109 research outputs found

    Comparative Approach to Define Increased Regulatory T Cells in Different Cancer Subtypes by Combined Assessment of CD127 and FOXP3

    Get PDF
    In recent years an increase of functional CD4+CD25+ regulatory T cells (Treg cells) has been established for patients with solid tumors, acute leukemias, and lymphomas. We have reported an expanded pool of CD4+CD25high Treg cells in patients with chronic lymphatic leukemia (CLL), multiple myeloma (MM) as well as its premalignant precursor monoclonal gammopathy of undetermined significance (MGUS). In healthy individuals, low-level expression of CD127 on T cells in addition to the expression of FOXP3 has been associated with Treg cells. Here, we demonstrate that the expanded FOXP3+ T-cell population in patients with colorectal cancer, CLL, MGUS, MM, follicular lymphoma, and Hodgkin's disease are exclusively CD127low Treg cells and were strongly suppressive. A significant portion of CD127lowFOXP3+ Treg cells expressed only low levels of CD25 suggesting that the previously reported expansion of CD25+ Treg cells underestimates the true expansion. The assessment of CCR7 and CD45RA expression on the expanded CD4+CD127lowFOXP3+ Treg cells revealed an increase of both naïve as well as central and effector memory Treg cells in peripheral blood. Our data strongly support superiority of combined CD127 and FOXP3 analysis in comparison to CD25 and FOXP3 assessment for further quantification of Treg cells in malignant diseases

    Murine CD146 is widely expressed on endothelial cells and is recognized by the monoclonal antibody ME-9F1

    Get PDF
    The endothelium plays an important role in the exchange of molecules, but also of immune cells between blood and the underlying tissue. The endothelial molecule S-Endo 1 antigen (CD146) is preferentially located at endothelial junctions and has been claimed to support endothelial integrity. In this study we show that the monoclonal antibody ME-9F1 recognizes the extracellular portion of murine CD146. Making use of ME-9F1 we found CD146 highly expressed and widely spread on endothelial cells in the analyzed murine tissues. In contrast to humans that express CD146 also on T cells or follicular dendritic cells, murine CD146 albeit at low levels was only found on a subset of NK1.1+ cells. The antibody against murine CD146 is useful for immunomagnetic sorting of primary endothelial cells not only from the liver but from various other organs. In vitro, no evidence was seen that the formation and integrity of endothelial monolayers or the transendothelial migration of T cells was affected by antibody binding to CD146 or by crosslinking of the antigen. This makes the antibody ME-9F1 an excellent tool especially for the ex vivo isolation of murine endothelial cells intended to be used in functional studies

    A Dendritic Cell–Specific Intercellular Adhesion Molecule 3–Grabbing Nonintegrin (Dc-Sign)–Related Protein Is Highly Expressed on Human Liver Sinusoidal Endothelial Cells and Promotes HIV-1 Infection

    Get PDF
    The discovery of dendritic cell (DC)-specific intercellular adhesion molecule (ICAM)-3–grabbing nonintegrin (DC-SIGN) as a DC-specific ICAM-3 binding receptor that enhances HIV-1 infection of T cells in trans has indicated a potentially important role for adhesion molecules in AIDS pathogenesis. A related molecule called DC-SIGNR exhibits 77% amino acid sequence identity with DC-SIGN. The DC-SIGN and DC-SIGNR genes map within a 30-kb region on chromosome 19p13.2-3. Their strong homology and close physical location indicate a recent duplication of the original gene. Messenger RNA and protein expression patterns demonstrate that the DC-SIGN–related molecule is highly expressed on liver sinusoidal cells and in the lymph node but not on DCs, in contrast to DC-SIGN. Therefore, we suggest that a more appropriate name for the DC-SIGN–related molecule is L-SIGN, liver/lymph node–specific ICAM-3–grabbing nonintegrin. We show that in the liver, L-SIGN is expressed by sinusoidal endothelial cells. Functional studies indicate that L-SIGN behaves similarly to DC-SIGN in that it has a high affinity for ICAM-3, captures HIV-1 through gp120 binding, and enhances HIV-1 infection of T cells in trans. We propose that L-SIGN may play an important role in the interaction between liver sinusoidal endothelium and trafficking lymphocytes, as well as function in the pathogenesis of HIV-1

    A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells

    Get PDF
    Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion

    STAT5 Is an Ambivalent Regulator of Neutrophil Homeostasis

    Get PDF
    BACKGROUND: Although STAT5 promotes survival of hematopoietic progenitors, STAT5-/- mice develop mild neutrophilia. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that in STAT5-/- mice, liver endothelial cells (LECs) autonomously secrete high amounts of G-CSF, allowing myeloid progenitors to overcompensate for their intrinsic survival defect. However, when injected with pro-inflammatory cytokines, mutant mice cannot further increase neutrophil production, display a severe deficiency in peripheral neutrophil survival, and are therefore unable to maintain neutrophil homeostasis. In wild-type mice, inflammatory stimulation induces rapid STAT5 degradation in LECs, G-CSF production by LECs and other cell types, and then sustained mobilization and expansion of long-lived neutrophils. CONCLUSION: We conclude that STAT5 is an ambivalent factor. In cells of the granulocytic lineage, it exerts an antiapoptotic function that is required for maintenance of neutrophil homeostasis, especially during the inflammatory response. In LECs, STAT5 negatively regulates granulopoiesis by directly or indirectly repressing G-CSF expression. Removal of this STAT5-imposed brake contributes to induction of emergency granulopoiesis.Journal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    The nuclear receptor PPARγ selectively inhibits Th17 differentiation in a T cell–intrinsic fashion and suppresses CNS autoimmunity

    Get PDF
    T helper cells secreting interleukin (IL)-17 (Th17 cells) play a crucial role in autoimmune diseases like multiple sclerosis (MS). Th17 differentiation, which is induced by a combination of transforming growth factor (TGF)-β/IL-6 or IL-21, requires expression of the transcription factor retinoic acid receptor–related orphan receptor γt (RORγt). We identify the nuclear receptor peroxisome proliferator–activated receptor γ (PPARγ) as a key negative regulator of human and mouse Th17 differentiation. PPARγ activation in CD4+ T cells selectively suppressed Th17 differentiation, but not differentiation into Th1, Th2, or regulatory T cells. Control of Th17 differentiation by PPARγ involved inhibition of TGF-β/IL-6–induced expression of RORγt in T cells. Pharmacologic activation of PPARγ prevented removal of the silencing mediator for retinoid and thyroid hormone receptors corepressor from the RORγt promoter in T cells, thus interfering with RORγt transcription. Both T cell–specific PPARγ knockout and endogenous ligand activation revealed the physiological role of PPARγ for continuous T cell–intrinsic control of Th17 differentiation and development of autoimmunity. Importantly, human CD4+ T cells from healthy controls and MS patients were strongly susceptible to PPARγ-mediated suppression of Th17 differentiation. In summary, we report a PPARγ-mediated T cell–intrinsic molecular mechanism that selectively controls Th17 differentiation in mice and in humans and that is amenable to pharmacologic modulation. We therefore propose that PPARγ represents a promising molecular target for specific immunointervention in Th17-mediated autoimmune diseases such as MS

    Lack of PPARγ in Myeloid Cells Confers Resistance to Listeria monocytogenes Infection

    Get PDF
    The peroxisomal proliferator-activated receptor γ (PPARγ) is a nuclear receptor that controls inflammation and immunity. Innate immune defense against bacterial infection appears to be compromised by PPARγ. The relevance of PPARγ in myeloid cells, that organize anti-bacterial immunity, for the outcome of immune responses against intracellular bacteria such as Listeria monocytogenes in vivo is unknown. We found that Listeria monocytogenes infection of macrophages rapidly led to increased expression of PPARγ. This prompted us to investigate whether PPARγ in myeloid cells influences innate immunity against Listeria monocytogenes infection by using transgenic mice with myeloid-cell specific ablation of PPARγ (LysMCre×PPARγflox/flox). Loss of PPARγ in myeloid cells results in enhanced innate immune defense against Listeria monocytogenes infection both, in vitro and in vivo. This increased resistance against infection was characterized by augmented levels of bactericidal factors and inflammatory cytokines: ROS, NO, IFNγ TNF IL-6 and IL-12. Moreover, myeloid cell-specific loss of PPARγ enhanced chemokine and adhesion molecule expression leading to improved recruitment of inflammatory Ly6Chi monocytes to sites of infection. Importantly, increased resistance against Listeria infection in the absence of PPARγ was not accompanied by enhanced immunopathology. Our results elucidate a yet unknown regulatory network in myeloid cells that is governed by PPARγ and restrains both listeriocidal activity and recruitment of inflammatory monocytes during Listeria infection, which may contribute to bacterial immune escape. Pharmacological interference with PPARγ activity in myeloid cells might represent a novel strategy to overcome intracellular bacterial infection

    Enolase represents a metabolic checkpoint controlling the differential exhaustion programmes of hepatitis virus-specific CD8 + T cells

    Get PDF
    Objective: Exhausted T cells with limited effector function are enriched in chronic hepatitis B and C virus (HBV and HCV) infection. Metabolic regulation contributes to exhaustion, but it remains unclear how metabolism relates to different exhaustion states, is impacted by antiviral therapy, and if metabolic checkpoints regulate dysfunction. Design: Metabolic state, exhaustion and transcriptome of virus-specific CD8+ T cells from chronic HBV-infected (n=31) and HCV-infected patients (n=52) were determined ex vivo and during direct-acting antiviral (DAA) therapy. Metabolic flux and metabolic checkpoints were tested in vitro. Intrahepatic virus-specific CD8+ T cells were analysed by scRNA-Seq in a HBV-replicating murine in vivo model of acute and chronic infection. Results: HBV-specific (core18-27, polymerase455-463) and HCV-specific (NS31073-1081, NS31406-1415, NS5B2594-2602) CD8+ T cell responses exhibit heterogeneous metabolic profiles connected to their exhaustion states. The metabolic state was connected to the exhaustion profile rather than the aetiology of infection. Mitochondrial impairment despite intact glucose uptake was prominent in severely exhausted T cells linked to elevated liver inflammation in chronic HCV infection and in HBV polymerase455-463 -specific CD8+ T cell responses. In contrast, relative metabolic fitness was observed in HBeAg-negative HBV infection in HBV core18-27-specific responses. DAA therapy partially improved mitochondrial programmes in severely exhausted HCV-specific T cells and enriched metabolically fit precursors. We identified enolase as a metabolic checkpoint in exhausted T cells. Metabolic bypassing improved glycolysis and T cell effector function. Similarly, enolase deficiency was observed in intrahepatic HBV-specific CD8+ T cells in a murine model of chronic infection. Conclusion: Metabolism of HBV-specific and HCV-specific T cells is strongly connected to their exhaustion severity. Our results highlight enolase as metabolic regulator of severely exhausted T cells. They connect differential bioenergetic fitness with distinct exhaustion subtypes and varying liver disease, with implications for therapeutic strategies

    In vivo Expansion of Naïve CD4+CD25high FOXP3+ Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration

    Get PDF
    Regulatory T cells (Treg cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of Treg cells was established. In IL-2 treated cancer patients a further Treg-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional Treg cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve Treg-cell pool. Higher frequencies of T-cell receptor excision circles in naïve Treg cells indicate IL-2 dependent thymic generation of naïve Treg cells as a mechanism leading to increased frequencies of Treg cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine Treg cells after IL-2 administration. These results point to a more complex regulation of Treg cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve Treg cells
    corecore