50 research outputs found

    Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana

    Get PDF
    Terrestrial productivity in semi-arid woodlands is strongly susceptible to changes in precipitation, and semi-arid woodlands constitute an important element of the global water and carbon cycles. Here, we use the Carbon Cycle Data Assimilation System (CCDAS) to investigate the key parameters controlling ecological and hydrological activities for a semi-arid savanna woodland site in Maun, Botswana. Twenty-four eco-hydrological process parameters of a terrestrial ecosystem model are optimized against two data streams separately and simultaneously: daily averaged latent heat flux (LHF) derived from eddy covariance measurements, and decadal fraction of absorbed photosynthetically active radiation (FAPAR) derived from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). Assimilation of both data streams LHF and FAPAR for the years 2000 and 2001 leads to improved agreement between measured and simulated quantities not only for LHF and FAPAR, but also for photosynthetic CO2 uptake. The mean uncertainty reduction (relative to the prior) over all parameters is 14.9% for the simultaneous assimilation of LHF and FAPAR, 8.5% for assimilating LHF only, and 6.1% for assimilating FAPAR only. The set of parameters with the highest uncertainty reduction is similar between assimilating only FAPAR or only LHF. The highest uncertainty reduction for all three cases is found for a parameter quantifying maximum plant-available soil moisture. This indicates that not only LHF but also satellite-derived FAPAR data can be used to constrain and indirectly observe hydrological quantities

    Outlier detection and classification in sensor data streams for proactive decision support systems

    Get PDF
    A paper has a deal with the problem of quality assessment in sensor data streams accumulated by proactive decision support systems. The new problem is stated where outliers need to be detected and to be classified according to their nature of origin. There are two types of outliers defined; the first type is about misoperations of a system and the second type is caused by changes in the observed system behavior due to inner and external influences. The proposed method is based on the data-driven forecast approach to predict the values in the incoming data stream at the expected time. This method includes the forecasting model and the clustering model. The forecasting model predicts a value in the incoming data stream at the expected time to find the deviation between a real observed value and a predicted one. The clustering method is used for taxonomic classification of outliers. Constructive neural networks models (CoNNS) and evolving connectionists systems (ECS) are used for prediction of sensors data. There are two real world tasks are used as case studies. The maximal values of accuracy are 0.992 and 0.974, and F1 scores are 0.967 and 0.938, respectively, for the first and the second tasks. The conclusion contains findings how to apply the proposed method in proactive decision support systems

    Cross-outlier detection

    No full text
    Abstract. The problem of outlier detection has been studied in the context of several domains and has received attention from the database research community. To the best of our knowledge, work up to date focuses exclusively on the problem as follows [1]: “given a single set of observations in some space, find those that deviate so as to arouse suspicion that they were generated by a different mechanism.” However, in several domains, we have more than one set of observations (or, equivalently, as single set with class labels assigned to each observation). For example, in astronomical data, labels may involve types of galaxies (e.g., spiral galaxies with abnormal concentration of elliptical galaxies in their neighborhood; in biodiversity data, labels may involve different population types, e.g., patches of different species populations, food types, diseases, etc). A single observation may look normal both within its own class, as well as within the entire set of observations. However, when examined with respect to other classes, it may still arouse suspicions. In this paper we consider the problem “given a set of observations with class labels, find those that arouse suspicions, taking into account the class labels. ” This variant has significant practical importance. Many of the existing outlier detection approaches cannot be extended to this case. We present one practical approach for dealing with this problem and demonstrate its performance on real and synthetic datasets.

    Example-Based Outlier Detection for High Dimensional Datasets

    No full text
    corecore