391 research outputs found
Recommended from our members
Solid Freeform Fabrication of Functional Silicon Nitride Ceramics by Laminated Object Manufacturing 1
The processing of silicon nitride (Si3N4) structural ceramics by Laminated Object
Manufacturing (LOM) using ceramic tape preforms was investigated. The key processing stages
involved green shape formation (which used the LOM process), followed by the burnout of all
organics, and final densification by pressureless sintering. Two material systems were
considered. These were a) monolithic Si3N4 and b) a preceramic polymer infiltrated Si3N4. The
raw materials for the process were tape preforms of Si3N4, which were fabricated by standard
tape casting techniques.
Mechanical property data obtained for the LOM processed Si3N4 showed high strength and
fracture toughness values. The room temperature and high temperature (1260 o
C) flexural
strengths were in the range of 700-900 MPa and 360-400 MPa, respectively. The fracture
toughness averaged from 5.5-7.5 MPa.m1/2. These strength and fracture toughness values are
comparable to those reported for conventionally prepared Si3N4 ceramics. Thus, this research
demonstrated that the LOM technique is a viable method for preparing functional Si3N4 ceramics
with good physical and mechanical properties.Mechanical Engineerin
Zonation of Central U. S. Earthquake Sources
A variety of analyses are utilized in developing potential earthquake ground shaking at a specific location. Geological procedures for estimating causes of earthquakes are fundamental to the prediction of ground motions. Evaluations of geologic factors compliment mathematical assessments of seismological data. Earthquake potential in the Central United States is predicted using the concept of seismic source zones due to the difficulty of determining active faults. Resolution of these geographic source zones is dependent upon knowledge of historic seismicity, pertinent geologic features, and causative tectonics. Regardless of the method used to delineate source zones, these zones must be geologically and seismologically unique. Statistical testing of historic earthquake catalogues is required for reduction of the data base. The resolution of zones is an iterative process of bounding the zones and determining recurrence rates. Earthquake potential and risk assessment should be understood by the owner and the designer of a facility
Developing and applying heterogeneous phylogenetic models with XRate
Modeling sequence evolution on phylogenetic trees is a useful technique in
computational biology. Especially powerful are models which take account of the
heterogeneous nature of sequence evolution according to the "grammar" of the
encoded gene features. However, beyond a modest level of model complexity,
manual coding of models becomes prohibitively labor-intensive. We demonstrate,
via a set of case studies, the new built-in model-prototyping capabilities of
XRate (macros and Scheme extensions). These features allow rapid implementation
of phylogenetic models which would have previously been far more
labor-intensive. XRate's new capabilities for lineage-specific models,
ancestral sequence reconstruction, and improved annotation output are also
discussed. XRate's flexible model-specification capabilities and computational
efficiency make it well-suited to developing and prototyping phylogenetic
grammar models. XRate is available as part of the DART software package:
http://biowiki.org/DART .Comment: 34 pages, 3 figures, glossary of XRate model terminolog
Host pathogen interactions in relation to management of light leaf spot disease (caused by Pyrenopeziza brassicae) on Brassica species
Light leaf spot, caused by Pyrenopeziza brassicae, is currently the most damaging disease problem in oilseed rape in the UK. According to recent survey data, the severity of epidemics has increased progressively across the UK, with current yield losses of up to £160M per annum in England and more severe epidemics in Scotland. Light leaf spot is a polycyclic disease with primary inoculum consisting of air-borne ascospores produced on diseased debris from the previous cropping season. Splash-dispersed conidia produced on diseased leaves are the main component of the secondary inoculum. P. brassicae is also able to infect and cause considerable yield losses on vegetable brassicas, especially Brussels sprouts. There may be spread of light leaf spot among different brassica species. Since they have a wide host range, Pyrenopeziza brassicae populations are likely to have considerable genetic diversity and there is evidence suggesting population variations between different regions, which need further study. Available disease-management tools are not sufficient to provide adequate control of the disease. There is a need to identify new sources of resistance, which can be integrated with fungicide applications to achieve sustainable management of light leaf spot. Several major resistance genes and quantitative trait loci have been identified in previous studies, but rapid improvements in the understanding of molecular mechanisms underpinning B. napus – P. brassicae interactions can be expected through exploitation of novel genetic and genomic information for brassicas and extracellular fungal pathogens.Peer reviewe
Deriving the number of jobs in proximity services from the number of inhabitants in French rural municipalities
We use a minimum requirement approach to derive the number of jobs in
proximity services per inhabitant in French rural municipalities. We first
classify the municipalities according to their time distance to the
municipality where the inhabitants go the most frequently to get services
(called MFM). For each set corresponding to a range of time distance to MFM, we
perform a quantile regression estimating the minimum number of service jobs per
inhabitant, that we interpret as an estimation of the number of proximity jobs
per inhabitant. We observe that the minimum number of service jobs per
inhabitant is smaller in small municipalities. Moreover, for municipalities of
similar sizes, when the distance to the MFM increases, we find that the number
of jobs of proximity services per inhabitant increases.Comment: 6 pages, 5 figure
Identification of Pathogenicity-Related Genes in the Vascular Wilt Fungus Verticillium dahliae by Agrobacterium tumefaciens-Mediated T-DNA Insertional Mutagenesis
Verticillium dahliae is the causal agent of vascular wilt in many economically important crops worldwide. Identification of genes that control pathogenicity or virulence may suggest targets for alternative control methods for this fungus. In this study, Agrobacteriumtumefaciens-mediated transformation (ATMT) was applied for insertional mutagenesis of V. dahliae conidia. Southern blot analysis indicated that T-DNAs were inserted randomly into the V. dahliae genome and that 69% of the transformants were the result of single copy T-DNA insertion. DNA sequences flanking T-DNA insertion were isolated through inverse PCR (iPCR), and these sequences were aligned to the genome sequence to identify the genomic position of insertion. V. dahliae mutants of particular interest selected based on culture phenotypes included those that had lost the ability to form microsclerotia and subsequently used for virulence assay. Based on the virulence assay of 181 transformants, we identified several mutant strains of V. dahliae that did not cause symptoms on lettuce plants. Among these mutants, T-DNA was inserted in genes encoding an endoglucanase 1 (VdEg-1), a hydroxyl-methyl glutaryl-CoA synthase (VdHMGS), a major facilitator superfamily 1 (VdMFS1), and a glycosylphosphatidylinositol (GPI) mannosyltransferase 3 (VdGPIM3). These results suggest that ATMT can effectively be used to identify genes associated with pathogenicity and other functions in V. dahliae
- …