436 research outputs found

    Measurements of volatile organic compounds using proton transfer reaction ? mass spectrometry during the MILAGRO 2006 Campaign

    No full text
    International audienceVolatile organic compounds (VOCs) were measured by proton transfer reaction ? mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of the Megacity Initiative ? Local and Global Research Observations (MILAGRO) 2006 field campaign. Thirty eight individual masses were monitored during the campaign and many species were quantified including methanol, acetaldehyde, toluene, the sum of C2 benzenes, the sum of C3 benzenes, acetone, isoprene, benzene, and ethyl acetate. The VOC measurements were analyzed to gain a better understanding of the type of VOCs present in this region of the MCMA, their diurnal patterns and their origins. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations show the influence of vehicular traffic during the morning rush hours and during the afternoon hours. Plumes including of elevated toluene as high as 216 parts per billion (ppb) and ethyl acetate as high as 183 ppb were frequently observed during the late night and early morning hours, indicating the probability of significant industrial sources of the two compounds in the region. Wind fields during those peak episodes revealed no specific direction for the majority of the toluene plumes but the ethyl acetate plumes arrived at the site when winds were from the Southwest or West. The PTR-MS measurements combined with other VOC measuring techniques at the field site as well as VOC measurements conducted in other areas of the Mexico City Metropolitan Area (MCMA) will help to develop a better understanding of the spatial pattern of VOCs and its variability in the MCMA

    Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign

    Get PDF
    Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of the Megacity Initiative – Local and Global Research Observations (MILAGRO) 2006 field campaign. Thirty eight individual masses were monitored during the campaign and many species were quantified including methanol, acetaldehyde, toluene, the sum of C2 benzenes, the sum of C3 benzenes, acetone, isoprene, benzene, and ethyl acetate. The VOC measurements were analyzed to gain a better understanding of the type of VOCs present in the MCMA, their diurnal patterns, and their origins. Diurnal profiles of weekday and weekend/holiday aromatic VOC concentrations showed the influence of vehicular traffic during the morning rush hours and during the afternoon hours. Plumes including elevated toluene as high as 216 parts per billion (ppb) and ethyl acetate as high as 183 ppb were frequently observed during the late night and early morning hours, indicating the possibility of significant industrial sources of the two compounds in the region. Wind fields during those peak episodes revealed no specific direction for the majority of the toluene plumes but the ethyl acetate plumes arrived at the site when winds were from the Southwest or West. The PTR-MS measurements combined with other VOC measuring techniques at the field site as well as VOC measurements conducted in other areas of the Mexico City Metropolitan Area (MCMA) will help to develop a better understanding of the spatial pattern of VOCs and its variability in the MCMA. Atmos. Chem. Phys., 9, 467–481, 2009.Robert A. Welch Foundation (Grant A-1417)Texas A & M University. Center for Atmospheric Chemistry and EnvironmentNational Science Foundation (U.S.) (ATM-0528227

    Optical module to extend any Fourier-domain optical coherence tomography system into a polarisation-sensitive system

    Get PDF
    This article presents a theoretical study on an optical module (OM) that can be inserted between an object under investigation and a Fourier-domain optical coherence tomography system, transforming the latter into a polarisation-sensitive optical coherence tomography optical coherence tomography (OCT) system. The module consists of two electro-optic modulators, a Faraday rotator, a linear polariser and a quarter-wave plate. A detailed description on how the module can be used to extract both the net retardance and the fast axis orientation of a linear birefringent sample is presented. This is achieved by taking two sequential measurements for different values of retardance produced by the electro-optic modulator. The module keeps measurements free from undesired polarimetric effects due to birefringence in the single-mode optical fibre and diattenuation in fibre-based couplers within OCT systems. Simulations have been carried out in order to evaluate the effects of chromatic behaviour of the components within the OM

    Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston

    Get PDF
    Many recent models underpredict secondary organic aerosol (SOA) particulate matter (PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much better understood, we investigate the correlation of odd-oxygen ([Ox]≡[O3]+[NO2]) [([O subscript x] ≡ [O subscript 3] + [NO subscript 2])] and the oxygenated component of organic aerosol (OOA), which is interpreted as a surrogate for SOA. OOA and Ox [O subscript x] measured in Mexico City in 2006 and Houston in 2000 were well correlated in air masses where both species were formed on similar timescales (less than 8 h) and not well correlated when their formation timescales or location differed greatly. When correlated, the ratio of these two species ranged from 30 μg [mu g] m−3/ppm [m superscript -3 / ppm] (STP) in Houston during time periods affected by large petrochemical plant emissions to as high as 160 μg [mu g] m−3/ppm [m superscript -3 / ppm] in Mexico City, where typical values were near 120 μg [mu g] m−3/ppm [m superscript -3 / ppm]. On several days in Mexico City, the [OOA]/[Ox] [[OOA] / O subscript x]] ratio decreased by a factor of ~2 between 08:00 and 13:00 local time. This decrease is only partially attributable to evaporation of the least oxidized and most volatile components of OOA; differences in the diurnal emission trends and timescales for photochemical processing of SOA precursors compared to ozone precursors also likely contribute to the observed decrease. The extent of OOA oxidation increased with photochemical aging. Calculations of the ratio of the SOA formation rate to the Ox [O subscript x] production rate using ambient VOC measurements and traditional laboratory SOA yields are lower than the observed [OOA]/[Ox] [[OOA] / O subscript x]] ratios by factors of 5 to 15, consistent with several other models' underestimates of SOA. Calculations of this ratio using emission factors for organic compounds from gasoline and diesel exhaust do not reproduce the observed ratio. Although not successful in reproducing the atmospheric observations presented, modeling P(SOA)/P(Ox) [P (SOA) / P (O subscript x)] can serve as a useful test of photochemical models using improved formulation mechanisms for SOA.National Science Foundation (U.S.) (Grant ATM-528227)National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0513116)National Science Foundation (U.S.) (Grant ATM-0449815)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FGO2-05ER63982)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DEFGO2- 05ER63980)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FG02-08ER64627)United States. National Oceanic and Atmospheric Administration (Grant NA08OAR4310656

    Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    Get PDF
    An Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed during the Carbonaceous Aerosols and Radiative Effects Study (CARES) that took place in northern California in June 2010. We present results obtained at Cool (denoted as the T1 site of the project) in the foothills of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. During this study, the average mass loading of submicrometer particles (PM<sub>1</sub>) was 3.0 μg m<sup>−3</sup>, dominated by organics (80%) and sulfate (9.9%). The organic aerosol (OA) had a nominal formula of C<sub>1</sub>H<sub>1.38</sub>N<sub>0.004</sub>OM<sub>0.44</sub>, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two distinct oxygenated OA factors were identified via Positive matrix factorization (PMF) of the high-resolution mass spectra of organics. The more oxidized MO-OOA (O/C = 0.54) was interpreted as a surrogate for secondary OA (SOA) influenced by biogenic emissions whereas the less oxidized LO-OOA (O/C = 0.42) was found to represent SOA formed in photochemically processed urban emissions. LO-OOA correlated strongly with ozone and MO-OOA correlated well with two 1st generation isoprene oxidation products (methacrolein and methyl vinyl ketone), indicating that both SOAs were relatively fresh. A hydrocarbon like OA (HOA) factor was also identified, representing primary emissions mainly due to local traffic. On average, SOA (= MO-OOA + LO-OOA) accounted for 91% of the total OA mass and 72% of the PM<sub>1</sub> mass observed at Cool. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM<sub>1</sub> mass loading was considerably higher in urban plumes than in air masses dominated by biogenic SOA. The change in OA mass relative to CO (ΔOA/ΔCO) varied in the range of 5-196 μg m<sup>−3</sup> ppm<sup>−1</sup>, reflecting large variability in SOA production. The highest ΔOA/ΔCO was reached when air masses were dominated by anthropogenic emissions in the presence of a high concentration of biogenic volatile organic compounds (BVOCs). This ratio, which was 97 μg m<sup>−3</sup> ppm<sup>−1</sup> on average, was much higher than when urban plumes arrived in a low BVOC environment (~36 μg m<sup>−3</sup> ppm<sup>−1</sup>) or during other periods dominated by biogenic SOA (35 μg m<sup>−3</sup> ppm<sup>−1</sup>). These results demonstrate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors

    Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution

    Get PDF
    Volatile organic compound (VOC) mixing ratios were measured with two different instruments at the T1 ground site in Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign in March of 2006. A gas chromatograph with flame ionization detector (GC-FID) quantified 18 light alkanes, alkenes and acetylene while a proton-transfer-reaction ion-trap mass spectrometer (PIT-MS) quantified 12 VOC species including oxygenated VOCs (OVOCs) and aromatics. A GC separation system was used in conjunction with the PIT-MS (GC-PIT-MS) to evaluate PIT-MS measurements and to aid in the identification of unknown VOCs. The VOC measurements are also compared to simultaneous canister samples and to two independent proton-transfer-reaction mass spectrometers (PTR-MS) deployed on a mobile and an airborne platform during MILAGRO. VOC diurnal cycles demonstrate the large influence of vehicle traffic and liquid propane gas (LPG) emissions during the night and photochemical processing during the afternoon. Emission ratios for VOCs and OVOCs relative to CO are derived from early-morning measurements. Average emission ratios for non-oxygenated species relative to CO are on average a factor of ~2 higher than measured for US cities. Emission ratios for OVOCs are estimated and compared to literature values the northeastern US and to tunnel studies in California. Positive matrix factorization analysis (PMF) is used to provide insight into VOC sources and processing. Three PMF factors were distinguished by the analysis including the emissions from vehicles, the use of liquid propane gas and the production of secondary VOCs + long-lived species. Emission ratios to CO calculated from the results of PMF analysis are compared to emission ratios calculated directly from measurements. The total PIT-MS signal is summed to estimate the fraction of identified versus unidentified VOC species

    Статеві особливості метаболізму міокарда в динаміці розвитку експериментального гіпертиреозу

    Get PDF
    В экспериментах на половозрелых самцах и самках крыс исследовано активность перекисного окислення липидов, антиоксидантной защиты и энергообразования в динамике развития тироксиновой кардиомиопатии, которую моделировали введением L-тироксина (500 мг/кг, внутрижелудочно, ежедневно). В миокарде желудочков через 5, 10 и 15 дней с начала эксперимента определяли содержание диеновых и триеновых коньюгат (ДК, ТК), ТБК-активных продуктов (ТБК-АП), активность супероксиддисмутазы (СОД), каталазы, глутатионпероксидазы (ГП) и глутатионредуктазы (ГР), сукцинатдегидрогеназы (СДГ), цитохромоксидазы (ЦО). Установили, что гипертироксинемия визывала накопление в миокарде желудочков крыс ДК, ТК и ТБК-АП, что в самок было более существенным, чем у самцов, несмотря на большую активность ГП та ГР. Недостаточная протекторная эффективность ферментов системы глутатиона была результатом значительного угнетения активности СОД и каталазы, что свидетельствовало о существенном накоплении активных форм кислорода. Активность энергообразования в таких условиях уменьшалась, о чем свидетельствовало угнетение активности СДГ, которое было аналогичным в самцов и самок, и ЦО, что было более существенным в самок. Полученные результаты свидетельствуют о том, что развитие тироксиновой кардиомиопатии вызывает существенный метаболический дисбаланс в миокарде желудочков самок крыс, что разрешает ожидать болем интенсивные структурные нарушения.Lipid peroxidation, antioxidant protection and energy production were studied in adult male and female rats with thyroxin cardiomyopathy, which simulated by introduction of L-thyroxine (500 mg / kg, intraperitoneally, daily). In the myocardium of the ventricles after 5, 10 and 15 days from the start of the experiment determined the content of diene and triene conjugate (DC, TC), TBA-active metabolits (TBA-am), activity of superoxide dismutase (SOD), catalase, glutathione peroxidase (GP) and glutathione reductase (GR), succinate dehydrogenase (SDH), cytochrome oxidase (CO). Found that hyperthyroxinemia caused accumulation in myocardium of the ventricles DC, TC and TBA-am mostly in females despite the higher activity of GP and GR. Lack of protective effects of glutathione system enzymes resulted from significant inhibition of SOD and catalase, indicating a significant accumulation of reactive species of oxygen. Activity of the energy production in these conditions decreased. That was proved by the inhibition of SDH in myocardium both sex animals and CO mostly in females. We conclude that the development of thyroxin cardiomyopathy causes metabolic disbalance in myocardium of the ventricles mostly in female rats, which can results in more intense structural damage

    Substrate, sediment, and slope controls on bedrock channel geometry in postglacial streams

    Get PDF
    The geometry of channels controls the erosion rate of rivers and the evolution of topography following environmental change. We examine how sediment, slope, and substrate interact to constrain the development of channels following deglaciation and test whether theoretical relationships derived from streams reacting to tectonic uplift apply in these settings. Using an extensive data set of channel geometry measurements from postglacial streams in the Scottish Highlands, we find that a power law width-drainage area scaling model accounts for 81% of the spatial variation in channel width. Substrate influences channel form at the reach scale, with bedrock channels found to be narrower and deeper than alluvial channels. Bedrock channel width does not covary with slope, which may be due to downstream variations in sediment flux. Bedrock channel width-to-depth ratios increase with discharge (or area) and sediment flux, consistent with increasing bed cover promoting lateral widening. We find steep, wide, and shallow bedrock channels immediately below lakes, which we interpret as the result of limited erosion due to a lack of sediment tools. Where sediment supply is sufficient to exceed transport capacity, alluvial channels develop wider, shallower geometries constrained primarily by flow hydraulics. Our results indicate that simple scaling models of channel width with drainage area are applicable at regional scale, but locally, channel width varies with substrate, and in the case of bedrock channels, with sediment flux.

    Alternative Aviation Fuel Experiment (AAFEX)

    Get PDF
    The rising cost of oil coupled with the need to reduce pollution and dependence on foreign suppliers has spurred great interest and activity in developing alternative aviation fuels. Although a variety of fuels have been produced that have similar properties to standard Jet A, detailed studies are required to ascertain the exact impacts of the fuels on engine operation and exhaust composition. In response to this need, NASA acquired and burned a variety of alternative aviation fuel mixtures in the Dryden Flight Research Center DC-8 to assess changes in the aircraft s CFM-56 engine performance and emission parameters relative to operation with standard JP-8. This Alternative Aviation Fuel Experiment, or AAFEX, was conducted at NASA Dryden s Aircraft Operations Facility (DAOF) in Palmdale, California, from January 19 to February 3, 2009 and specifically sought to establish fuel matrix effects on: 1) engine and exhaust gas temperatures and compressor speeds; 2) engine and auxiliary power unit (APU) gas phase and particle emissions and characteristics; and 3) volatile aerosol formation in aging exhaust plume
    corecore