56 research outputs found

    Primary Utricle Structure of Six Halimeda Species and Potential Relevance for Ocean Acidification Tolerance

    Get PDF
    Variations in utricle morphology may be responsible for different tolerances to ocean acidification (OA) within the macroalgal genus Halimeda, an important sediment producer on reefs. However, differences in species’ utricle morphology and their relationship to calcification and crystal formation have not been well articulated. In the present study, we characterized the utricle morphologies of six Halimeda species. Primary utricle ultrastructure was quantitatively and qualitatively compared to tissue inorganic content and crystal microstructure. Morphologies differed across species and several morphometric relationships were revealed. Primary utricle size (r2=0.70) and diffusion pathway length (r2=0.87) had inverse relationships with inorganic content based on regression analyses, and corresponded to crystal microstructure form. Species with large utricles and long diffusion pathways contained more narrow (~0.15 μm) aragonite needles and minimal micro-anhedral crystal formations. In contrast, species with small utricles and short diffusion pathways elucidated aggregates of micro-anhedral crystals and wider aragonite needles (~0.30 μm). Species’ utricle characteristics generally corresponded to specific evolutionary lineages. Thus, characteristics of Halimeda utricle morphology may control long-term adaptive responses to OA, an idea articulated in the broader literature

    Genetic determinants of telomere length from 109,122 ancestrally diverse whole-genome sequences in TOPMed

    Get PDF
    Genetic studies on telomere length are important for understanding age-related diseases. Prior GWAS for leukocyte TL have been limited to European and Asian populations. Here, we report the first sequencing-based association study for TL across ancestrally-diverse individuals (European, African, Asian and Hispanic/Latino) from the NHLBI Trans-Omics for Precision Medicine (TOPMed) program. We used whole genome sequencing (WGS) of whole blood for variant genotype calling and the bioinformatic estimation of telomere length in n=109,122 individuals. We identified 59 sentinel variants (p-value OBFC1indicated the independent signals colocalized with cell-type specific eQTLs for OBFC1 (STN1). Using a multi-variant gene-based approach, we identified two genes newly implicated in telomere length, DCLRE1B (SNM1B) and PARN. In PheWAS, we demonstrated our TL polygenic trait scores (PTS) were associated with increased risk of cancer-related phenotypes

    Genetic diversity fuels gene discovery for tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are heritable behaviours associated with 15% and 5.3% of worldwide deaths, respectively, due largely to broad increased risk for disease and injury(1-4). These substances are used across the globe, yet genome-wide association studies have focused largely on individuals of European ancestries(5). Here we leveraged global genetic diversity across 3.4 million individuals from four major clines of global ancestry (approximately 21% non-European) to power the discovery and fine-mapping of genomic loci associated with tobacco and alcohol use, to inform function of these loci via ancestry-aware transcriptome-wide association studies, and to evaluate the genetic architecture and predictive power of polygenic risk within and across populations. We found that increases in sample size and genetic diversity improved locus identification and fine-mapping resolution, and that a large majority of the 3,823 associated variants (from 2,143 loci) showed consistent effect sizes across ancestry dimensions. However, polygenic risk scores developed in one ancestry performed poorly in others, highlighting the continued need to increase sample sizes of diverse ancestries to realize any potential benefit of polygenic prediction.Peer reviewe

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    Get PDF
    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA

    Oxygen, pH and calcium dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH and across a range of irradiances

    No full text
    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA

    Tropical Crustose coralline algal individual and community responses to elevated pCO2 Under high and low irradiance

    No full text
    Crustose coralline algae (CCA) cement reefs and create important habitat and settling sites for reef organisms. The susceptibility of CCA to increasing ocean pCO2 and declining pH or ocean acidification (OA) is a growing concern. Although CCA are autotrophs, there has been little focus on the interaction of elevated pCO2 and irradiance. We examined elevated pCO2 effects on individual CCA and macroalgal benthic communities at high and low irradiance (205-13 μmol photons m-2 s-1) in an aquaria experiment (35 d, June-August 2014) on Little Cayman Island, Caribbean. A dominant Cayman reef wall CCA (Peyssonnelia sp.) in its adult lobed form and individual CCA recruits were used as experimental units. Changes in CCA, fleshy macroalgae (branching and turfs), and microalgae (including microbial biofilm) per cent cover and frequency were examined on macroalgal communities that settled onto plates from the reef. Reef diel cycles of pCO2 and pH were simulated using seawater inflowfrom a back reef. Although CO2 enrichment to year 2100 levels resulted in 1087 μatm pCO2 in the elevated pCO2 treatment, CaCO3 saturation states remained high (Ωcal ≥ 2.7). Under these conditions, elevated pCO2 had no effect on Peyssonnelia sp. calcification rates or survival regardless of irradiance. Individual CCA surface area on the bottom of settling plates was lower under elevated pCO2, but per cent cover or frequency within the community was unchanged. In contrast, there was a strong and consistent community assemblage response to irradiance. Microalgae increased at high irradiance and CCA increased under low irradiance with no significant pCO2 interaction. Based on this short-term experiment, tropical macroalgal communities are unlikely to shift at pCO2 levels predicted for year 2100 under high or low irradiance. Rather, irradiance and other factors that promote microalgae are likely to be strong drivers of tropical benthic algal community structure under climate change

    Climate change and ocean acidification effects on seagrasses and marine macroalgae

    No full text
    Although seagrasses and marine macroalgae (macro-autotrophs) play critical ecological roles in reef, lagoon, coastal and open-water ecosystems, their response to ocean acidification (OA) and climate change is not well understood. In this review, we examine marine macro-autotroph biochemistry and physiology relevant to their response to elevated dissolved inorganic carbon [DIC], carbon dioxide [CO2], and lower carbonate [CO32-] and pH. We also explore the effects of increasing temperature under climate change and the interactions of elevated temperature and [CO2]. Finally, recommendations are made for future research based on this synthesis. A literature review of \u3e100 species revealed that marine macro-autotroph photosynthesis is overwhelmingly C3 (≥ 85%) with most species capable of utilizing HCO3-; however, most are not saturated at current ocean [DIC]. These results, and the presence of CO2-only users, lead us to conclude that photosynthetic and growth rates of marine macro-autotrophs are likely to increase under elevated [CO2] similar to terrestrial C3 species. In the tropics, many species live close to their thermal limits and will have to up-regulate stress-response systems to tolerate sublethal temperature exposures with climate change, whereas elevated [CO2] effects on thermal acclimation are unknown. Fundamental linkages between elevated [CO2] and temperature on photorespiration, enzyme systems, carbohydrate production, and calcification dictate the need to consider these two parameters simultaneously. Relevant to calcifiers, elevated [CO2] lowers net calcification and this effect is amplified by high temperature. Although the mechanisms are not clear, OA likely disrupts diffusion and transport systems of H+ and DIC. These fluxes control micro-environments that promote calcification over dissolution and may be more important than CaCO3 mineralogy in predicting macroalgal responses to OA. Calcareous macroalgae are highly vulnerable to OA, and it is likely that fleshy macroalgae will dominate in a higher CO2 ocean; therefore, it is critical to elucidate the research gaps identified in this review. © 2012 Blackwell Publishing Ltd
    corecore