93 research outputs found

    Selection for Drought Tolerance in Dry Bean Derived from the Mesoamerican Gene Pool in Western Nebraska

    Get PDF
    Dry bean (Phaseolus vulgaris L.) is highly susceptible to drought stress, and drought affects 60% of global bean production. We evaluated elite exotic dry bean germplasm derived from the Mesoamerican gene pool for drought tolerance, yield, and adaptation to western Nebraska during 2006 and 2007 at three research sites. Seven tropical lines were evaluated with two great northern cultivars (Matterhorn and Beryl- R) and one pinto cultivar (Bill-Z) serving as checks. Adjacent nonstressed (NS) and droughtstressed (DS) blocks were evaluated. Within each block, the selected lines were assigned to experimental units using a randomized complete block design with four replications at each location. On average, yield was 60% less, 100-seed weight was 19.2% lower, and maturity occurred 4 d earlier under DS than under NS conditions. Beryl-R, SER 22, and Matterhorn had the greatest average yield under both NS (3564, 3347, and 3440 kg ha–1, respectively) and DS (1701, 1773, and 1584 kg ha–1, respectively). These genotypes were also the most drought tolerant based on the drought susceptibility index (0.9, 0.8, and 0.9, respectively) and geometric mean (2462, 2436, and 2335, respectively). Based on these results, Matterhorn, Beryl-R, and SER 22 show the most promise for use in breeding for drought tolerance

    Registration of the Chickpea Germplasm PHREC-Ca-Comp. #1 with Enhanced Resistance to Ascochyta Blight

    Get PDF
    The chickpea or garbanzo bean (Cicer arietinum L.) germplasm PHREC-Ca-Comp. #1 (Reg. No. GP-282, PI 659664) was developed by the former Alternative Crops Breeding Program at the University of Nebraska Agricultural Research Division and was released in 2010. It was bred specifically for adaptation to growing conditions in Nebraska and for enhanced resistance to Ascochyta blight, a major disease of chickpea caused by Ascochyta rabiei (Pass.) Labr. PHREC-Ca- Comp. #1 is a composite of PI 315797, PI 343014, PI 379217, PI 471915, PI 598080, and W6 17256. The composite was developed in the fall of 2002 and was evaluated in six irrigated and four dryland environments at Scottsbluff, Sidney, and Alliance, NE, from 2004 to 2009. Across irrigated environments, PHREC-Ca-Comp. #1 had the lowest severity rating for Ascochyta blight and a higher yield under both irrigated and dryland conditions than ‘Sierra’, ‘Dwelley’, ‘Dylan’, and ‘Troy’. PHREC-Ca-Comp. #1 is a small, round, cream-colored kabuli-type chickpea. It exhibits an upright, indeterminate growth habit. Plants average 66 cm in height and have excellent resistance to lodging. PHREC-Ca-Comp. #1 has a fern leaf structure and white flowers and blooms 44 d after planting. It is a midseason bean, maturing 116 d after planting. Although its seed size does not meet commercial standards, PHREC-Ca-Comp. #1 has value in breeding programs as a source of resistance to Ascochyta blight and because of its high yield potential

    137,138,139^{137,138,139}La(nn, γ\gamma) cross sections constrained with statistical decay properties of 138,139,140^{138,139,140}La nuclei

    Full text link
    The nuclear level densities and γ\gamma-ray strength functions of 138,139,140^{138,139,140}La were measured using the 139^{139}La(3^{3}He, α\alpha), 139^{139}La(3^{3}He, 3^{3}He^\prime) and 139^{139}La(d, p) reactions. The particle-γ\gamma coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A\sim140 region is discussed. The 137,138,139^{137,138,139}La(n,γ)n, \gamma) cross sections were calculated at ss- and pp-process temperatures using the experimentally measured nuclear level densities and γ\gamma-ray strength functions. Good agreement is found between 139^{139}La(n,γ)n, \gamma) calculated cross sections and previous measurements

    Alzheimer's disease susceptibility genes APOE and TOMM40, and brain white matter integrity in the Lothian Birth Cohort 1936

    Get PDF
    Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the effects of TOMM40 on white matter integrity appear to be novel, although replication is required in large independent samples

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Synthesis of the elements in stars: forty years of progress

    Full text link

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    The Science Performance of JWST as Characterized in Commissioning

    Full text link
    This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies.Comment: 5th version as accepted to PASP; 31 pages, 18 figures; https://iopscience.iop.org/article/10.1088/1538-3873/acb29

    Alzheimer's Disease susceptibility genes APOE and TOMM40, and hippocampal volumes in the Lothian birth cohort 1936

    Get PDF
    The APOE ε and TOMM40 rs10524523 (‘523’) variable length poly-T repeat gene loci have been significantly and independently associated with Alzheimer’s disease (AD) related phenotypes such as age of clinical onset. Hippocampal atrophy has been significantly associated with memory impairment, a characteristic of AD. The current study aimed to test for independent effects of APOE ε and TOMM40 ‘523’ genotypes on hippocampal volumes as assessed by brain structural MRI in a relatively large sample of community-dwelling older adults. As part of a longitudinal study of cognitive ageing, participants in the Lothian Birth Cohort 1936 underwent genotyping for APOE ε2/ε3/ε4 status and TOMM40 ‘523’ poly-T repeat length, and detailed structural brain MRI at a mean age of 72.7 years (standard deviation = 0.7, N range = 624 to 636). No significant effects of APOE ε or TOMM40 523 genotype were found on hippocampal volumes when analysed raw, or when adjusted for either intracranial or total brain tissue volumes. In summary, in a large community-dwelling sample of older adults, we found no effects of APOE ε or TOMM40 523 genotypes on hippocampal volumes. This is discrepant with some previous reports of significant association between APOE and left/right hippocampal volumes, and instead echoes other reports that found no association. Previous significant findings may partly reflect type 1 error. Future studies should carefully consider: 1) their specific techniques in adjusting for brain size; 2) assessing more detailed sub-divisions of the hippocampal formation; and 3) testing whether significant APOE-hippocampal associations are independent of generalised brain atrophy
    corecore