123 research outputs found

    An S-shaped outflow from IRAS 03256+3055 in NGC 1333

    Full text link
    The IRAS source 03256+3055 in the NGC 1333 star forming region is associated with extended sub-millimeter emission of complex morphology, showing multiple clumps. One of these is found to coincide with the driving source of a bipolar jet of S-shaped morphology seen in the emission lines of H_alpha and [SII] as well as in the H2 emission lines in the K-band. Detailed images of the driving source at the wavelengths of H_alpha and [SII] and in the I, J, H, and K bands as well as a K-band spectrum and polarimetry are discussed. The near-infrared morphology is characterized by a combination of line emission from the jet and scattered light from a source with a steep continuum spectrum. The morphology and proper motion of the jet are discussed in the context of a binary system with a precessing disk. We conclude that the molecular core associated with IRAS 03256+3055 consists of several clumps, only one of which shows evidence of recent star formation at optical and near-infrared wavelengths.We also briefly discuss a second, newly found near-infrared source associated with a compact sub-millimeter continuum source near IRAS 03256+3055, and conclude that this source may be physically unrelated the cluster of molecular clumps.Comment: 25 pages, including 5 figures. Accepted for publication in The Astronomical Journa

    Structural and magnetic properties of isovalently substituted multiferroic BiFeO3: Insights from Raman spectroscopy

    Get PDF
    Raman spectra, supplemented by powder x-ray diffraction and magnetization data of isovalently A- and B-site substituted BiFeO3 in the Bi1−xLaxFeO3 (0≀x≀1), Bi1−xTbxFeO3 (0≀x≀0.2), and Bi0.9Sm0.1Fe1−xMnxO3 (0≀x≀0.3) series, are presented. A good agreement between the structural transitions observed by x-ray diffraction and the vibrational modes observed in the Raman spectra is found over the whole substitutional ranges, and in particular we find spectroscopic signatures of a PbZrO3-type structure for Bi0.8La0.2FeO3. Mode assignments in the substituted materials are made based on Raman spectra of the end-members BiFeO3 and LaFeO3. Moreover, by comparing spectra from all samples with R3c structure, the phonon assignment in BiFeO3 is revisited. A close connection between the degree of octahedral tilt and the Raman shift of the A1 oxygen a−a−a− tilt mode is established. An explanation for the strong second-order scattering observed in Bi1−xLaxFeO3 and Bi1−xTbxFeO3 is suggested, including the assignment of the previously mysterious BiFeO3 mode at 620 cm−1. Finally, the magnetization data indicates a transition from a cycloidal modulated state towards a canted antiferromagnet with increasing A-site substitution, while Bi0.9Sm0.1Fe1−xMnxO3 with x=0 and 0.15 exhibit an anomalous closing of the hysteresis loop at low temperatures. For low A-site substitution levels (x≀0.1) the decreasing Raman intensity of the Fe derived modes correlates with the partial destruction of the spin cycloid as the substitution level increases

    C-type related order in the defective fluorites La2Ce2O7 and Nd2Ce2O7 studied by neutron scattering and ab initio MD simulations

    Get PDF
    This work presents a structural investigation of La2-xNdxCe2O7 (x = 0.0, 0.5, 1.0, 1.5, 2.0) using X-ray powder diffraction and total scattering neutron powder diffraction, analysed using Rietveld and the reverse Monte Carlo method (RMC). Ab initio molecular dynamics (MD) modelling is also performed for further investigations of the local order. The main intensities in the neutron diffraction data for the La2-xNdxCe2O7 series correspond to the fluorite structure. However, additional C-type superlattice peaks are visible for x > 0 and increase in intensity with increasing x. The Nd-containing compositions (x > 0) are best fitted with Rietveld analysis by using a combination of oxygen deficient fluorite and oxygen excess C-type structures. No indications of cation order are found in the RMC or Rietveld analysis, and the absence of cation order is supported by the MD modelling. We argue that the superlattice peaks originate from oxygen vacancy ordering and associated shift in the cation position away from the ideal fluorite site similar to that in the C-type structure, which is seen from the Rietveld refinements and the observed ordering in the MD modelling. The vacancies favour alignments in the , and especially the direction. Moreover, we find that such ordering might also be found to a small extent in La2Ce2O7, explaining the discernible modulated background between the fluorite peaks. The observed overlap of the main Bragg peaks between the fluorite and C-type phase supports the co-existence of vacancy ordered and more disordered domains. This is further supported by the observed similarity of the radial distribution functions as modelled with MD. The increase in long range oxygen vacancy order with increasing Nd-content in La2-xNdxCe2O7 corresponds well with the lower oxide ion conductivity in Nd2Ce2O7 compared to La2Ce2O7 reported earlier

    Crystal structure and proton conductivity of BaZr0.9Sc0

    Get PDF
    Solid-state sintering has been used to prepare the perovskite BaZr0.9Sc0.1O3-delta. Analysis of X-ray powder diffraction data shows that an increase of the unit cell parameter, a, was observed after deuteration. Rietveld analysis of room-temperature neutron powder diffraction data confirmed cubic symmetry (space group Pm-3m). Dynamic thermogravimetric analysis indicates that the hydration process occurs below 335 degrees C and approximately 58% of the theoretical number of protonic defects can be filled. The presence of protons/deutrons is seen from the strong O-H/O-D stretch band in the infrared spectrum of the hydrated/deuterated samples. The proton conductivity of a prehydrated sample was investigated under dry and wet Ar atmosphere

    Submarine Groundwater Discharge Data at Meter Scale (223Ra, 224Ra, 226Ra, 228Ra and 222Rn) in Indian River Bay (Delaware, US)

    Get PDF
    Abstract Submarine groundwater discharge (SGD) was sampled at high-spatial resolution in Indian River Bay, DE, USA, in July 2016 to characterize the spatial variability of the activity of the radium and radon isotopes commonly used to estimate SGD. These data were part of an investigation into the methods and challenges of characterizing SGD rates and variability, especially in the coastal aquifer transition from freshwater to saltwater (Hydrogeological processes and near shore spatial variability of radium and radon isotopes for the characterization of submarine groundwater discharge (Duque et al., 2019)). Samples were collected with seepage meters and minipiezometers to obtain sufficient volumes for analytical characterization. Seepage meter samples (for 223Ra, 224Ra, 226Ra, and 228Ra) were collected at two-hour intervals over a semi-diurnal tidal cycle from 30 seepage meters. Samples for 222Rn characterization were collected with a minipiezometer from 25 cm below the bay bed at each seepage meter location. All samples were analyzed with standard and state of the art procedures

    Crystal structure and proton conductivity of BaSn0.6Sc0.4O3-delta: insights from neutron powder diffraction and solid-state NMR spectroscopy

    Get PDF
    The solid-state synthesis and structural characterisation of perovskite BaSn(1–x)Sc(x)O(3–ή) (x = 0.0, 0.1, 0.2, 0.3, 0.4) and its corresponding hydrated ceramics are reported. Powder and neutron X-ray diffractions reveal the presence of cubic perovskites (space group Pm3m) with an increasing cell parameter as a function of scandium concentration along with some indication of phase segregation. (119)Sn and (45)Sc solid-state NMR spectroscopy data highlight the existence of oxygen vacancies in the dry materials, and their filling upon hydrothermal treatment with D(2)O. It also indicates that the Sn(4+) and Sc(3+) local distribution at the B-site of the perovskite is inhomogeneous and suggests that the oxygen vacancies are located in the scandium dopant coordination shell at low concentrations (x ≀ 0.2) and in the tin coordination shell at high concentrations (x ≄ 0.3). (17)O NMR spectra on (17)O enriched BaSn(1–x)Sc(x)O(3–ή) materials show the existence of Sn–O–Sn, Sn–O–Sc and Sc–O–Sc bridging oxygen environments. A further room temperature neutron powder diffraction study on deuterated BaSn(0.6)Sc(0.4)O(3–ή) refines the deuteron position at the 24k crystallographic site (x, y, 0) with x = 0.579(3) and y = 0.217(3) which leads to an O–D bond distance of 0.96(1) Å and suggests tilting of the proton towards the next nearest oxygen. Proton conduction was found to dominate in wet argon below 700 °C with total conductivity values in the range 1.8 × 10(–4) to 1.1 × 10(–3) S cm(–1) between 300 and 600 °C. Electron holes govern the conduction process in dry oxidizing conditions, whilst in wet oxygen they compete with protonic defects leading to a wide mixed conduction region in the 200 to 600 °C temperature region, and a suppression of the conductivity at higher temperature

    Insight into the dehydration behaviour of scandium-substituted barium titanate perovskites via simultaneous in situ neutron powder thermodiffractometry and thermogravimetric analysis

    Get PDF
    Hydration-dehydration cycles are critical to the mechanical performance of ceramic proton conductors. The development of in situ methods is desirable in order to study their structural response under conditions that mimic the operating ones. Neutron powder diffraction studies combined with simultaneous thermogravimetric analysis were performed on the hydrated forms of two members of the oxygen deficient perovskite BaTi1−xScxO3−ήseries, with x = 0.5 and x = 0.7. Rietveld analyses agreed with in situ gravimetric data, allowing correlation of occupancy factors of the oxygen site to hydration levels and other structural data. Dehydration is an activated process that impacts on structural parameters and the level of Sc substitution was found to control the structural response during in situ dehydration, with higher Sc content leading to significantly greater volume contraction. This was rationalised by the chemical expansion due to hydration of oxygen vacancies within the x = 0.5 sample being anomalously small. Furthermore, the behaviour of the x = 0.5 system revealed an unexpected cell expansion during the early stages of dehydration, suggesting the hydration level may influence the thermal expansion coefficient (TEC)

    A Bubbling Nearby Molecular Cloud: COMPLETE Shells in Perseus

    Full text link
    We present a study on the shells (and bubbles) in the Perseus molecular cloud using the COMPLETE survey large-scale 12CO(1-0) and 13CO(1-0) maps. The twelve shells reported here are spread throughout most of the Perseus cloud and have circular or arc-like morphologies with a range in radius of about 0.1 to 3 pc. Most of them have not been detected before most likely as maps of the region lacked the coverage and resolution needed to distinguish them. The majority of the shells are coincident with infrared nebulosity of similar shape and have a candidate powering source near the center. We suggest they are formed by the interaction of spherical or very wide-angle winds powered by young stars inside or near the Perseus molecular cloud -a cloud that is commonly considered to be mostly forming low-mass stars. Two of the twelve shells are powered by high-mass stars close to the cloud, while the others appear to be powered by low or intermediate mass stars in the cloud. We argue that winds with a mass loss rate of about 10^-8 to 10^-6 M_sun/yr are required to produce the observed shells. Our estimates indicate that the energy input rate from these stellar winds is similar to the turbulence dissipation rate. We conclude that in Perseus the total energy input from both collimated protostellar outflows and powerful spherical winds from young stars is sufficient to maintain the turbulence in the molecular cloud. Large scale molecular line and IR continuum maps of a sample of clouds will help determine the frequency of this phenomenon in other star forming regions.Comment: 48 pages in total: 16 pages of text and references; 2 pages of tables; 30 figures (one page per figure). Accepted for publication in the Astrophysical Journa
    • 

    corecore