1,560 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Evaluation of an Artificial Intelligence Coronary Artery Calcium Scoring Model from Computed Tomography

    Get PDF
    OBJECTIVES: Coronary artery calcium (CAC) scores derived from computed tomography (CT) scans are used for cardiovascular risk stratification. Artificial intelligence (AI) can assist in CAC quantification and potentially reduce the time required for human analysis. This study aimed to develop and evaluate a fully automated model that identifies and quantifies CAC. METHODS: Fully convolutional neural networks for automated CAC scoring were developed and trained on 2439 cardiac CT scans and validated using 771 scans. The model was tested on an independent set of 1849 cardiac CT scans. Agatston CAC scores were further categorised into five risk categories (0, 1–10, 11–100, 101–400, and > 400). Automated scores were compared to the manual reference standard (level 3 expert readers). RESULTS: Of 1849 scans used for model testing (mean age 55.7 ± 10.5 years, 49% males), the automated model detected the presence of CAC in 867 (47%) scans compared with 815 (44%) by human readers (p = 0.09). CAC scores from the model correlated very strongly with the manual score (Spearman’s r = 0.90, 95% confidence interval [CI] 0.89–0.91, p < 0.001 and intraclass correlation coefficient = 0.98, 95% CI 0.98–0.99, p < 0.001). The model classified 1646 (89%) into the same risk category as human observers. The Bland–Altman analysis demonstrated little difference (1.69, 95% limits of agreement: −41.22, 44.60) and there was almost excellent agreement (Cohen’s κ = 0.90, 95% CI 0.88–0.91, p < 0.001). Model analysis time was 13.1 ± 3.2 s/scan. CONCLUSIONS: This artificial intelligence–based fully automated CAC scoring model shows high accuracy and low analysis times. Its potential to optimise clinical workflow efficiency and patient outcomes requires evaluation. KEY POINTS: • Coronary artery calcium (CAC) scores are traditionally assessed using cardiac computed tomography and require manual input by human operators to identify calcified lesions. • A novel artificial intelligence (AI)–based model for fully automated CAC scoring was developed and tested on an independent dataset of computed tomography scans, showing very high levels of correlation and agreement with manual measurements as a reference standard. • AI has the potential to assist in the identification and quantification of CAC, thereby reducing the time required for human analysis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00330-022-09028-3

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    Recommendations for a core outcome set for measuring standing balance in adult populations: a consensus-based approach

    Get PDF
    Standing balance is imperative for mobility and avoiding falls. Use of an excessive number of standing balance measures has limited the synthesis of balance intervention data and hampered consistent clinical practice.To develop recommendations for a core outcome set (COS) of standing balance measures for research and practice among adults.A combination of scoping reviews, literature appraisal, anonymous voting and face-to-face meetings with fourteen invited experts from a range of disciplines with international recognition in balance measurement and falls prevention. Consensus was sought over three rounds using pre-established criteria.The scoping review identified 56 existing standing balance measures validated in adult populations with evidence of use in the past five years, and these were considered for inclusion in the COS.Fifteen measures were excluded after the first round of scoring and a further 36 after round two. Five measures were considered in round three. Two measures reached consensus for recommendation, and the expert panel recommended that at a minimum, either the Berg Balance Scale or Mini Balance Evaluation Systems Test be used when measuring standing balance in adult populations.Inclusion of two measures in the COS may increase the feasibility of potential uptake, but poses challenges for data synthesis. Adoption of the standing balance COS does not constitute a comprehensive balance assessment for any population, and users should include additional validated measures as appropriate.The absence of a gold standard for measuring standing balance has contributed to the proliferation of outcome measures. These recommendations represent an important first step towards greater standardization in the assessment and measurement of this critical skill and will inform clinical research and practice internationally

    Comparison of embedded and added motor imagery training in patients after stroke: Study protocol of a randomised controlled pilot trial using a mixed methods approach

    Get PDF
    Copyright @ 2009 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Two different approaches have been adopted when applying motor imagery (MI) to stroke patients. MI can be conducted either added to conventional physiotherapy or integrated within therapy sessions. The proposed study aims to compare the efficacy of embedded MI to an added MI intervention. Evidence from pilot studies reported in the literature suggests that both approaches can improve performance of a complex motor skill involving whole body movements, however, it remains to be demonstrated, which is the more effective one.Methods/Design: A single blinded, randomised controlled trial (RCT) with a pre-post intervention design will be carried out. The study design includes two experimental groups and a control group (CG). Both experimental groups (EG1, EG2) will receive physical practice of a clinical relevant motor task ('Going down, laying on the floor, and getting up again') over a two week intervention period: EG1 with embedded MI training, EG2 with MI training added after physiotherapy. The CG will receive standard physiotherapy intervention and an additional control intervention not related to MI.The primary study outcome is the time difference to perform the task from pre to post-intervention. Secondary outcomes include level of help needed, stages of motor task completion, degree of motor impairment, balance ability, fear of falling measure, motivation score, and motor imagery ability score. Four data collection points are proposed: twice during baseline phase, once following the intervention period, and once after a two week follow up. A nested qualitative part should add an important insight into patients' experience and attitudes towards MI. Semi-structured interviews of six to ten patients, who participate in the RCT, will be conducted to investigate patients' previous experience with MI and their expectations towards the MI intervention in the study. Patients will be interviewed prior and after the intervention period.Discussion: Results will determine whether embedded MI is superior to added MI. Findings of the semi-structured interviews will help to integrate patient's expectations of MI interventions in the design of research studies to improve practical applicability using MI as an adjunct therapy technique

    Interactions Between Estrogen- and Ah-Receptor Signalling Pathways in Primary Culture of Salmon Hepatocytes Exposed to Nonylphenol and 3,3',4,4'-Tetrachlorobiphenyl (Congener 77)

    Get PDF
    BACKGROUND: The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ERα and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 μM – an ER agonist) singly or in combination with 0.001, 0.01 and 1 μM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 μM) or PCB-77 (1 μM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS: Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhRα, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 μM) and medium (0.01 μM) PCB-77 concentrations increased ERα mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ERα, ERβ and Zr-protein expressions above control levels. CONCLUSION: The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ERα and ERβ (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways

    The size-brightness correspondence:evidence for crosstalk among aligned conceptual feature dimensions

    Get PDF
    The same core set of cross-sensory correspondences connecting stimulus features across different sensory channels are observed regardless of the modality of the stimulus with which the correspondences are probed. This observation suggests that correspondences involve modality-independent representations of aligned conceptual feature dimensions, and predicts a size-brightness correspondence, in which smaller is aligned with brighter. This suggestion accommodates cross-sensory congruity effects where contrasting feature values are specified verbally rather than perceptually (e.g., where the words WHITE and BLACK interact with the classification of high and low pitch sounds). Experiment 1 brings these two issues together in assessing a conceptual basis for correspondences. The names of bright/white and dark/black substances were presented in a speeded brightness classification task in which the two alternative response keys differed in size. A size-brightness congruity effect was confirmed, with substance names classified more quickly when the relative size of the response key needing to be pressed was congruent with the brightness of the named substance (e.g., when yoghurt was classified as a bright substance by pressing the smaller of two keys). Experiment 2 assesses the proposed conceptual basis for this congruity effect by requiring the same named substances to be classified according to their edibility (with all of the bright/dark substances having been selected for their edibility/inedibility, respectively). The predicted absence of a size-brightness congruity effect, along with other aspects of the results, supports the proposed conceptual basis for correspondences and speaks against accounts in which modality-specific perceptuomotor representations are entirely responsible for correspondence-induced congruity effects

    The Chemistry of Griseofulvin

    Get PDF

    Effect of type and concentration of ballasting particles on sinking rate of marine snow produced by the Appendicularian Oikopleura dioica

    Get PDF
    Ballast material (organic, opal, calcite, lithogenic) is suggested to affect sinking speed of aggregates in the ocean. Here, we tested this hypothesis by incubating appendicularians in suspensions of different algae or Saharan dust, and observing the sinking speed of the marine snow formed by their discarded houses. We show that calcite increases the sinking speeds of aggregates by ~100% and lithogenic material by ~150% while opal only has a minor effect. Furthermore the effect of ballast particle concentration was causing a 33 m d(-1) increase in sinking speed for a 5×10(5) µm(3) ml(-1) increase in particle concentration, near independent on ballast type. We finally compare our observations to the literature and stress the need to generate aggregates similar to those in nature in order to get realistic estimates of the impact of ballast particles on sinking speeds
    corecore