388 research outputs found

    Functional Amyloid Formation within Mammalian Tissue

    Get PDF
    Amyloid is a generally insoluble, fibrous cross-β sheet protein aggregate. The process of amyloidogenesis is associated with a variety of neurodegenerative diseases including Alzheimer, Parkinson, and Huntington disease. We report the discovery of an unprecedented functional mammalian amyloid structure generated by the protein Pmel17. This discovery demonstrates that amyloid is a fundamental nonpathological protein fold utilized by organisms from bacteria to humans. We have found that Pmel17 amyloid templates and accelerates the covalent polymerization of reactive small molecules into melanin—a critically important biopolymer that protects against a broad range of cytotoxic insults including UV and oxidative damage. Pmel17 amyloid also appears to play a role in mitigating the toxicity associated with melanin formation by sequestering and minimizing diffusion of highly reactive, toxic melanin precursors out of the melanosome. Intracellular Pmel17 amyloidogenesis is carefully orchestrated by the secretory pathway, utilizing membrane sequestration and proteolytic steps to protect the cell from amyloid and amyloidogenic intermediates that can be toxic. While functional and pathological amyloid share similar structural features, critical differences in packaging and kinetics of assembly enable the usage of Pmel17 amyloid for normal function. The discovery of native Pmel17 amyloid in mammals provides key insight into the molecular basis of both melanin formation and amyloid pathology, and demonstrates that native amyloid (amyloidin) may be an ancient, evolutionarily conserved protein quaternary structure underpinning diverse pathways contributing to normal cell and tissue physiology

    Clinical and biomarker changes in dominantly inherited Alzheimer\u27s disease

    Get PDF
    BACKGROUND: The order and magnitude of pathologic processes in Alzheimer\u27s disease are not well understood, partly because the disease develops over many years. Autosomal dominant Alzheimer\u27s disease has a predictable age at onset and provides an opportunity to determine the sequence and magnitude of pathologic changes that culminate in symptomatic disease. METHODS: In this prospective, longitudinal study, we analyzed data from 128 participants who underwent baseline clinical and cognitive assessments, brain imaging, and cerebrospinal fluid (CSF) and blood tests. We used the participant\u27s age at baseline assessment and the parent\u27s age at the onset of symptoms of Alzheimer\u27s disease to calculate the estimated years from expected symptom onset (age of the participant minus parent\u27s age at symptom onset). We conducted cross-sectional analyses of baseline data in relation to estimated years from expected symptom onset in order to determine the relative order and magnitude of pathophysiological changes. RESULTS: Concentrations of amyloid-beta (Aβ) 42 in the CSF appeared to decline 25 years before expected symptom onset. Aβ deposition, as measured by positron-emission tomography with the use of Pittsburgh compound B, was detected 15 years before expected symptom onset. Increased concentrations of tau protein in the CSF and an increase in brain atrophy were detected 15 years before expected symptom onset. Cerebral hypometabolism and impaired episodic memory were observed 10 years before expected symptom onset. Global cognitive impairment, as measured by the Mini-Mental State Examination and the Clinical Dementia Rating scale, was detected 5 years before expected symptom onset, and patients met diagnostic criteria for dementia at an average of 3 years after expected symptom onset. CONCLUSIONS: We found that autosomal dominant Alzheimer\u27s disease was associated with a series of pathophysiological changes over decades in CSF biochemical markers of Alzheimer\u27s disease, brain amyloid deposition, and brain metabolism as well as progressive cognitive impairment. Our results require confirmation with the use of longitudinal data and may not apply to patients with sporadic Alzheimer\u27s disease. (Funded by the National Institute on Aging and others; DIAN ClinicalTrials.gov number, NCT00869817.

    Analyzing Thioflavin T Binding to Amyloid Fibrils by an Equilibrium Microdialysis-Based Technique

    Get PDF
    A new approach for the determination of the amyloid fibril – thioflavin T (ThT) binding parameters (the number of binding modes, stoichiometry, and binding constants of each mode) is proposed. This approach is based on the absorption spectroscopy determination of the concentration of free and bound to fibril dye in solutions, which are prepared by equilibrium microdialysis. Furthermore, the proposed approach allowed us, for the first time, to determine the absorption spectrum, molar extinction coefficient, and fluorescence quantum yield of the ThT bound to fibril by each binding modes. This approach is universal and can be used for determining the binding parameters of any dye interaction with a receptor, such as ANS binding to proteins in the molten globule state or to protein amorphous aggregates

    Towards a Pharmacophore for Amyloid

    Get PDF
    Diagnosing and treating Alzheimer's and other diseases associated with amyloid fibers remains a great challenge despite intensive research. To aid in this effort, we present atomic structures of fiber-forming segments of proteins involved in Alzheimer's disease in complex with small molecule binders, determined by X-ray microcrystallography. The fiber-like complexes consist of pairs of β-sheets, with small molecules binding between the sheets, roughly parallel to the fiber axis. The structures suggest that apolar molecules drift along the fiber, consistent with the observation of nonspecific binding to a variety of amyloid proteins. In contrast, negatively charged orange-G binds specifically to lysine side chains of adjacent sheets. These structures provide molecular frameworks for the design of diagnostics and drugs for protein aggregation diseases

    In vivo multiphoton imaging reveals gradual growth of newborn amyloid plaques over weeks

    Get PDF
    The kinetics of amyloid plaque formation and growth as one of the characteristic hallmarks of Alzheimer’s disease (AD) are fundamental issues in AD research. Especially the question how fast amyloid plaques grow to their final size after they are born remains controversial. By long-term two-photon in vivo imaging we monitored individual methoxy-X04-stained amyloid plaques over 6 weeks in 12 and 18 months old Tg2576 mice. We found that in 12 months old mice, newly appearing amyloid plaques were initially small in volume and subsequently grew over time. The growth rate of plaques was inversely proportional to their volume; thus amyloid plaques that were already present at the first imaging time point grew over time but slower compared to new plaques. Additionally, we analyzed 18 months old Tg2576 mice in which we neither found newly appearing plaques nor a significant growth of pre-existing plaques over 6 weeks of imaging. In conclusion, newly appearing amyloid plaques are initially small in size but grow over time until plaque growth can not be detected anymore in aged mice. These results suggest that drugs that target plaque formation should be most effective early in the disease, when plaques are growing

    Strongly reduced volumes of putamen and thalamus in Alzheimer's disease: an MRI study

    Get PDF
    Atrophy is regarded a sensitive marker of neurodegenerative pathology. In addition to confirming the well-known presence of decreased global grey matter and hippocampal volumes in Alzheimer's disease, this study investigated whether deep grey matter structure also suffer degeneration in Alzheimer's disease, and whether such degeneration is associated with cognitive deterioration. In this cross-sectional correlation study, two groups were compared on volumes of seven subcortical regions: 70 memory complainers (MCs) and 69 subjects diagnosed with probable Alzheimer's disease. Using 3T 3D T1 MR images, volumes of nucleus accumbens, amygdala, caudate nucleus, hippocampus, pallidum, putamen and thalamus were automatically calculated by the FMRIB's Integrated Registration and Segmentation Tool (FIRST)—algorithm FMRIB's Software Library (FSL). Subsequently, the volumes of the different regions were correlated with cognitive test results. In addition to finding the expected association between hippocampal atrophy and cognitive decline in Alzheimer's disease, volumes of putamen and thalamus were significantly reduced in patients diagnosed with probable Alzheimer's disease. We also found that the decrease in volume correlated linearly with impaired global cognitive performance. These findings strongly suggest that, beside neo-cortical atrophy, deep grey matter structures in Alzheimer's disease suffer atrophy as well and that degenerative processes in the putamen and thalamus, like the hippocampus, may contribute to cognitive decline in Alzheimer's disease

    Small-Animal PET Imaging of Amyloid-Beta Plaques with [11C]PiB and Its Multi-Modal Validation in an APP/PS1 Mouse Model of Alzheimer's Disease

    Get PDF
    In vivo imaging and quantification of amyloid-β plaque (Aβ) burden in small-animal models of Alzheimer's disease (AD) is a valuable tool for translational research such as developing specific imaging markers and monitoring new therapy approaches. Methodological constraints such as image resolution of positron emission tomography (PET) and lack of suitable AD models have limited the feasibility of PET in mice. In this study, we evaluated a feasible protocol for PET imaging of Aβ in mouse brain with [11C]PiB and specific activities commonly used in human studies. In vivo mouse brain MRI for anatomical reference was acquired with a clinical 1.5 T system. A recently characterized APP/PS1 mouse was employed to measure Aβ at different disease stages in homozygous and hemizygous animals. We performed multi-modal cross-validations for the PET results with ex vivo and in vitro methodologies, including regional brain biodistribution, multi-label digital autoradiography, protein quantification with ELISA, fluorescence microscopy, semi-automated histological quantification and radioligand binding assays. Specific [11C]PiB uptake in individual brain regions with Aβ deposition was demonstrated and validated in all animals of the study cohort including homozygous AD animals as young as nine months. Corresponding to the extent of Aβ pathology, old homozygous AD animals (21 months) showed the highest uptake followed by old hemizygous (23 months) and young homozygous mice (9 months). In all AD age groups the cerebellum was shown to be suitable as an intracerebral reference region. PET results were cross-validated and consistent with all applied ex vivo and in vitro methodologies. The results confirm that the experimental setup for non-invasive [11C]PiB imaging of Aβ in the APP/PS1 mice provides a feasible, reproducible and robust protocol for small-animal Aβ imaging. It allows longitudinal imaging studies with follow-up periods of approximately one and a half years and provides a foundation for translational Alzheimer neuroimaging in transgenic mice

    Quantitative Amyloid Imaging in Autosomal Dominant Alzheimer’s Disease: Results from the DIAN Study Group

    Get PDF
    Amyloid imaging plays an important role in the research and diagnosis of dementing disorders. Substantial variation in quantitative methods to measure brain amyloid burden exists in the field. The aim of this work is to investigate the impact of methodological variations to the quantification of amyloid burden using data from the Dominantly Inherited Alzheimer’s Network (DIAN), an autosomal dominant Alzheimer’s disease population. Cross-sectional and longitudinal [11C]-Pittsburgh Compound B (PiB) PET imaging data from the DIAN study were analyzed. Four candidate reference regions were investigated for estimation of brain amyloid burden. A regional spread function based technique was also investigated for the correction of partial volume effects. Cerebellar cortex, brain-stem, and white matter regions all had stable tracer retention during the course of disease. Partial volume correction consistently improves sensitivity to group differences and longitudinal changes over time. White matter referencing improved statistical power in the detecting longitudinal changes in relative tracer retention; however, the reason for this improvement is unclear and requires further investigation. Full dynamic acquisition and kinetic modeling improved statistical power although it may add cost and time. Several technical variations to amyloid burden quantification were examined in this study. Partial volume correction emerged as the strategy that most consistently improved statistical power for the detection of both longitudinal changes and across-group differences. For the autosomal dominant Alzheimer’s disease population with PiB imaging, utilizing brainstem as a reference region with partial volume correction may be optimal for current interventional trials. Further investigation of technical issues in quantitative amyloid imaging in different study populations using different amyloid imaging tracers is warranted

    AAPS Workshop Report: Strategies to Address Therapeutic Protein–Drug Interactions during Clinical Development

    Get PDF
    Therapeutic proteins (TPs) are increasingly combined with small molecules and/or with other TPs. However preclinical tools and in vitro test systems for assessing drug interaction potential of TPs such as monoclonal antibodies, cytokines and cytokine modulators are limited. Published data suggests that clinically relevant TP-drug interactions (TP-DI) are likely from overlap in mechanisms of action, alteration in target and/or drug-disease interaction. Clinical drug interaction studies are not routinely conducted for TPs because of the logistical constraints in study design to address pharmacokinetic (PK)- and pharmacodynamic (PD)-based interactions. Different pharmaceutical companies have developed their respective question- and/or risk-based approaches for TP-DI based on the TP mechanism of action as well as patient population. During the workshop both company strategies and regulatory perspectives were discussed in depth using case studies; knowledge gaps and best practices were subsequently identified and discussed. Understanding the functional role of target, target expression and their downstream consequences were identified as important for assessing the potential for a TP-DI. Therefore, a question-and/or risk-based approach based upon the mechanism of action and patient population was proposed as a reasonable TP-DI strategy. This field continues to evolve as companies generate additional preclinical and clinical data to improve their understanding of possible mechanisms for drug interactions. Regulatory agencies are in the process of updating their recommendations to sponsors regarding the conduct of in vitro and in vivo interaction studies for new drug applications (NDAs) and biologics license applications (BLAs)
    corecore