118 research outputs found

    Acute and Chronic Effects of Smoking on Inflammation Markers in Exhaled Breath Condensate in Current Smokers

    Get PDF
    Background: Long-term cigarette smoking is associated with pulmonary inflammation, but the acute effects of smoking have been less well studied. Analysis of the exhaled breath condensate (EBC) can provide noninvasive markers that might be indicative of inflammation. Objectives: The aim of the study was to determine whether the pH, electrical conductivity and the levels of ammonium and interleukin 8 (IL-8) of EBC were altered in smokers and whether they changed after smoking a single cigarette. Methods: We included 19 healthy nonsmokers (controls), 29 asymptomatic smokers, 10 patients with stable chronic obstructive pulmonary disease (COPD) {[}Global Initiative for Chronic Obstructive Lung Disease stages (GOLD) stages II-III], and 10 patients with exacerbated COPD. In 13 smokers, EBC was also analyzed before and after smoking. EBC was obtained during 10 min tidal breathing with a cooled RTube (TM). pH was determined after deaeration with argon. Results: Acute smoking did not alter the pH or ammonium and IL-8 levels, but raised conductivity. As in COPD patients, the pH was significantly decreased in chronic smokers with a history of at least 10 pack-years compared to controls. Conclusions: EBC can be used to detect the acute and chronic effects of smoking. The increased conductivity of EBC after smoking suggests acute inflammatory effects. The reduced pH in chronic smokers shows cigarette-induced inflammation. Copyright (C) 2009 S. Karger AG, Base

    Millimeter-wave gas spectroscopy for breath analysis of COPD patients in comparison to GC-MS

    Get PDF
    The analysis of human breath is a very active area of research, driven by the vision of a fast, easy, and non-invasive tool for medical diagnoses at the point of care. Millimeter-wave gas spectroscopy (MMWGS) is a novel, well-suited technique for this application as it provides high sensitivity, specificity and selectivity. Most of all, it offers the perspective of compact low-cost systems to be used in doctors' offices or hospitals. In this work, we demonstrate the analysis of breath samples acquired in a medical environment using MMWGS and evaluate validity, reliability, as well as limitations and perspectives of the method. To this end, we investigated 28 duplicate samples from chronic obstructive lung disease patients and compared the results to gas chromatography-mass spectrometry (GC-MS). The quantification of the data was conducted using a calibration-free fit model, which describes the data precisely and delivers absolute quantities. For ethanol, acetone, and acetonitrile, the results agree well with the GC-MS measurements and are as reliable as GC-MS. The duplicate samples deviate from the mean values by only 6% to 18%. Detection limits of MMWGS depend strongly on the molecular species. For example, acetonitrile can be traced down to 1.8 × 10−12 mol by the MMWGS system, which is comparable to the GC-MS system. We observed correlations of abundances between formaldehyde and acetaldehyde as well as between acetonitrile and acetaldehyde, which demonstrates the potential of MMWGS for breath research.Deutsche Forschungsgemeinschafthttp://dx.doi.org/10.13039/501100001659Deutsches Zentrum für Lungenforschunghttp://dx.doi.org/10.13039/501100010564Peer Reviewe

    Comparison of two devices and two breathing patterns for exhaled breath condensate sampling.

    Get PDF
    Analysis of exhaled breath condensate (EBC) is a noninvasive method to access the epithelial lining fluid of the lungs. Due to standardization problems the method has not entered clinical practice. The aim of the study was to assess the comparability for two commercially available devices in healthy controls. In addition, we assessed different breathing patterns in healthy controls with protein markers to analyze the source of the EBC. EBC was collected from ten subjects using the RTube and ECoScreen Turbo in a randomized crossover design, twice with every device--once in tidal breathing and once in hyperventilation. EBC conductivity, pH, surfactant protein A, Clara cell secretory protein and total protein were assessed. Bland-Altman plots were constructed to display the influence of different devices or breathing patterns and the intra-class correlation coefficient (ICC) was calculated. The volatile organic compound profile was measured using the electronic nose Cyranose 320. For the analysis of these data, the linear discriminant analysis, the Mahalanobis distances and the cross-validation values (CVV) were calculated. Neither the device nor the breathing pattern significantly altered EBC pH or conductivity. ICCs ranged from 0.61 to 0.92 demonstrating moderate to very good agreement. Protein measurements were greatly influenced by breathing pattern, the device used, and the way in which the results were reported. The electronic nose could distinguish between different breathing patterns and devices, resulting in Mahalanobis distances greater than 2 and CVVs ranging from 64% to 87%. EBC pH and (to a lesser extent) EBC conductivity are stable parameters that are not influenced by either the device or the breathing patterns. Protein measurements remain uncertain due to problems of standardization. We conclude that the influence of the breathing maneuver translates into the necessity to keep the volume of ventilated air constant in further studies

    pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Get PDF
    OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers relatedto air pollution.METHODS: A total of 87 male, non-smorking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in ixhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study).RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values concentrations in both substrates, however, Il-aB and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration weas greater at the workplace of traffic-controllers compared with that of office-workers.CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers

    The effects of smoking and smoking cessation on nasal mucociliary clearance, mucus properties and inflammation

    Get PDF
    OBJECTIVE: The aim of the present study was to assess nasal mucociliary clearance, mucus properties and inflammation in smokers and subjects enrolled in a Smoking Cessation Program (referred to as quitters). METHOD: A total of 33 subjects with a median (IQR) smoking history of 34 (20-58) pack years were examined for nasal mucociliary clearance using a saccharine transit test, mucus properties using contact angle and sneeze clearability tests, and quantification of inflammatory and epithelial cells, IL-6 and IL-8 concentrations in nasal lavage fluid. Twenty quitters (mean age: 51 years, 9 male) were assessed at baseline, 1 month, 3 months and 12 months after smoking cessation, and 13 smokers (mean age: 52 years, 6 male) were assessed at baseline and after 12 months. Clinicaltrials.gov: NCT02136550. RESULTS: Smokers and quitters showed similar demographic characteristics and morbidities. At baseline, all subjects showed impaired nasal mucociliary clearance (mean 17.6 min), although 63% and 85% of the quitters demonstrated significant nasal mucociliary clearance improvement at 1 month and 12 months, respectively. At 12 months, quitters also showed mucus sneeze clearability improvement (∼26%), an increased number of macrophages (2-fold) and no changes in mucus contact angle or cytokine concentrations. CONCLUSION: This study showed that smoking cessation induced early improvements in nasal mucociliary clearance independent of mucus properties and inflammation. Changes in mucus properties were observed after only 12 months of smoking cessation

    pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    Get PDF
    OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study). RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively). Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade de São Paulo Faculdade de Medicina Department of PathologyUniversidade de São Paulo Faculdade de Medicina Department of PhysiotherapyPhilipps University Department of PulmonologyLeiden University Medical Center Department of PulmonologyUniversidade Federal de São Paulo (UNIFESP) School of Medicine Department of PneumologyPneumology Division Pneumology DivisionInstituto do Coracao Instituto do CoracaoUniversidade de São Paulo Faculdade de MedicinaUniversidade de São Paulo Faculdade de Medicina Department of Internal MedicineUniversidade de São Paulo Public Health Faculty Department of EpidemiologyUniversidade de São Paulo Institute of Mathematics and StatisticsUNIFESP, School of Medicine Department of PneumologyFAPESP: 07/51605-9FAPESP: 09/50056-7CNPq: 555.223/06-0SciEL

    Krüppel-like zinc finger proteins in end-stage COPD lungs with and without severe alpha1-antitrypsin deficiency

    Get PDF
    ABSTRACT: BACKGROUND: Chronic obstructive pulmonary disease (COPD) is influenced by environmental and genetic factors. An important fraction of COPD cases harbor a major genetic determinant, inherited ZZ (Glu342Lys) alpha1-antitrypsin deficiency (AATD). A study was undertaken to investigate gene expression patterns in end-stage COPD lungs from patients with and without AATD. METHODS: Explanted lungs of end-stage ZZ AATD-related (treated and non-treated with AAT augmentation therapy) and "normal" MM COPD, and liver biopsies from patients suffering from liver cirrhosis with and without ZZ AATD were used for gene expression analysis by Affymetrix microarrays or RT-PCR. RESULTS: A total of 162 genes were found to be differentially expressed (p-value [less than or equal to] 0.05 and |FC| [greater than or equal to] 2) between MM and ZZ COPD patients. Of those, 134 gene sets were up-regulated and 28 were down-regulated in ZZ relative to MM lung tissue. A subgroup of genes, zinc finger protein 165, snail homolog 1 (Drosophila) (SNAI1), and Kruppel-like transcription factors (KLFs) 4 (gut), 9 and 10, perfectly segregated ZZ and MM COPD patients. The higher expression of KLF 9 and KLF10 has been verified in the replication cohort with AATD-related end-stage lung emphysema and liver cirrhosis. Furthermore, higher expression of KLF9, SNAI1 and DEFA1 was found in ZZ COPD lungs without augmentation therapy relative to MM COPD or ZZ COPD with augmentation therapy. CONCLUSIONS: These results reveal the involvement of transcriptional regulators of the zinc-finger family in COPD pathogenesis and provide deeper insight into the pathophysiological mechanisms of COPD with and without AATD

    Liver Fibrosis and Metabolic Alterations in Adults With alpha-1-antitrypsin Deficiency Caused by the Pi*ZZ Mutation

    Get PDF
    BACKGROUND & AIMS: Alpha-1 antitrypsin deficiency (AATD) is among the most common genetic disorders. Severe AATD is caused by a homozygous mutation in the SERPINA1 gene that encodes the Glu342Lys substitution (called the Pi*Z mutation, Pi*ZZ genotype). Pi*ZZ carriers may develop lung and liver diseases. Mutation- associated lung disorders have been well studied, but less is known about the effects in liver. We assessed the liver disease burden and associated features in adults with this form of AATD. METHODS: We collected data from 554 Pi*ZZ adults (403 in an exploratory cohort, 151 in a confirmatory cohort), in 9 European countries, with AATD who were homozygous for the Pi*Z mutation, and 234 adults without the Pi*Z mutation (controls), all without pre-existing liver disease. We collected data on demographic parameters, comorbidities, lung- and liver-related health, and blood samples for laboratory analysis. Liver fibrosis was assessed non-invasively via the serum tests Aspartate Aminotransferase to Platelet Ratio Index and HepaScore and via transient elastography. Liver steatosis was determined via transient elastography-based controlled attenuation parameter. We performed histologic analyses of livers from transgenic mice that overexpress the AATD-associated Pi*Z variant. RESULTS: Serum levels of liver enzymes were significantly higher in Pi*ZZ carriers vs controls. Based on non-invasive tests for liver fibrosis, significant fibrosis was suspected in 20%–36% of Pi*ZZ carriers, whereas signs of advanced fibrosis were 9- to 20-fold more common in Pi*ZZ carriers compared to non-carriers. Male sex; age older than 50 years; increased levels of alanine aminotransferase, aspartate aminotransferase, or g-glutamyl transferase; and low numbers of platelets were associated with higher liver fibrosis burden. We did not find evidence for a relationship between lung function and liver fibrosis. Controlled attenuation parameter 280 dB/m, suggesting severe steatosis, was detected in 39% of Pi*ZZ carriers vs 31% of controls. Carriers of Pi*ZZ had lower serum concentrations of triglyceride and low- and very-lowdensity lipoprotein cholesterol than controls, suggesting impaired hepatic secretion of lipid. Livers from Pi*Zoverexpressing mice had steatosis and down-regulation of genes involved in lipid secretion. CONCLUSIONS: In studies of AATD adults with the Pi*ZZ mutation, and of Pi*Z-overexpressing mice, we found evidence of liver steatosisinfo:eu-repo/semantics/publishedVersio

    Detection of volatile organic compounds as potential novel biomarkers for chorioamnionitis - proof of experimental models

    Get PDF
    Background: Histologic chorioamnionitis is only diagnosed postnatally which prevents interventions. We hypothesized that volatile organic compounds (VOCs) in the amniotic fluid might be useful biomarkers for chorioamnionitis and that VOC profiles differ between amnionitis of different origins. Methods: Time-mated ewes received intra-amniotic injections of media or saline (controls), or live Ureaplasma parvum serovar 3 (Up) 14, 7 or 3d prior to c-section at day 124 gestational age (GA). 100 μg recombinant ovine IL-1α was instilled at 7, 3 or 1d prior to delivery. Headspace VOC profiles were measured from amniotic fluids at birth using ion mobility spectrometer coupled with multi-capillary columns. Results: 127 VOC peaks were identified. 27 VOCs differed between samples from controls and Up- or IL-1α induced amnionitis. The best discrimination between amnionitis by Up vs. IL-1α was reached by 2-methylpentane, with a sensitivity/specificity of 96/95% and a positive predictive value/negative predictive values of 96 and 95%. The concentration of 2-methylpentane in VOCs peaked 7d after intra-amniotic instillation of Up. Discussion: We established a novel method to study headspace VOC profiles of amniotic fluids. VOC profiles may be a useful tool to detect and to assess the duration of amnionitis induced by Up. 2-methylpentane was previously described in the exhalate of women with pre-eclampsia and might be a volatile biomarker for amnionitis. Amniotic fluids analyzed by ion mobility spectrometry coupled with multi-capillary columns may provide bedside diagnosis of amnionitis and understanding inflammatory mechanisms during pregnancy
    • …
    corecore