339 research outputs found

    Determination of Short Crack Depth with an Acoustic Microphone

    Get PDF
    For the prediction of the lifetime of any component, subjected to alternating stresses, the knowledge of the growth behavior of defects is essential. Most methods of monitoring the propagation of short cracks are confined to measuring the length of the crack on the surface [1]. The depth of the crack must be determined indirectly, assuming the shape of the crack. Acoustic waves, on the other hand, offer the possibility of measuring the depth directly, since acoustic waves can penetrate into the material. This allows the measurement not only of the growth behavior of fatigue cracks on the surface, but also changes of the crack geometry inside the specimen. Current applications of direct acoustic monitoring of crack growth have been developed for cracks of the order of millimeters. One acoustic depth measurement technique is the Time-of-Flight-Diffraction (TOFD) technique [2–4], which is based on timing measurements of the scattered signals from the defect. Our investigations are concerned with the application of TOFD technique for the depth measurement of short cracks (70–200 μm in surface length) using a scanning acoustic microscope (SAM) [5–6]. Depth measurements were first carried out on cracks in the transparent material polystyrene. This allows a direct comparison between acoustic and optical depth measurements. Subsequently, the depth of fatigue cracks in an A1 alloy were measured, and the acoustic measurements were compared with direct measurements of the crack geometry by sectioning the crack

    The cost-effectiveness of opt-in and send-to-all HPV self-sampling among long-term non-attenders to cervical cancer screening in Norway : The Equalscreen randomized controlled trial

    Get PDF
    OBJECTIVE: We assessed the cost-effectiveness of mailing a human papillomavirus self-sampling (HPV-ss) kit, directly or via invitation to order, compared with mailing reminder letters among long-term non-attenders in Norway. METHODS: We conducted a secondary analysis using the Equalscreen study data with 6000 women aged 35-69 years who had not screened in 10+ years. Participants were equally randomized into three arms: reminder letter (control); invitation to order HPV-ss kit (opt-in); directly mailed HPV-ss kit (send-to-all). Cost-effectiveness (2020 Great British Pounds (GBP)) was estimated using incremental cost-effectiveness ratios (ICERs) per additional screened woman, and per additional cervical intraepithelial neoplasia grade 2 or worse (CIN2+) from extended and direct healthcare perspectives. RESULTS: Participation, CIN2+ detection, and total screening costs were highest in the send-to-all arm, followed by the opt-in and control arms. Non-histological physician appointments contributed to 67% of the total costs in the control arm and ≤ 31% in the self-sampling arms. From an expanded healthcare perspective, the ICERs were 135 GBP and 169 GBP per additional screened woman, and 2864 GBP and 4165 GBP per additional CIN2+ detected for the opt-in and send-to-all, respectively. CONCLUSIONS: Opt-in and send-to-all self-sampling were more effective and, depending on willingness-to-pay, may be considered cost-effective alternatives to improve screening attendance in Norway

    Instanton Contribution to the Quark Form Factor

    Full text link
    The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism. The properties of the Wilson loops with cusp singularities are studied taking into account the perturbative and nonperturbative contributions, where the latter are considered within the framework of the instanton liquid model. For the integration path corresponding to this form factor -- the angle with infinite sides -- the explicit expression for the vacuum expectation value of the Wilson operator is found to leading order. The calculations are performed in the weak-field limit for the instanton vacuum contribution and compared with the one- and two-loop order results for the perturbative part. It is shown that the instantons produce the powerlike corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.Comment: Version coincident with the journal publication. LaTeX, 15 pages, 1 figur

    The generalized cusp in ABJ(M) N = 6 Super Chern-Simons theories

    Full text link
    We construct a generalized cusped Wilson loop operator in N = 6 super Chern-Simons-matter theories which is locally invariant under half of the supercharges. It depends on two parameters and interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines, representing a natural generalization of the quark-antiquark potential in ABJ(M) theories. For particular choices of the parameters we obtain 1/6 BPS configurations that, mapped on S^2 by a conformal transformation, realize a three-dimensional analogue of the wedge DGRT Wilson loop of N = 4. The cusp couples, in addition to the gauge and scalar fields of the theory, also to the fermions in the bifundamental representation of the U(N)xU(M) gauge group and its expectation value is expressed as the holonomy of a suitable superconnection. We discuss the definition of these observables in terms of traces and the role of the boundary conditions of fermions along the loop. We perform a complete two-loop analysis, obtaining an explicit result for the generalized cusp at the second non-trivial order, from which we read off the interaction potential between heavy 1/2 BPS particles in the ABJ(M) model. Our results open the possibility to explore in the three-dimensional case the connection between localization properties and integrability, recently advocated in D = 4.Comment: 53 pages, 10 figures, added references, this is the version appeared on JHE

    Olanzapine: A potent agonist at the hM4D(Gi) DREADD amenable to clinical translation of chemogenetics

    Get PDF
    Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases

    Effects of drought on nitrogen turnover and abundances of ammonia-oxidizers in mountain grassland

    Get PDF
    Future climate scenarios suggest an increased frequency of summer drought periods in the European Alpine Region. Drought can affect soil nitrogen (N) cycling, by altering N transformation rates, as well as the abundances of ammonia-oxidizing bacteria and archaea. However, the extent to which drought affects N cycling under in situ conditions is still controversial. The goal of this study was to analyse effects of drought on soil N turnover and ammoniaoxidizer abundances in soil without drought history. To this end we conducted rain-exclusion experiments at two differently managed mountain grassland sites, an annually mown and occasionally fertilized meadow and an abandoned grassland. Soils were sampled before, during and after drought and were analysed for potential gross rates of N mineralization, microbial uptake of inorganic N, nitrification, and the abundances of bacterial and archaeal ammonia-oxidizers based on gene copy numbers of the amoA gene (AOB and AOA, respectively). Drought induced different responses at the two studied sites. At the managed meadow drought increased NH+/4 immobilization rates and NH+/4 concentrations in the soil water solution, but led to a reduction of AOA abundance compared to controls. At the abandoned site gross nitrification and NO-/3 immobilization rates decreased during drought, while AOB and AOA abundances remained stable. Rewetting had only minor, short-term effects on the parameters that had been affected by drought. Seven weeks after the end of drought no differences to control plots could be detected. Thus, our findings demonstrated that in mountain grasslands drought had distinct transient effects on soil nitrogen cycling and ammonia-oxidizers, which could have been related to a niche differentiation of AOB and AOA with increasing NH+/4 levels. However, the effect strength of drought was modulated by grassland management

    Recent advances in pulsed-laser deposition of complex-oxides

    Full text link
    Pulsed-laser deposition (PLD) is one of the most promising techniques for the formation of complex-oxide heterostructures, superlattices, and well-controlled interfaces. The first part of this paper presents a review of several useful modifications of the process, including methods inspired by combinatorial approaches. We then discuss detailed growth kinetics results, which illustrate that 'true' layer-by-layer (LBL) growth can only be approached, but not fully met, even though many characterization techniques reveal interfaces with unexpected sharpness. Time-resolved surface x-ray diffraction measurements show that crystallization and the majority of interlayer mass transport occur on time scales that are comparable to those of the plume/substrate interaction, providing direct experimental evidence that a growth regime exists in which non-thermal processes dominate PLD. This understanding shows how kinetic growth manipulation can bring PLD closer to ideal LBL than any other growth method available today.Comment: 37 pages, 9 figures. Revie

    Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is 'no' - as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions

    Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments.

    Get PDF
    As a key component of the carbon cycle, soil CO2 efflux (SCE) is being increasingly studied to improve our mechanistic understanding of this important carbon flux. Predicting ecosystem responses to climate change often depends on extrapolation of current relationships between ecosystem processes and their climatic drivers to conditions not yet experienced by the ecosystem. This raises the question of to what extent these relationships remain unaltered beyond the current climatic window for which observations are available to constrain the relationships. Here, we evaluate whether current responses of SCE to fluctuations in soil temperature and soil water content can be used to predict SCE under altered rainfall patterns. Of the 58 experiments for which we gathered SCE data, 20 were discarded because either too few data were available or inconsistencies precluded their incorporation in the analyses. The 38 remaining experiments were used to test the hypothesis that a model parameterized with data from the control plots (using soil temperature and water content as predictor variables) could adequately predict SCE measured in the manipulated treatment. Only for 7 of these 38 experiments was this hypothesis rejected. Importantly, these were the experiments with the most reliable data sets, i.e., those providing high-frequency measurements of SCE. Regression tree analysis demonstrated that our hypothesis could be rejected only for experiments with measurement intervals of less than 11 days, and was not rejected for any of the 24 experiments with larger measurement intervals. This highlights the importance of high-frequency measurements when studying effects of altered precipitation on SCE, probably because infrequent measurement schemes have insufficient capacity to detect shifts in the climate dependencies of SCE. Hence, the most justified answer to the question of whether current moisture responses of SCE can be extrapolated to predict SCE under altered precipitation regimes is ?no? ? as based on the most reliable data sets available. We strongly recommend that future experiments focus more strongly on establishing response functions across a broader range of precipitation regimes and soil moisture conditions. Such experiments should make accurate measurements of water availability, should conduct high-frequency SCE measurements, and should consider both instantaneous responses and the potential legacy effects of climate extremes. This is important, because with the novel approach presented here, we demonstrated that, at least for some ecosystems, current moisture responses could not be extrapolated to predict SCE under altered rainfall conditions
    • …
    corecore