102 research outputs found
MOA-2011-BLG-293Lb: A test of pure survey microlensing planet detections
Because of the development of large-format, wide-field cameras, microlensing
surveys are now able to monitor millions of stars with sufficient cadence to
detect planets. These new discoveries will span the full range of significance
levels including planetary signals too small to be distinguished from the
noise. At present, we do not understand where the threshold is for detecting
planets. MOA-2011-BLG-293Lb is the first planet to be published from the new
surveys, and it also has substantial followup observations. This planet is
robustly detected in survey+followup data (Delta chi^2 ~ 5400). The planet/host
mass ratio is q=5.3+/- 0.2*10^{-3}. The best fit projected separation is
s=0.548+/- 0.005 Einstein radii. However, due to the s-->s^{-1} degeneracy,
projected separations of s^{-1} are only marginally disfavored at Delta
chi^2=3. A Bayesian estimate of the host mass gives M_L = 0.43^{+0.27}_{-0.17}
M_Sun, with a sharp upper limit of M_L < 1.2 M_Sun from upper limits on the
lens flux. Hence, the planet mass is m_p=2.4^{+1.5}_{-0.9} M_Jup, and the
physical projected separation is either r_perp = ~1.0 AU or r_perp = ~3.4 AU.
We show that survey data alone predict this solution and are able to
characterize the planet, but the Delta chi^2 is much smaller (Delta chi^2~500)
than with the followup data. The Delta chi^2 for the survey data alone is
smaller than for any other securely detected planet. This event suggests a
means to probe the detection threshold, by analyzing a large sample of events
like MOA-2011-BLG-293, which have both followup data and high cadence survey
data, to provide a guide for the interpretation of pure survey microlensing
data.Comment: 29 pages, 6 figures, Replaced 7/3/12 with the version accepted to Ap
Fish Spawning Aggregations: Where Well-Placed Management Actions Can Yield Big Benefits for Fisheries and Conservation
Marine ecosystem management has traditionally been divided between fisheries management and biodiversity conservation approaches, and the merging of these disparate agendas has proven difficult. Here, we offer a pathway that can unite fishers, scientists, resource managers and conservationists towards a single vision for some areas of the ocean where small investments in management can offer disproportionately large benefits to fisheries and biodiversity conservation. Specifically, we provide a series of evidenced-based arguments that support an urgent need to recognize fish spawning aggregations (FSAs) as a focal point for fisheries management and conservation on a global scale, with a particular emphasis placed on the protection of multispecies FSA sites. We illustrate that these sites serve as productivity hotspots - small areas of the ocean that are dictated by the interactions between physical forces and geomorphology, attract multiple species to reproduce in large numbers and support food web dynamics, ecosystem health and robust fisheries. FSAs are comparable in vulnerability, importance and magnificence to breeding aggregations of seabirds, sea turtles and whales yet they receive insufficient attention and are declining worldwide. Numerous case-studies confirm that protected aggregations do recover to benefit fisheries through increases in fish biomass, catch rates and larval recruitment at fished sites. The small size and spatio-temporal predictability of FSAs allow monitoring, assessment and enforcement to be scaled down while benefits of protection scale up to entire populations. Fishers intuitively understand the linkages between protecting FSAs and healthy fisheries and thus tend to support their protection
Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events
Despite astrophysical importance of binary star systems, detections are
limited to those located in small ranges of separations, distances, and masses
and thus it is necessary to use a variety of observational techniques for a
complete view of stellar multiplicity across a broad range of physical
parameters. In this paper, we report the detections and measurements of 2
binaries discovered from observations of microlensing events MOA-2011-BLG-090
and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by
simultaneously measuring the Einstein radius and the lens parallax. The
measured masses of the binary components are 0.43 and 0.39
for MOA-2011-BLG-090 and 0.57 and 0.17 for
OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one
component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of
microlensing in detecting binaries composed of low-mass components. From
modeling of the light curves considering full Keplerian motion of the lens, we
also measure the orbital parameters of the binaries. The blended light of
OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible
to check the microlensing orbital solution by follow-up radial-velocity
observation. For both events, the caustic-crossing parts of the light curves,
which are critical for determining the physical lens parameters, were resolved
by high-cadence survey observations and thus it is expected that the number of
microlensing binaries with measured physical parameters will increase in the
future.Comment: 8 pages, 5 figures, 4 table
Characterizing low-mass binaries from observation of long-timescale caustic-crossing gravitational microlensing events
Despite the astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of two binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 M and 0.39 M for MOA-2011-BLG-090 and 0.57 M and 0.17 M for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future. © © 2012. The American Astronomical Society. All rights reserved.
Adaptive Significance of the Formation of Multi-Species Fish Spawning Aggregations near Submerged Capes
BACKGROUND: Many fishes are known to spawn at distinct geomorphological features such as submerged capes or "promontories," and the widespread use of these sites for spawning must imply some evolutionary advantage. Spawning at these capes is thought to result in rapid offshore transport of eggs, thereby reducing predation levels and facilitating dispersal to areas of suitable habitat. METHODOLOGY/PRINCIPAL FINDINGS: To test this "off-reef transport" hypothesis, we use a hydrodynamic model and explore the effects of topography on currents at submerged capes where spawning occurs and at similar capes where spawning does not occur, along the Mesoamerican Barrier Reef. All capes modeled in this study produced eddy-shedding regimes, but specific eddy attributes differed between spawning and non-spawning sites. Eddies at spawning sites were significantly stronger than those at non-spawning sites, and upwelling and fronts were the products of the eddy formation process. Frontal zones, present particularly at the edges of eddies near the shelf, may serve to retain larvae and nutrients. Spawning site eddies were also more predictable in terms of diameter and longevity. Passive particles released at spawning and control sites were dispersed from the release site at similar rates, but particles from spawning sites were more highly aggregated in their distributions than those from control sites, and remained closer to shore at all times. CONCLUSIONS/SIGNIFICANCE: Our findings contradict previous hypotheses that cape spawning leads to high egg dispersion due to offshore transport, and that they are attractive for spawning due to high, variable currents. Rather, we show that current regimes at spawning sites are more predictable, concentrate the eggs, and keep larvae closer to shore. These attributes would confer evolutionary advantages by maintaining relatively similar recruitment patterns year after year
A new type of ambiguity in the planet and binary interpretations of central perturbations of high-magnification gravitational microlensing events
High-magnification microlensing events provide an important channel to detect planets. Perturbations near the peak of a high-magnification event can be produced either by a planet or a binary companion. It is known that central perturbations induced by both types of companions can be generally distinguished due to the essentially different magnification pattern around caustics. In this paper, we present a case of central perturbations for which it is difficult to distinguish the planetary and binary interpretations. The peak of a lensing light curve affected by this perturbation appears to be blunt and flat. For a planetary case, this perturbation occurs when the source trajectory passes the negative perturbation region behind the back end of an arrowhead-shaped central caustic. For a binary case, a similar perturbation occurs for a source trajectory passing through the negative perturbation region between two cusps of an astroid-shaped caustic. We demonstrate the degeneracy for two high-magnification events of OGLE-2011-BLG-0526 and OGLE-2011-BLG-0950/MOA-2011- BLG-336. For OGLE-2011-BLG-0526, the χ2 difference between the planetary and binary model is 3, implying that the degeneracy is very severe. For OGLE-2011-BLG-0950/MOA-2011-BLG-336, the stellar binary model is formally excluded with Δχ2 105 and the planetary model is preferred. However, it is difficult to claim a planet discovery because systematic residuals of data from the planetary model are larger than the difference between the planetary and binary models. Considering that two events observed during a single season suffer from such a degeneracy, it is expected that central perturbations experiencing this type of degeneracy is common. © © 2012. The American Astronomical Society. All rights reserved.
MOA-2010-BLG-477Lb: constraining the mass of a microlensing planet from microlensing parallax, orbital motion and detection of blended light
Microlensing detections of cool planets are important for the construction of
an unbiased sample to estimate the frequency of planets beyond the snow line,
which is where giant planets are thought to form according to the core
accretion theory of planet formation. In this paper, we report the discovery of
a giant planet detected from the analysis of the light curve of a
high-magnification microlensing event MOA-2010-BLG-477. The measured
planet-star mass ratio is and the projected
separation is in units of the Einstein radius. The angular
Einstein radius is unusually large mas. Combining
this measurement with constraints on the "microlens parallax" and the lens
flux, we can only limit the host mass to the range . In
this particular case, the strong degeneracy between microlensing parallax and
planet orbital motion prevents us from measuring more accurate host and planet
masses. However, we find that adding Bayesian priors from two effects (Galactic
model and Keplerian orbit) each independently favors the upper end of this mass
range, yielding star and planet masses of
and at a distance of kpc,
and with a semi-major axis of AU. Finally, we show that the
lens mass can be determined from future high-resolution near-IR adaptive optics
observations independently from two effects, photometric and astrometric.Comment: 3 Tables, 12 Figures, accepted in Ap
Microlensing binaries with candidate brown dwarf companions
Brown dwarfs are important objects because they may provide a missing link between stars and planets, two populations that have dramatically different formation histories. In this paper, we present the candidate binaries with brown dwarf companions that are found by analyzing binary microlensing events discovered during the 2004-2011 observation seasons. Based on the low mass ratio criterion of q \u3c 0.2, we found seven candidate events: OGLE-2004-BLG-035, OGLE-2004-BLG-039, OGLE-2007-BLG-006, OGLE-2007-BLG-399/MOA-2007-BLG-334, MOA-2011-BLG-104/OGLE-2011-BLG-0172, MOA-2011-BLG-149, and MOA-201-BLG-278/OGLE- 2011-BLG-012N. Among them, we are able to confirm that the companions of the lenses of MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149 are brown dwarfs by determining the mass of the lens based on the simultaneous measurement of the Einstein radius and the lens parallax. The measured masses of the brown dwarf companions are 0.02 ± 0.01 M and 0.019 ± 0.002 M for MOA-2011-BLG-104/OGLE-2011-BLG-0172 and MOA-2011-BLG-149, respectively, and both companions are orbiting low-mass M dwarf host stars. More microlensing brown dwarfs are expected to be detected as the number of lensing events with well-covered light curves increases with new-generation searches. © 2012. The American Astronomical Society. All rights reserved
On the CCA2 Security of McEliece in the Standard Model
In this paper we study public-key encryption schemes based on error-correcting codes that are IND-CCA2 secure in the standard model. In particular, we analyze a protocol due to Dowsley, Muller-Quade and Nascimento, based on a work of Rosen and Segev. The original formulation of the protocol contained some ambiguities and incongruences, which we point out and correct; moreover, the protocol deviates substantially from the work it is based on. We then present a construction which resembles more closely the original Rosen-Segev framework, and show how this can be instantiated with the McEliece scheme
- …