12 research outputs found

    Quark Matter and Nuclear Collisions: A Brief History of Strong Interaction Thermodynamics

    Full text link
    The past fifty years have seen the emergence of a new field of research in physics, the study of matter at extreme temperatures and densities. The theory of strong interactions, quantum chromodynamics (QCD), predicts that in this limit, matter will become a plasma of deconfined quarks and gluons -- the medium which made up the early universe in the first 10 microseconds after the big bang. High energy nuclear collisions are expected to produce short-lived bubbles of such a medium in the laboratory. I survey the merger of statistical QCD and nuclear collision studies for the analysis of strongly interacting matter in theory and experiment.Comment: 24 pages, 14 figures Opening Talk at the 5th Berkeley School on Collective Dynamics in High Energy Collisions, LBNL Berkeley/California, May 14 - 18, 201

    The thermal model on the verge of the ultimate test: particle production in Pb-Pb collisions at the LHC

    Full text link
    We investigate the production of hadrons in nuclear collisions within the framework of the thermal (or statistical hadronization) model. We discuss both the ligh-quark hadrons as well as charmonium and provide predictions for the LHC energy. Even as its exact magnitude is dependent on the charm production cross section, not yet measured in Pb-Pb collisions, we can confidently predict that at the LHC the nuclear modification factor of charmonium as a function of centrality is larger than that observed at RHIC and compare the experimental results to these predictions.Comment: 4 pages, 3 figures; proceedings of QM201

    Heavy quark(onium) at LHC: the statistical hadronization case

    Full text link
    We discuss the production of charmonium in nuclear collisions within the framework of the statistical hadronization model. We demonstrate that the model reproduces very well the availble data at RHIC. We provide predictions for the LHC energy where, dependently on the charm production cross section, a dramatically different behaviour of charmonium production as a function of centrality might be expected. We discuss also the case in elementary collisions, where clearly the statistical model does not reproduce the measurements.Comment: 8 pages, 5 figures; proceeding of SQM09, Buzios, Brazil, to be published in J. Phys.

    Kinetic Equation for Gluons in the Background Gauge of QCD

    Get PDF
    We derive the quantum kinetic equation for a pure gluon plasma, applying the background field and closed-time-path method. The derivation is more general and transparent than earlier works. A term in the equation is found which, as in the classical case, corresponds to the color charge precession for partons moving in the gauge field.Comment: RevTex 4, 4 pages, no figure, PRL accepted versio

    Relation between the Polyakov loop and the chiral order parameter at strong coupling

    Full text link
    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature by using the Gocksch-Ogilvie model with fundamental or adjoint quarks. The model is based on the double expansion of strong coupling and large dimensionality on the lattice. In an analytic way with the mean field approximation employed, we show that the confined phase must be accompanied by the spontaneous breaking of the chiral symmetry for both fundamental and adjoint quarks. Then we proceed to numerical analysis to look into the coupled dynamics of the Polyakov loop and the chiral order parameter. In the case of fundamental quarks, the pseudo-critical temperature inferred from the Polyakov loop behavior turns out to coincide with the pseudo-critical temperature of the chiral phase transition. We discuss the physical implication of the coincidence of the pseudo-critical temperatures in two extreme cases; one is the deconfinement dominance and the other is the chiral dominance. As for adjoint quarks, the deconfinement transition of first order persists and the chiral phase transition occurs distinctly at higher temperature than the deconfinement transition does. The present model study gives us a plausible picture to understand the results from the lattice QCD and aQCD simulations.Comment: 19 pages, 9 figures, to appear in Phys.Rev.D. Appendix A is modified; references are adde

    Working Group Report: Heavy-Ion Physics and Quark-Gluon Plasma

    Get PDF
    This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of Quark-Gluon Plasma believed to have created in heavy-ion collisions and in early universe are reported.Comment: 20 pages, 6 eps figures, Heavy-ion physics and QGP activity report in "IX Workshop on High Energy Physics Phenomenology (WHEPP-09)" held in Institute of Physics, Bhubaneswar, India, during January 3-14, 2006. To be published in PRAMANA - Journal of Physics (Indian Academy of Science

    Quantum gravitational corrections for spinning particles

    Get PDF
    We calculate the quantum corrections to the gauge-invariant gravitational potentials of spinning particles in flat space, induced by loops of both massive and massless matter fields of various types. While the corrections to the Newtonian potential induced by massless conformal matter for spinless particles are well-known, and the same corrections due to massless minimally coupled scalars [Class. Quant. Grav. 27 (2010) 245008], massless non-conformal scalars [Phys. Rev. D 87 (2013) 104027] and massive scalars, fermions and vector bosons [Phys. Rev. D 91 (2015) 064047] have been recently derived, spinning particles receive additional corrections which are the subject of the present work. We give both fully analytic results valid for all distances from the particle, and present numerical results as well as asymptotic expansions. At large distances from the particle, the corrections due to massive fields are exponentially suppressed in comparison to the corrections from massless fields, as one would expect. However, a surprising result of our analysis is that close to the particle itself, on distances comparable to the Compton wavelength of the massive fields running in the loops, these corrections can be enhanced with respect to the massless case

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe
    corecore