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Abstract. Terrestrial productivity in semi-arid woodlands is
strongly susceptible to changes in precipitation, and semi-
arid woodlands constitute an important element of the global
water and carbon cycles. Here, we use the Carbon Cycle
Data Assimilation System (CCDAS) to investigate the key
parameters controlling ecological and hydrological activities
for a semi-arid savanna woodland site in Maun, Botswana.
Twenty-four eco-hydrological process parameters of a terres-
trial ecosystem model are optimized against two data streams
separately and simultaneously: daily averaged latent heat
flux (LHF) derived from eddy covariance measurements, and
decadal fraction of absorbed photosynthetically active radia-
tion (FAPAR) derived from the Sea-viewing Wide Field-of-
view Sensor (SeaWiFS).

Assimilation of both data streams LHF and FAPAR for
the years 2000 and 2001 leads to improved agreement be-
tween measured and simulated quantities not only for LHF
and FAPAR, but also for photosynthetic CO2 uptake. The
mean uncertainty reduction (relative to the prior) over all pa-
rameters is 14.9 % for the simultaneous assimilation of LHF
and FAPAR, 8.5 % for assimilating LHF only, and 6.1 % for

assimilating FAPAR only. The set of parameters with the
highest uncertainty reduction is similar between assimilating
only FAPAR or only LHF. The highest uncertainty reduction
for all three cases is found for a parameter quantifying max-
imum plant-available soil moisture. This indicates that not
only LHF but also satellite-derived FAPAR data can be used
to constrain and indirectly observe hydrological quantities.

1 Introduction

Terrestrial ecosystems are strongly interconnected with the
climate system through the hydrological cycle by various
processes, such as infiltration, runoff, evaporation and tran-
spiration. In particular, latent heat flux (LHF), resulting from
the sum of evaporation and transpiration, is an essential com-
ponent of the surface energy balance and needed for un-
derstanding the global and local water balance. It is also a
key quantity for understanding the physiological response of
ecosystems to changes in climate, as LHF is related to the ter-
restrial carbon cycle through stomatal function and leaf size
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(Campbell and Norman, 1998; Beerling and Berner, 2005).
Information on the latent heat fluxes of terrestrial ecosystems
can improve our understanding of ecosystem functioning and
its potential response to changes in the Earth’s climate, such
as an increased frequency of droughts (IPCC, 2007).

To fill the gap between measurements of terrestrial ecosys-
tem fluxes and eco-physiological theory as embodied in ter-
restrial ecosystem models, data assimilation techniques are
becoming more widely used in biogeochemistry. The main
application of such data assimilation systems is focused
on the optimization of model process parameters, primar-
ily against observations of the carbon cycle, e.g. atmospheric
CO2 concentration, carbon fluxes and pools (e.g. Rayner et
al., 2005; Braswell et al., 2005; Williams et al., 2005; Knorr
and Kattge, 2005). Recently, Barbu et al. (2011) have ap-
plied the simplified extended Kalman filter to integrate both
the in situ soil wetness index (SWI) and satellite-derived
leaf area index (LAI) into the ISBA-A-gs land surface model
for French grasslands for continuous update of the modeled
state variables. The authors achieved a significant improve-
ment in the root-zone soil water content of around 13 % as
compared to results from the prior model. When applying
the ISBA-A-gs model to grasslands and croplands in France,
Calvet et al. (2012) also found that the maximum available
soil water capacity has a large impact on how well modeled
results correlate with available agricultural statistics. Such
studies provide, besides parameters optimized to fit model
output to observations, a better understanding of the key pro-
cesses controlling the ecosystem behaviour with regard to
eco-physiological functioning and closely related ecosystem
carbon cycling.

In this study, we use the fully variational Carbon Cycle
Data Assimilation System (CCDAS), incorporating the ter-
restrial ecosystem and land surface model BETHY (Bio-
sphere Energy-Transfer Hydrology; Knorr, 2000). CCDAS
has been designed to estimate process parameters through as-
similation of various data streams, mainly atmospheric CO2
concentration from ground-based measurement stations and
remotely sensed fraction of absorbed photosynthetically ac-
tive radiation (FAPAR) on a global scale (Rayner et al., 2005;
Scholze et al., 2007; Kaminski et al., 2012). CCDAS is based
on a variational approach and makes use of the availability of
the adjoint (1st derivative) model to optimize model process
parameters. Furthermore, CCDAS is able to calculate poste-
rior parameter uncertainties through use of the Hessian ma-
trix (2nd derivative of the misfit function between model and
data) and propagating these uncertainties through the model
to several diagnostic quantities of interest, e.g. the net car-
bon flux. CCDAS has so far been applied for assimilation
of atmospheric CO2 concentration and FAPAR observations
(Kaminski et al., 2012). Here, CCDAS is extended to assim-
ilate LHF and to estimate further parameters related to the
hydrological part of the model. LHF is calculated in con-
junction with terrestrial carbon fluxes by BETHY, and the
difference of the simulated values to LHF measured with

eddy covariance (EC) systems is minimized as part of the
assimilation scheme. The aim of this work is, therefore, to
demonstrate the possibility of applying CCDAS to multiple
data streams simultaneously, and to extend the application of
CCDAS to the study of eco-hydrological processes.

Savannas are climatically characterized by a distinct sea-
sonality of rainfall, i.e. a combination of a severe dry season
and a moderate wet season. Savanna vegetation is adapted
to dry conditions and usually composed of sparse trees and
grasses, whose canopy does not close. These regions are po-
tentially at risk from large changes in the seasonality of wa-
ter availability as well as the total amount of available wa-
ter caused by climate change. For example, Wang (2005)
showed that the climate models consistently predicted less
rainfall and consequently drier soils at the end of the 21st
century over much of subtropical and temperate regions in-
cluding savannas.

Numerous model studies have analysed the importance of
various processes for the hydrological conditions in savanna
ecosystems. For example, Kleidon and Heimann (1998) and
later Ichii et al. (2009) highlighted the importance of rooting
depth within land surface models, which deal with both LHF
and carbon fluxes, assuming that ecosystems are maximizing
their productivity under water-limited conditions.

To investigate eco-hydrological dynamics of ecosystems
as a whole, the eddy covariance (EC) technology has been
applied in various terrestrial ecosystems (Aubinet et al.,
2000; Baldocchi et al., 2001) as a reliable way of measur-
ing energy, water and carbon fluxes. However, compared to
closed-forest ecosystems in the Northern Hemisphere, little
attention has been given to savanna ecosystems, even though
they cover approximately 20 % of terrestrial surface (Veenen-
daal et al., 2004). Recent efforts to conduct eddy covariance
observations in savanna regions (Veenendaal et al., 2004)
have enabled us to greatly improve our modeling capabili-
ties, and to better understand eco-hydrological functioning
in savannas and open canopy woodlands.

We apply CCDAS to simultaneously assimilate eddy co-
variance LHF and remotely sensed FAPAR observations
at a single point for a semi-arid savanna site at Maun,
Botswana, and investigate the effect of assimilating multiple
data streams on the accuracy in both the simulated variables.
In addition, we analyse the effect of the assimilation of the
two data sets on simulated gross primary production (GPP),
which is not assimilated. To our knowledge, this is so far the
first study to assimilate eddy covariance data simultaneously
with other data streams into a terrestrial ecosystem model us-
ing the adjoint-based gradient approach.
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2 Materials and methods

2.1 Site description and measurement data

We have selected a mopane tree woodland area at Maun,
Botswana (23◦33′ E, 19◦54′ S; 950 m a.s.l.; Veenendaal et al.,
2004). With a canopy cover of 30–40 %, the plant community
at the flux measurement site is dominated by the mopane tree
(Colophospermum mopane), and the marginal understory
consists of grasses with a canopy cover of at most 15 %, dom-
inated byPanicum maximum, Schmidtia pappophoroidesand
Urochloa trichopus. The mean maximum temperature of the
warmest month is 33.6◦C, the mean minimum temperature
of the coldest month 7.1◦C, and mean annual precipitation
464 mm. There is a distinct dry season during the winter
months from May to September. Substantial amounts of rain-
fall are normally limited to between December and March.

LHF and CO2 flux measurements are conducted by the EC
method using a 12.6 m high tower in the middle of a homoge-
neous tall mopane tree stand with a maximum canopy height
of about 8 m (Veenendaal et al., 2004). Three-dimensional
wind speed, humidity, and CO2 concentration were logged
with a frequency of 20 Hz, and fluxes are integrated into
half hour means with the EdiSol software (Moncrieff et
al., 1997). Eddy flux measurements are influenced by con-
tributions from a basal source area, whose size and posi-
tion is varying depending on the aerodynamic conditions:
wind direction, friction velocity, atmospheric stability, etc.
At this site, Veenendaal et al. (2004) estimated the mean
90 % fetch distance of the installed eddy correlation measure-
ment system to be 520 m for daytime data in March 2000 by
a footprint analysis according to Schuepp et al. (1990) and
Kolle and Rebmann (2002). Assuming that a fetch radius of
520 m can be enlarged occasionally depending on aerody-
namic conditions and that different directions are averaged
over time, the time-integrated fetch area approaches that of
the footprint of the FAPAR measurements (a rectangle with
length and width of 4500 m centred on the tower site, see de-
tails on FAPAR data below). At this spatial scale, the terrain
is still generally homogeneous, but exhibits patches of the
size of a few hundreds of metres (see Google Earth images,
November 2012).

Air temperature, shortwave radiation, and precipitation are
also measured at the same tower, and are used to calibrate
the climate input data, which is extracted from a global data
set as described in the following paragraph. Data from 2000
and 2001 are used for assimilation. Due to missing half-
hourly data, only 223 points of daily averaged LHF data out
of 731 days for two years would have been be available for
assimilation if we had restricted ourselves to complete diur-
nal measurement cycles. To get both a sufficient number of
data points and avoid biases in daily averaged LHF values,
we include days with up to four of the 48 half-hourly val-
ues missing, where the gaps were filled using an appropriate
gap-filling scheme (see Appendix A in the Supplement). This

procedure yields a total of 464 daily data points for the two
selected years 2000 and 2001.

Input data of daily precipitation, daily minimum and max-
imum temperatures, and incoming solar radiation at the site
are derived from a global gridded climate data set, gener-
ated through a combination of available monthly gridded and
daily station data (R. Schnur, personal communication, 2010)
by a method by Nijssen et al. (2001), using gridded data from
the Summary of the Day Observations (Global CEAS), Na-
tional Climatic Data Center and the latest updates of gridded
data by Jones et al. (2001) and Chen et al. (2002). These
data are then corrected using the local climatology measured
at the eddy flux tower (Lloyd et al., 2004). This is done
by deriving linear regression equations between daily min-
imum and maximum temperatures and incoming solar radi-
ation from the global data set and the local measurements.
Daily precipitation from the global data set is adjusted by
multiplying the global data with a constant factor such that
the total rainfall matches that of the local rainfall data.

The assimilated FAPAR observations are derived from the
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) of the
National Aeronautics and Space Administration (NASA) at
a spatial resolution of 1.5 km (Gobron et al., 2006). The FA-
PAR data are provided every 10 days as representative values
over the period giving a total of 70 data points over the two-
year study period. 3 by 3 pixel scenes centred around the
position of the Maun flux site are used here.

We have chosen the Maun site for several reasons. First,
two years of flux data, both LHF and carbon fluxes, mea-
sured by the EC technique during the SAFARI2000 cam-
paign are available (Lloyd et al., 2004). Second, a flat topog-
raphy and homogeneous land cover increase the representa-
tiveness of the EC measurements for larger areas such as the
FAPAR footprint. There are also significantly fewer cases of
cloudy conditions at a savanna site as compared to, for ex-
ample, tropical forest sites. Third, the dominant land cover
types with mopane trees, understory grasses, and patchy bare
ground, which change their relative coverage seasonally, are
potentially responsible for large amplitudes and distinct sea-
sonality in LHF and other related quantities. This environ-
ment thus provides a welcome opportunity for testing and
enhancing the CCDAS in an area with water-limited condi-
tions and low productivity.

2.2 Carbon Cycle Data Assimilation System

CCDAS, in its standard global setup, combines the land bio-
sphere model BETHY (Knorr, 2000) with the atmospheric
tracer transport model TM2 (Heimann, 1995) and some
background fluxes not computed by BETHY (fossil fuel
and land use change emissions and ocean–atmosphere ex-
change fluxes) to simulate the terrestrial carbon cycle glob-
ally along with atmospheric CO2 concentrations. It uses first
and second derivatives to optimize internal model process
parameters and subsequently derive posterior uncertainties

www.biogeosciences.net/10/789/2013/ Biogeosciences, 10, 789–802, 2013
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Fig. 1.Schematic diagram of the CCDAS structure. Ovals represent
input and output data, and boxes represent calculation steps. Diag-
nostics are quantities of interest such as carbon fluxes computed by
CCDAS. “unc.” stands for uncertainty and “param.” for parameters.

on these parameters. In this study, we modify the version of
CCDAS as described in Knorr et al. (2010) to assimilate daily
LHF and FAPAR measurements at the Maun savanna site.
BETHY calculates the energy balance (including LHF), pho-
tosynthesis (including FAPAR) and autotrophic respiration
on an hourly time step, and phenology, hydrology and het-
erotrophic respiration on a daily time step using the before-
mentioned climate input data (Fig. 1). Two plant functional
types (PFTs), namely tropical broadleaf deciduous tree with
a warm-deciduous phenology and C4 grass (recognized as
PFT 2 and 10 in the original BETHY model), are simulated
for the Maun site with a fractional coverage of 0.7 and 0.3
for PFT 2 and 10, respectively. Detailed information about
BETHY is given in the Appendix B in the Supplement.

LHF is calculated as the sum of three terms: transpiration
through stomata, soil evaporation and direct evaporation of
intercepted rain water on the leaves (Knorr, 1997). Soil evap-
oration is calculated by the Ritchie model (Ritchie, 1972),
separating the evaporation scheme into two phases depend-
ing on soil wetness level. In phase 1 (very wet soil), the soil
evaporation rate depends on equilibrium evaporation, while
in phase 2 (drying soil), the cumulative evaporation is pro-
portional to the square root of time with a proportionality
factor called “desorptivity”.

FAPAR is calculated as the vertical integral of absorption
of photosynthetically active radiation by healthy green leaves
divided by the difference between the incoming and outgo-
ing radiation flux at the top and bottom of the canopy (Knorr,
1997). This integration is carried out by a two-flux scheme
(Sellers, 1985), which takes into account soil reflectance, so-
lar angle and amount of diffuse radiation. Equating satellite
and model FAPAR means that given the same illumination
conditions, the same number of photons enter the photosyn-
thetic mechanism of the vegetation, even if some of the as-
sumptions differ between BETHY and the model used to de-
rive FAPAR (Gobron et al., 2000).

Differences between simulated LHF and FAPAR values
and the observed data are minimized by optimizing process
parameters of BETHY. Here, we only briefly summarise the
main methodological aspects. There are two modes in our
data assimilation process: a calibration mode and a diagnos-
tic mode. In calibration mode, the optimal parameter set is
derived from FAPAR and LHF observations by propagating
the observational information in an inverse sense through a
chain of models. The mismatch of modeled values to obser-
vations is defined as a cost function as explained in the fol-
lowing Sect. 2.3, and model parameters are then calibrated
through iterative parameter adjustment (using the gradient in-
formation provided by the adjoint model) until the cost func-
tion reaches a minimum. In diagnostic mode, the quantities
of interest (i.e. LHF and FAPAR) and their uncertainties can
be calculated from the optimized parameter vector and its un-
certainty as derived in the calibration mode. When the model
is run in diagnostic mode, the model is run forward with the
optimized parameters and the various diagnostics of interest.
For detailed information on the CCDAS methodology, we
refer to Kaminski et al. (2003), Scholze (2003), Rayner et
al. (2005), and Scholze et al. (2007).

2.3 Cost function and observational uncertainties

The cost functionJ (p) (p denotes the parameter vector)
expresses the differences between simulated and observed
quantities normalised by the uncertainty of each of the con-
tributing observations, LHF and FAPAR, under the assump-
tion of a Gaussian probability density distribution. It is for-
mulated in a Bayesian form:

J (p) =
1

2
[p − p0]T C−1

p0
[p − p0] +

1

2
[e(p) − e0]T C−1

e0

[e(p) − e0] +
1

2
[a(p) − a0]T C−1

a0
[a(p) − a0] , (1)

wherep is the parameter vector,p0 is the prior parameter
vector (subscript 0 denotes the prior value), andCp0

is the
uncertainty for the prior parameter vectorp0 in the form of
a covariance matrix.e(p) anda(p) are modeled LHF and
FAPAR values as a function of the parameter setp; e0 and
a0 are the observations of LHF and FAPAR; andCe0 andCa0

express the uncertainties of the observationse0 anda0. ( )T

and ( )−1 denote the transpose and inverse of matrices.J is
minimized iteratively using derivative information calculated
by the adjoint model.

The Hessian matrix, the second derivative ofJ with re-
spect to the parameters, is used to estimate posterior parame-
ter uncertainties, using the mathematical property that the in-
verse of the Hessian matrix at the cost function minimum ap-
proximates the posterior parameter error covariance matrix.
All derivative code is derived efficiently from the model’s
source code (see Kaminiski et al., 2003) by applying the
automatic differentiation tool TAF (Transformation of Algo-
rithms in Fortran; Giering and Kaminski, 1998).
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The uncertainty of observational LHF is taken as the max-
imum of 10.0 W m−2 and 23 % of measured LHF, which
is in analogy to the approach taken by Knorr and Kattge
(2005). In this study, the 23 % threshold was derived from
the energy imbalance at this site, which was calculated as
the underestimation of the sum of daily averaged sensible
and latent heat flux (SHF+ LHF) compared to the sum of
net radiationRn and soil heat fluxG in the regression line:
SHF+ LHF = 0.77 (Rn + G) − 12.2 Wm−2, r2

= 0.79. Al-
though the energy imbalance should rather be regarded as
a systematic error, we consider it here as a reasonable ad
hoc value to define the observational uncertainty for the opti-
mization, which corresponds to a random error. As in Knorr
et al. (2010), the uncertainty of observational FAPAR is set
to a constant value of 0.1 for all observations.

2.4 Eco-hydrological parameters

We select 24 parameters to be optimized against observed
LHF and FAPAR data (Table 1). 8 parameters refer to both
PFT 2 and 10, the remaining only to one of the two. The
first 14 parameters are related to physiology, and the next
four to leaf phenology. The prior mean and uncertainty val-
ues for these 18 parameters are the same as those used in
previous applications of CCDAS (Scholze et al., 2007; Knorr
et al., 2010). The six new parameters (19–24) control stom-
atal aperture, energy balance, and water balance processes
in BETHY. They arefCiC3 andfCiC4, the ratio of CO2 con-
centration inside and outside of leaf tissue for C3 and C4,
respectively (Eq. A21 in the Supplement);CW , the ratio of
maximum water supply rate from the roots relative to plant-
available soil moisture (Eq. A24);h0, a scaling factor of
the relative dryness of air (Eq. A35);ĥ, a scaling factor of
the relative humidity of air (Eq. A34); andWmax, the max-
imum plant-available soil moisture. The latter is defined as
Wmax= d · (Wfc − Wwilt ), whered is rooting depth (in m),
andWfc andWwilt are volumetric water content at field ca-
pacity and wilting point, respectively (in m3 water per m3

wet soil). Parameters 19–23 were introduced by Knorr and
Heimann (2001) and are parameterised as in that study, with
a relative uncertainty of 10 %.

For Wmax, we assume a prior value of 104 mm derived
from Patterson (1990). A decreasing value ofWmax causes a
decline of relative soil wetness, leading to decreased tran-
spiration in BETHY. The values ofWmax strictly deter-
mine the area average across PFTs, while the PFT spe-
cific values are determined such that the averageWmax of
all grass PFTs is 30 % of the averageWmax of all tree
(or shrub) PFTs. In this study, PFT2 (tree) and PFT10
(C4 grass) cover a fraction off2 = 0.7 and f10= 0.3
of ground surface, respectively. From this condition, we
obtain Wmax(tree)= Wmax/(f2 + 0.3f10) = 1.27Wmax, and
Wmax(grass)= Wmax/(f10+ f2/0.3)= 0.38Wmax. Further in-
formation on parameters is given in the Supplement.

Fig. 2. Relative reduction (%) in parameter uncertainty after opti-
mization.

2.5 Experimental set-up

To investigate the impact of multiple data streams on the
assimilation results, we perform three assimilation experi-
ments: (1) assimilating only LHF, (2) assimilating only FA-
PAR data, and (3) assimilating LHF and FAPAR data simul-
taneously (denoted combined assimilation). In addition, we
run a prior simulation of the model with prior parameter val-
ues and no data assimilation. The assimilation experiment
with only LHF data considers the first and second terms in
Eq. (1), the one with only FAPAR considers the first and third
terms, and combined assimilation all three terms.

3 Results

3.1 Optimization and parameter uncertainty

The optimizations took 38, 43, and 41 iterations to converge
to a minimum for LHF, FAPAR and combined assimilation,
respectively. The total value of the cost function was reduced
by a factor of between 1.1 and 5.7, while the norm of the
gradient of the cost function was reduced by many orders of
magnitude to a final value close to zero for all experiments
(see Table 2).

The main metric to measure the impact of the ob-
servational constraint provided by the assimilated data
stream is the relative uncertainty reduction. It is defined as
1−σposterior/σprior, whereσ is one standard deviation of the
respective parameter uncertainty before or after assimilation.
It is shown in Table 1 and Fig. 2 along with prior parameter
values and uncertainties.

Relative parameter uncertainties are reduced by more than
20 % for three, four, and six of the 24 parameters for LHF,
FAPAR and combined assimilation, respectively. In general,

www.biogeosciences.net/10/789/2013/ Biogeosciences, 10, 789–802, 2013
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Table 1. List of parameters in prior run and posterior runs assimilating LHF, FAPAR, and the combination of LHF and FAPAR. Uncer-
tainty reduction (Unc. red.) is calculated as posterior minus prior uncertainty divided by prior uncertainty. Top rows: physiology; mid-
dle: phenology; bottom: energy and water budgets. Units of parameters areVmax in µmol (CO2) m−2 s−1; k in µmol (air) m−2 s−1; α0,T in
µmol (CO2) mol (air)−1oC−1; KC in µmol (CO2) mol (air)−1; KO in mol (O2) mol (air)−1; activation energiesE in J mol−1, τW in days;
CW0 in mm h−1, Wmax in mm; and others are unitless. Prior uncertainty represents one standard deviation, except for the log-normally
distributed parameters denoted by (∗), for which the analogous difference between mean and upper 67 percentile is given.

Prior LHF assimilation FAPAR assimilation Combined assimilation

Num. PFT Parameter Mean Unc. Mean Unc. red. [%] Mean Unc. red. [%] Mean Unc. red. [%]

1 2 Vmax
25 90 18 75 2 60 2 35 41

2 10 Vmax
25 8 1.6 6 16 7 1 6 46

3 2 aJ,V 1.99 0.10 1.99 0 1.99 0 2.01 0
4 10 k25 140 28 140 0 140 0 140 0
5 All ERd 45 000 2250 45 018 0 44 998 0 45 089 0
6 All EVmax 58 520 2926 58 487 0 58 349 0 54 747 0
7 2 EKO 35 948 1797 35 931 0 35 943 0 35 732 0
8 2 EKC 59 356 2967 59 184 0 59 446 0 60 962 0
9 10 Ek 50 967 2548 50 966 0 50 966 0 50 959 0

10 2 αq 0.280 0.04 0.279 0 0.282 0 0.288 3
11 10 αi 0.040 0.002 0.040 0 0.040 0 0.041 0
12 2 KC

25 460 23 463 0 465 0 470 1
13 2 KO

25 0.33 0.02 0.33 0 0.33 0 0.33 0
14 2 α0,T 1.70 0.09 1.71 0 1.70 0 1.68 1

15 All 3max 5.00 0.25 5.22 4 5.02 0 5.04 1
16 All ξ 0.50 0.10 0.51 0 0.50 0 0.61 14
17 2 τW

∗ 30 15 10 42 170 46 94 87
18 10 τW

∗ 30 15 11 36 19 29 14 40

19 2 fCiC3 0.650 0.065 0.584 10 0.592 3 0.695 23
20 10 fCiC4 0.370 0.037 0.359 3 0.367 0 0.378 3
21 All CW 0.500 0.005 0.500 0 0.500 0 0.502 0
22 All h0 0.490 0.005 0.490 0 0.490 0 0.488 0
23 All ĥ 0.960 0.010 0.959 0 0.961 0 0.953 0
24 All Wmax

∗ 104 104 323 90 58 65 129 95

Table 2. Cost function contributions from parameters (Param.), latent heat flux (LHF), and fraction of absorbed photosynthetically active
radiation (FAPAR), as well as the total cost function value and the norm of the gradient.

Assimilation of Cost function

Param. LHF FAPAR Total Gradient

None (prior) 0 904 131
904 (LHF) 242 (LHF)

131 (FAPAR) 182 (FAPAR)
1035 (Combined) 78 (Combined)

LHF 10 302 1571∗ 312 1.4× 10−2

FAPAR 12 1306∗ 11 23 9.2× 10−7

Combined 14 746 141 901 2.7× 10−6

∗ Not counted for total cost function.

parameters showing considerable uncertainty reductions are
the maximum catalytic capacity of rubisco (Vmax

25; parame-
ters 1 and 2), the expected length of drought periods tolerated
before leaf shedding (τW ; parameters 17 and 18), the stan-
dard ratio of CO2 concentration inside and outside the leaf

tissues for C3 plants (fCiC3; parameter 19), and the maximum
plant-available soil moisture (Wmax: parameter 24). These six
parameters also change considerably during assimilation (Ta-
ble 1).
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Which parameters show high uncertainty reduction differs
only slightly among the experiments (Table 1 and Fig. 2).
However, the largest uncertainty reductions always occur for
the combined assimilation where we simultaneously assim-
ilate both data streams. While the water balance-related pa-
rametersWmax andτW are strongly constrained even by one
data stream alone,Vmax

25 for PFT2 andξ require the com-
bination of both to be constrained relative to their prior. For
Vmax

25 (PFT10) andfCiC3, we find that LHF delivers some
constraint, but the addition of FAPAR increases the con-
straint considerably, even though FAPAR assimilation alone
delivers almost no uncertainty reduction.

Notably, parameter 24 (Wmax) changes substantially from
a prior value of 104 mm upward to 323 mm for LHF assimila-
tion, and downward to 58 mm for FAPAR assimilation, while
for combined assimilation the posterior value of 129 mm is
close to the prior. Some parameters, for which the uncertainty
reduction is less than 20 %, also show relatively large devi-
ations from their prior parameter value (Table 1). These are
parameters related to the activation energies and Michaelis–
Menten constants of the temperature dependency of enzyme
kinetics,EVmax andKC

25, as well as the efficiency of electron
transport,αq , for C3 vegetation, and the linear growth con-
stant in LAI, ξ . For the other 14 parameters, both the poste-
rior value and the uncertainty hardly change compared to the
respective prior values.

The three posterior uncertainty covariance matrices con-
tain additional valuable information about which parameters
are constrained simultaneously by which data stream. If we
express the matrix in terms of correlations, i.e. normalise by
standard deviations, the parameter which shows the highest
absolute correlations with other parameters isWmax. These
are shown in Table 3 asRp

i,j . A positive uncertainty cor-
relation of two parameters means that if we underestimate
one parameter, we are likely to underestimate the other pa-
rameter, too, and vice versa. This means we have a strong
constraint on the difference of the two parameters but not on
their sum. Negative uncertainty correlation is associated with
a strong constraint on their sum but a weak constraint on their
difference.

A positive uncertainty correlation (> 0.25) is found for
Wmax againstVmax

25 PFT10 for LHF, and againstVmax
25

PFT2 for FAPAR assimilation, but a negative one (< 0.25)
againstVmax

25 PFT10 for the combined assimilation. In the
combined case,Wmax is also strongly uncertainty correlated
with τW PFT10, while for the assimilation of single data
stream, it is more strongly correlated toτW PFT2 than
to τW PFT10. Wmax and fCiC3 are also co-constrained
with a positive correlation for the single data stream
cases, but not for the combined case. The only additional
cases with absolute values above 0.25 areRp(τW PFT2,
fCiC3) = −0.52, Rp(τW PFT2, Vmax

25 PFT2)= − 0.27
and Rp(τW PFT10, Vmax

25 PFT10)= −0.30 for LHF
assimilation, and Rp(fCiC3, Vmax

25 PFT2)= − 0.95,

Table 3. Error correlation coefficient ofWmax to each model pa-
rameter under optimization process.

Rp
i,j

Num. PFT Parameter LHF FAPAR Combined

1 2 Vmax
25 0.00 0.47 −0.11

2 10 Vmax
25 0.38 0.17 −0.29

3 2 aJ,V 0.01 0.01 0.00
4 10 k25 0.00 0.00 0.00
5 All ERd 0.00 0.00 0.00
6 All EVmax −0.05 0.00 0.00
7 2 EKO −0.01 0.00 0.00
8 2 EKC 0.04 0.00 −0.01
9 10 Ek 0.00 0.00 0.00
10 2 αq 0.06 0.04 0.01
11 10 αi 0.04 0.02 0.09
12 2 KC

25 0.00 −0.06 0.00
13 2 KO

25 0.00 0.02 0.00

14 2 α0,T −0.03 −0.05 −0.01
15 All 3max 0.03 0.01 0.18
16 All ξ 0.00 −0.03 −0.03
17 2 τW 0.28 0.59 0.08
18 10 τW −0.09 0.36 0.75

19 2 fCiC3 0.23 0.57 0.03
20 10 fCiC4 0.10 0.06 0.08
21 All CW 0.15 0.00 −0.07
22 All h0 −0.01 −0.01 −0.01
23 All ĥ −0.05 −0.02 0.00
24 All Wmax 1.00 1.00 1.00

Rp(τW PFT10, Vmax
25 PFT10)= 0.31 and Rp(τW PFT10,

Vmax
25 PFT2)= − 0.25 for the combined assimilation.

3.2 LHF and FAPAR

As a comparison to measurements reveals (Fig. 3), the
prior simulation considerably underestimates LHF during the
two wet seasons (except for some scattered points between
November and April), but has slightly higher values than the
observations during the dry period. LHF and combined as-
similation cases show a reasonable seasonality of LHF with
high values in the wet season, gradually declining during the
dry season (April to October), with slightly lower values than
the observations. However, FAPAR assimilation yields lower
LHF values than the observations over almost the entire sim-
ulation period, although with some scattered high values in
the wet season. This results in the highest root mean square
error (RMSE) for FAPAR assimilation (27.3 Wm−2) com-
pared to 14.3 and 23.5 Wm−2 for LHF and combined assim-
ilation, respectively.

Prior FAPAR values show a high value ranging up to 0.69
during spring and summer (Fig. 4); however, the observa-
tions show much lower values with a distinct seasonality
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Fig. 3.Daily observed and simulated latent heat flux (LHF; W m−2)
for the years 2000–2001. The error bar for observed LHF (Obs) rep-
resents the data uncertainty used in CCDAS. “Prior”, “LHF”, “FA-
PAR”, and “Combined” are prior run and posterior runs with LHF,
FAPAR, and combined LHF and FAPAR, respectively. Root mean
square errors (RMSEs) of simulated LHF against observations are
23.5, 14.3, 27.3 and 21.5 W m−2 for Prior, LHF, FAPAR, and Com-
bined assimilations, respectively.

ranging between 0.11 and 0.39. After assimilation of LHF,
the modeled FAPAR values are too high, ranging between
0.65 to 0.95 (RMSE 0.67, see Fig. 4) when compared to
the observations. Modeled FAPAR values after FAPAR as-
similation show excellent agreement with the observations
(RMSE 0.06), with the simulated FAPAR values falling
within the uncertainty range of the observed values over al-
most the entire period. For the combined assimilation, the
modeled FAPAR values have a distinct seasonality with val-
ues larger than the observations during the wet period, but
showing a good agreement with the observations at the end
of the dry period in October (RMSE 0.20).

3.3 Simulation of carbon fluxes

A comparison with data of gross primary production (GPP)
derived from the eddy covariance data is shown in Fig. 5. The
LHF assimilation case gives the highest GPP among the three
experiments, which is mainly an effect of the simulated large
LAI values. FAPAR assimilation results in much lower sim-
ulated GPP than the observations, while matching satellite-
derived FAPAR rather well (Fig. 4).

Apart from a good fit of LHF for the combined case, the
simulated GPP also shows a moderately good fit in season-
ality, which is reflected in a lower RMSE of 22 Wm−2 com-
pared to the FAPAR assimilation case (27 Wm−2). All in all,
the LHF assimilation case gives the best agreement with eddy
covariance-derived GPP. We must note, however, that LHF

Fig. 4. Observed and simulated fraction of absorbed photosyntheti-
cally active radiation (FAPAR) for the years 2000–2001, at 10-day
intervals. Observed FAPAR is derived from the SeaWiFS instrument
of the National Aeronautics and Space Administration (NASA).
The error bar of observed FAPAR (Obs) represent the data un-
certainty used in CCDAS. “Prior” is the unconstrained simulation;
“LHF”, “FAPAR” and “Combined” denote which data streams were
used when assimilating. Root mean square errors (RMSEs) of simu-
lated FAPAR against observations are 0.195, 0.675, 0.056 and 0.202
for Prior, LHF, FAPAR and Combined, respectively.

Fig. 5. Daily observed and simulated gross primary production
(GPP) for the years 2000–2001. Observed GPP (Obs), based on
eddy covariance data, is estimated by subtracting net ecosystem ex-
change (NEE) from ecosystem respiration during daytime. Daytime
ecosystem respiration is estimated from the relationship between
night-time ecosystem respiration and soil temperature. Root mean
square errors (RMSEs) of simulated GPP against observation-based
values are 1.72, 1.24, 1.87 and 1.45 g C m−2 day−1 for prior, LHF,
FAPAR and combined, respectively.

and GPP data are subject to the same potential biases that
can effect eddy covariance sampling, e.g. undersampling or
adverse conditions for night-time fluxes, or representation er-
rors.
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Table 4.Sensitivity analysis on the effect by a variety of prior means and uncertainties inWmax to simulation results. Runs are conducted with
assimilating both LHF and FAPAR simultaneously. Max LAI shows maximum leaf area index in monthly averaged value for two simulation
years. C denotes the standard case.

Wmax mean [mm] Wmax unc. [mm] Max LAI [m2 m−2] Iterations Norm of
gradient

Run Prior Post Prior Post Prior Post

A 1037 129 1037 5 5.0 2.4 36 2.8× 10−5

B 311 129 207 5 4.3 2.44 35 7.4× 10−5

C 104 129 104 5 2.1 2.44 41 2.7× 10−5

D 104 163 52 14 2.1 2.49 23 1.9× 10−4

Cost function (total) Cost function (parameter) Cost function (LHF) Cost function (FAPAR)
Prior Post Prior Post Prior Post Prior Post

A 2172 906 0 19 424 746 1748 141
B 1353 903 0 16 503 746 850 141
C 1035 901 0 14 904 746 131 141
D 1035 905 0 16 904 744 131 145

RMSE (LHF) [W m−2] RMSE (FAPAR) [nodim] RMSE (GPP) [g C m−2 day−1]
Prior Post Prior Post Prior Post

A 16.5 21.5 0.71 0.20 1.33 1.35
D 20.3 21.4 0.36 0.21 1.26 1.20
C 23.5 21.5 0.20 0.20 1.62 1.34
D 23.5 21.4 0.20 0.21 1.62 1.21

3.4 Sensitivity analysis of the impact of priorWmax
values on the optimization

BecauseWmax shows the highest relative uncertainty reduc-
tion of up to 95 % (Table 1, and Fig. 2), we investigate how
much the choice of the prior mean and uncertainty of this
parameter impacts the assimilation results. Little is known
aboutWmax for the Maun site, which is why we have assigned
it a large prior uncertainty (100 % of prior mean value). In a
series of sensitivity experiments, we assimilated both LHF
and FAPAR observations with four different combinations of
prior mean and uncertainty forWmax. The prior mean values
are 1, 1, 3 and 10 times, and uncertainties are 0.5, 1, 2 and
10 times the standard case (see Table 4).

All four data assimilation experiments yield very similar
posterior values ofWmax, despite large variations in priors.
Also, relative uncertainty reduction ofWmax is large for all
cases (Table 5), but least when the prior error is smallest (Ex-
periment D), as expected. The pattern of uncertainty reduc-
tion across all parameters is also very similar between the
four experiments (Table 5). The biggest difference here is for
τW PFT10, for which Experiment A shows a markedly higher
uncertainty reduction. The posterior values of the other pa-
rameters also vary by less than 2 % between the sensitivity
runs, exceptτW PFT2 and 10 for Experiment D (102 and 12,
respectively, against 94 and 14 for the other cases). Poste-
rior maximum LAI and the components of the cost function
(total, parameter, LHF and FAPAR part) also all lie within a
narrow range among the experiments, as does the RMSE for

LHF, FAPAR and GPP (Table 4). This suggests that the op-
timum solution we found in the default experiment seems to
be robust against the choice of priorWmax values. The most
notable finding is that the agreement with measured GPP is
best for Experiment D, which has a reduced prior uncertainty.

4 Discussion

4.1 Performance of model and assimilation scheme

Compared to the observed annual maximum in LAI between
0.9 and 1.3 (Mantlana, 2002; Veenendaal et al., 2008), FA-
PAR and combined assimilation lead to reasonable simulated
annual maximum LAI values of 1.0 and 2.4, respectively.
However, LHF assimilation gives a value of 5.2, which is
at the environmental limit given by the parameter value for
3max (5.2, see Table 1) and is clearly too high.

The optimal value ofWmax is found between 58 to
323 mm, depending on the data stream assimilated (Table 1).
Wmax can be converted to rooting depth by dividing by
the difference between volumetric soil moisture content at
field capacity and wilting point, i.e. by the volumetric plant-
available soil moisture. Here, we assume a plant-available
soil moisture of 0.12 m3 m−3, based on the World Inventory
of Soil Emission Potentials 2.1 data base (Batjes, 1995), for
the Maun site and obtain values for rooting depth of 2.7, 0.5
and 1.1 m for LHF, FAPAR and combined assimilation, re-
spectively. The value for the combined case (1.1 m) is close
to the reported rooting depth in such dry conditions. Schenk
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Table 5.Uncertainty reduction for model parameters for the sensi-
tivity experiments on the effect by priorWmax values.

Relative uncertainty reduction [%]

Num. PFT Parameter A B C (standard) D

1 2 Vmax
25 42 41 41 50

2 10 Vmax
25 57 46 46 42

3 2 aJ,V 0 0 0 1
4 10 k25 0 0 0 0
5 All ERd 0 0 0 0
6 All EVmax 0 0 0 1
7 2 EKO 0 0 0 0
8 2 EKC 0 0 0 0
9 10 Ek 0 0 0 0

10 2 αq 4 4 3 3
11 10 αi 0 0 0 1
12 2 KC

25 1 1 1 1
13 2 KO

25 0 0 0 0
14 2 α0,T 1 1 1 1

15 All 3max 3 1 1 1
16 All ξ 14 14 14 14
17 2 τW 87 87 87 85
18 10 τW 57 40 40 48

19 2 fCiC3 22 23 23 34
20 10 fCiC4 4 3 3 5
21 All CW 0 0 0 0
22 All h0 0 0 0 0
23 All ĥ 0 0 0 0
24 All Wmax 95 93 95 78

and Jackson (2002) suggested that dry tropical savannas have
on average a rooting depth of 1.4 m containing 95 % of the to-
tal ecosystem roots. Veenendaal et al. (2008) showed that the
tall and short mopane trees at the Maun site rooted at least
1.0 m deep. However, they also indicated that the total root
density of both mopane types as well as the fine root density
of short mopane were concentrated in the upper soil fraction
up to 0.2 m depth. However, we must note that the inferred
rooting depth is the maximum depth from which trees obtain
water throughout both wet and dry season. Therefore, a root-
ing depth of 2.7 m as inferred by LHF assimilation seems to
be at least possible, even though higher than commonly as-
sumed. The estimates of the other two assimilation cases are
found to be consistent with observations.

Even though we do not give an explicit error margin for
observed GPP, we would expect at least the same relative
uncertainty (around 25 %) as for LHF, and a minimum un-
certainty of 1–2 g C m−2 day−1 given the negative outliers
shown in Fig. 5. With this assumption, we find that all simu-
lations give reasonable GPP values, but that the LHF assimi-
lation clearly leads to the best agreement.

We generally find that the combined assimilation lies in
between the two separate assimilation cases: While LHF as-
similation increases FAPAR and LHF, FAPAR assimilation

decreases both quantities, and for the combined case simu-
lated FAPAR, LHF and also GPP are adjusted to a an inter-
mediate state, which happens to be rather close to the prior.

Considering the observational uncertainties, we find that
both the LHF-assimilated and the combined-assimilated
models generally agree with LHF observations, but that LHF
is underestimated by the FAPAR-assimilated model. The
opposite applies to the simulation of FAPAR: The LHF-
assimilated model clearly overestimates FAPAR compared
to the observations throughout the entire assimilation period,
effectively simulating a semi-evergreen ecosystem (Fig. 4).
At the same time, the model is capable of matching observed
FAPAR after assimilating this quantity, but at the cost of re-
ducing LHF and GPP somewhat below observations (Figs. 3
and 4). The reduction in these quantities is expected given the
reduced LAI required to match a lower FAPAR compared
to the LHF assimilation or the prior. We also find that the
FAPAR-assimilated model shows a slight delay in the maxi-
mum FAPAR against the satellite data and that the combined
assimilation still overestimates FAPAR during the wet sea-
son.

Since the intermediate state found by the combined as-
similation maximizes overall agreement with observations,
the assimilation can be considered successful. We have thus
demonstrated the capability of CCDAS to assimilate multi-
ple data streams in a technical sense. However, the more in-
teresting question is what can be learned from the way the
model is adjusted and from the match or mismatch between
model and observations. To match the observed LHF, the
model needs to increase its simulated LAI beyond the ob-
servational constraint provided by FAPAR. Because CCDAS
in calibration mode explores the complete parameter space
of BETHY, we know that no combination of parameters is
able to fully match both data streams, and that matching the
observed LHF is only possible by simultaneously ignoring
constraints by observed FAPAR.

From a theoretical standpoint, we expect the time evo-
lution of LHF to closely follow FAPAR. This is because
dry-season LHF is dominated by transpiration, transpira-
tion mostly driven by net radiation absorbed by the canopy
(McNaughton and Jarvis, 1991), and leaves mostly absorb
in the photosynthetically active range. Indeed, observed
LHF is reduced approximately proportionally to FAPAR
when going from wet to dry season. During the dry season
(May–October), observed LHF is still about one quarter of
typical values during the wet season, and observed FAPAR
somewhat more than a quarter of wet-season values. Exam-
ining Fig. 3 reveals that the under-matching LHF for the
FAPAR-assimilated case is mainly due to low values during
the dry season, and that the model shows a stronger contrast
in LHF between the two seasons than the observations. Fur-
ther model evaluation through assimilation of EC data, for
other sites or different years, will be necessary to identify the
reason for this difference.
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When evaluating the model against observations as de-
scribed above, we need to keep in mind conceptual is-
sues when producing EC-derived GPP, which respiration ac-
counted for by an empirical model, and possible biases of
the EC system indicated by the lack of full energy closure
(see Sect. 2.3). Trudinger et al. (2007) indicated that results
were biased significantly by temporally correlated and non-
Gaussian noise in their intercomparisons of many assimila-
tion methods for a simplified process-based terrestrial model,
including the adjoint method used here . Although most as-
similation schemes assume, as does CCDAS, uncorrelated
and Gaussian distributed errors, eddy covariance data have
been shown to be impacted by several types of systematic
errors: energy imbalance as mentioned above, underestima-
tion of ecosystem flux under stable atmospheric conditions
on calm nights, missing data, and so on. For example, neg-
ative observation-based GPP from eddy covariance data in
November 2000 (Fig. 5) indicates inadequate data processing
in terms of the estimated daytime ecosystem respiration for
calculating GPP by subtracting NEE from it or the gap-filling
procedure for missing data. Currently, we can not avoid such
systematic errors easily. We have, however, considered the
size of the energy disclosure as a prior uncertainty for LHF
observations as a pragmatic solution.

A further problem may be associated with insufficient
cloud screening for the FAPAR product, which would affect
observations mainly in the wet season. This needs to be taken
into account when interpreting the slight delay between mod-
eled and satellite FAPAR for the FAPAR-assimilation case.
A possible wet-season bias, if corrected, would bring the
FAPAR-assimilated model closer to the prior or combined
case, decreasing the mismatch between observed and model
LHF. We further believe that the relatively coarse spatial res-
olution of the FAPAR product may not always capture the
local phenomena inside the footprint of the flux tower.

It is important to note that most of the discrepancies just
discussed would not have been detected if either BETHY had
been run only with fixed parameters, without the CCDAS
calibration step, or only one data stream had been assim-
ilated. Therefore, an important lesson is that the assimila-
tion of multiple data streams in CCDAS, by virtue of ex-
ploring the full range of model parameterisations, is a robust
method for identifying data biases as well as conceptual lim-
itations of models, and as such clearly superior to the stan-
dard approach of model parameterisation and validation. In
an earlier study (Knorr et al., 2010), CCDAS was used to
explore a range of possible formulations for leaf phenology,
with assimilation of FAPAR providing a rigorous test for the
combined surface, eco-physiology and phenology model in
CCDAS.

4.2 Constraint of parameters by eddy covariance LHF
and satellite FAPAR data

The most important outcome of this data assimilation ex-
ercise is that the biggest constraint delivered by the data
streams in question is on the parameterWmax. This is not
only because this parameter is constrained to a large degree
by all assimilation experiments, but also because the max-
imum water holding capacity of the maximum soil volume
that can be reached by the vegetation’s root system is a funda-
mental quantity in these water-limited ecosystems. Since it is
not possible to measure this quantity at anything but the plot
scale, assimilation of LHF and indirect inference ofWmax
via data assimilation has the potential to deliver estimates at
the scale of hundreds of metres. In addition, assimilation of
FAPAR vastly expands the potential range to cover whole
ecoregions and the globe.

We also find that the inferred value ofWmax is generally
robust against the choice of prior values of the same parame-
ter, but depends on the data stream assimilated. LHF assim-
ilation required high values of LAI that needed to be sup-
ported by ample soil moisture, and consequently inferred the
highest value ofWmax. Assimilation of FAPAR, by contrast,
yields values more consistent with observed rooting depth.
Before the technique could be applied at larger scales, some
issues regarding data bias and the simulated latent heat flux
under water stress (i.e. during the dry season) need to be clar-
ified.

However, even before these issues are finally resolved, the
structure of the posterior error covariance matrix can yield
valuable information for the design of such observing sys-
tems. First of all, the parameters constrained by either assim-
ilation experiment tend to be the same. Further,Wmax andτW

have generally large positive uncertainty correlations. This
can be explained in the following way: HigherWmaxwill lead
to more soil moisture in the dry season, but has the effect of
closing stomata further compared to a situation with iden-
tical absolute soil moisture but lowerWmax (Eq. A24). To
compensate this effect, which decreases both LHF and FA-
PAR, the optimization reducesτW – recall thatτW represents
the expected length of drought periods tolerated before leaf
shedding (Knorr et al., 2010).

We also note that LHF assimilation yields information
simultaneously on the stomatal control and drought-driven
phenology of the savanna trees, but not on both separately.
LHF assimilation also can only constrainWmax and photo-
synthetic capacity of the grass canopy together, or photosyn-
thetic capacity and parameters of the drought-limited phe-
nology for both PFTs. FAPAR assimilation further yields a
positive uncertainty correlation between photosynthetic ca-
pacity andWmax, but for the trees not the grasses. It appears
that LHF contains more information on grass, and FAPAR
on tree functions. The sign of the uncertainty correlation for
Wmax against photosynthetic capacity also varies between
FAPAR and LHF on the one hand, and the combined case
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on the other, where the correlation is negative. This indicates
that the model operates in a different regime after the com-
bined assimilation compared to the other two cases, where
increases inWmax and photosynthetic capacity have either
opposing or concurrent effects on the agreement with the data
streams assimilated.

For the FAPAR assimilation, we find that posterior uncer-
tainties ofWmax were correlated more strongly with other
parameters than for LHF assimilation, with large correla-
tions in particular for photosynthetic capacity of the season-
ally green trees, their drought-phenology response and their
stomata control. This means that FAPAR resolves fewer pro-
cesses than LHF. However, the combined case in general has
fewer cases of simultaneous constraint of parameters than ei-
ther of the cases with a single data stream, except for the
correlation betweenWmax andτW for grasses (see above). It
seems that the seasonal response of grasses is the dominant
factor determining agreement with observations in this case.

Further insights can be gained from considering changes
in parameter values from prior to posterior. For the LHF
assimilation case, where simulated FAPAR greatly overes-
timates satellite observations, it is the smallτW value for
PFT2 of 10 days which is mainly responsible for the large
LAI values. τW has much higher posterior values of 170
days and 94 days for the other two cases, leading to a more
pronounced LAI seasonality and also a lower overall LAI.
When settingτW to such a small value we assume that the
plants’ water reserves are almost always sufficient for con-
tinued plant growth. The high reduction in the relative pa-
rameter uncertainty ofτW PFT2 and 10 by more than 29 %,
which is also apparent in a previous study with the same
phenology scheme assimilating only FAPAR at seven eddy
flux sites (Knorr et al., 2010), suggests a strong constraint
by the FAPAR observations on the phenology component of
BETHY.

The relative uncertainty reduction for parameterVmax
25

for the trees (41 %) as well as for parameterξ (14 %) are
substantially larger for the combined experiment compared
to the single-data stream cases (see Table 1 and Fig. 2). This
suggests that each data stream carries complementary infor-
mation on photosynthesis and phenology such that the com-
bined assimilation has the apparent strong constraint on spe-
cific parameters of plant productivity and leaf phenology.

5 Conclusions and implications

We present the first study that simultaneously assimilates la-
tent heat fluxes as measured by the eddy covariance tech-
nique and satellite-derived FAPAR using variational data as-
similation, here for a savanna site at Maun, Botswana. Simu-
lated LHF and FAPAR show a reasonable seasonality for the
case of assimilating the two data streams together. The opti-
mization against both data streams leads to an average rela-
tive reduction in parameter uncertainty of more than 15 % for

the 24 eco-hydrological parameters in CCDAS, compared to
between 9 and 6 % for LHF and FAPAR assimilation alone.

The important finding that FAPAR is able to constrain hy-
drological parameters is confirmed by a recent application of
CCDAS at the global scale (Kaminski et al., 2012). The au-
thors showed that by assimilating FAPAR, CCDAS was able
to constrain not only hydrological parameters, but also esti-
mates of the diagnostic quantities of soil moisture and evapo-
transpiration. Similar to the present study, the constraint was
improved when atmospheric CO2 concentrations were as-
similated simultaneously (in variance to but comparable to
the EC fluxes used here).

We thus further demonstrate the potential of multiple-data
stream assimilation by a more detailed local case study. From
our experience reported in this study, we conclude that the
simultaneous assimilation of locally and globally available
data streams is an ideal tool for the identification of biases
between models and data that can help with the develop-
ment of suitable bias models for global assimilation exercises
(Kaminski et al., 2012). Locally available data can thus im-
prove global-scale assimilation of continuous data streams of
FAPAR from satellites, bridging local and global scales and
thus furthering the goal of large-scale monitoring of such es-
sential climate variables as root-zone soil moisture.

The approach of simultaneous assimilation of multi-data
streams as presented here can be extended to include addi-
tional remote sensing products, for example using the sur-
face soil moisture product from the Soil Moisture and Ocean
Salinity (SMOS) mission (Kerr et al., 2001). Despite of
SMOS’s lower spatial resolution (35–50 km), this would al-
low a rigorous assessment of the consistency of multiple
data streams, as done here for FAPAR and LHF, but for data
streams available with global coverage from remote sensing.
More importantly, the combined assimilation of FAPAR data
with surface soil moisture from SMOS in CCDAS would
lead to a more complete description of the hydrological prop-
erties, due to the sensitivity of BETHY-simulated FAPAR to
soil moisture in the entire root zone, not only in the near-
surface layer.

Supplementary material related to this article is
available online at:http://www.biogeosciences.net/10/
789/2013/bg-10-789-2013-supplement.pdf.
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