing potential applications in fields like genomics, proteomics, and bioinformatics

    Glucocorticoid receptor gene polymorphisms associated with progression of lung disease in young patients with cystic fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variability in the inflammatory burden of the lung in cystic fibrosis (CF) patients together with the variable effect of glucocorticoid treatment led us to hypothesize that <it>glucocorticoid receptor </it>(<it>GR</it>) gene polymorphisms may affect glucocorticoid sensitivity in CF and, consequently, may contribute to variations in the inflammatory response.</p> <p>Methods</p> <p>We evaluated the association between four <it>GR </it>gene polymorphisms, <it>TthIII</it>, <it>ER22/23EK</it>, <it>N363S </it>and <it>BclI</it>, and disease progression in a cohort of 255 young patients with CF. Genotypes were tested for association with changes in lung function tests, infection with <it>Pseudomonas aeruginosa </it>and nutritional status by multivariable analysis.</p> <p>Results</p> <p>A significant non-corrected for multiple tests association was found between <it>BclI </it>genotypes and decline in lung function measured as the forced expiratory volume in one second (FEV<sub>1</sub>) and the forced vital capacity (FVC). Deterioration in FEV<sub>1 </sub>and FVC was more pronounced in patients with the <it>BclI </it>GG genotype compared to the group of patients with <it>BclI </it>CG and CC genotypes (p = 0.02 and p = 0.04 respectively for the entire cohort and p = 0.01 and p = 0.02 respectively for F508del homozygous patients).</p> <p>Conclusion</p> <p>The <it>BclI </it>polymorphism may modulate the inflammatory burden in the CF lung and in this way influence progression of lung function.</p

    Application of In Vivo Induced Antigen Technology (IVIAT) to Bacillus anthracis

    Get PDF
    In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets

    ALADIN is Required for the Production of Fertile Mouse Oocytes

    Get PDF
    Asymmetric cell divisions depend on the precise placement of the spindle apparatus. In mammalian oocytes, spindles assemble close to the cell's center, but chromosome segregation takes place at the cell periphery where half of the chromosomes are expelled into small, nondeveloping polar bodies at anaphase. By dividing so asymmetrically, most of the cytoplasmic content within the oocyte is preserved, which is critical for successful fertilization and early development. Recently we determined that the nucleoporin ALADIN participates in spindle assembly in somatic cells, and we have also shown that female mice homozygously null for ALADIN are sterile. In this study we show that this protein is involved in specific meiotic stages, including meiotic resumption, spindle assembly, and spindle positioning. In the absence of ALADIN, polar body extrusion is compromised due to problems in spindle orientation and anchoring at the first meiotic anaphase. ALADIN null oocytes that mature far enough to be fertilized in vitro are unable to support embryonic development beyond the two-cell stage. Overall, we find that ALADIN is critical for oocyte maturation and appears to be far more essential for this process than for somatic cell divisions

    Molecular Characterization of Cryptosporidium Species and Giardia duodenalis from Symptomatic Cambodian Children

    Get PDF
    Background: In a prospective study, 498 single faecal samples from children aged under 16 years attending an outpatient clinic in the Angkor Hospital for Children, northwest Cambodia, were examined for Cryptosporidium oocysts and Giardia cysts using microscopy and molecular assays. Methodology/Principal Findings: Cryptosporidium oocysts were detected in 2.2% (11/498) of samples using microscopy and in 7.7% (38/498) with molecular tests. Giardia duodenalis cysts were detected in 18.9% (94/498) by microscopy and 27.7% (138/498) by molecular tests; 82% of the positive samples (by either method) were from children aged 1–10 years. Cryptosporidium hominis was the most common species of Cryptosporidium, detected in 13 (34.2%) samples, followed by Cryptosporidium meleagridis in 9 (23.7%), Cryptosporidium parvum in 8 (21.1%), Cryptosporidium canis in 5 (13.2%), and Cryptosporidium suis and Cryptosporidium ubiquitum in one sample each. Cryptosporidium hominis and C. parvum positive samples were subtyped by sequencing the GP60 gene: C. hominis IaA16R6 and C. parvum IIeA7G1 were the most abundant subtypes. Giardia duodenalis was typed using a multiplex real-time PCR targeting assemblages A and B. Assemblage B (106; 76.8% of all Giardia positive samples) was most common followed by A (12.3%) and mixed infections (5.1%). Risk factors associated with Cryptosporidium were malnutrition (AOR 9.63, 95% CI 1.67–55.46), chronic medical diagnoses (AOR 4.51, 95% CI 1.79–11.34) and the presence of birds in the household (AOR 2.99, 95% CI 1.16–7.73); specifically C. hominis (p = 0.03) and C. meleagridis (p<0.001) were associated with the presence of birds. The use of soap was protective against Giardia infection (OR 0.74, 95% CI 0.58–0.95). Conclusions/Significance: This is the first report to describe the different Cryptosporidium species and subtypes and Giardia duodenalis assemblages in Cambodian children. The variety of Cryptosporidium species detected indicates both anthroponotic and zoonotic transmission in this population. Interventions to improve sanitation, increase hand washing after defecation and before preparing food and promote drinking boiled water may reduce the burden of these two parasites

    The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    Get PDF
    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models
    corecore