3,686 research outputs found

    Thermonuclear explosions of rapidly rotating white dwarfs - I. Deflagrations

    Full text link
    Context: Turbulent deflagrations of Chandrasekhar mass White Dwarfs are commonly used to model Type Ia Supernova explosions. In this context, rapid rotation of the progenitor star is plausible but has so far been neglected. Aims: The aim of this work is to explore the influence of rapid rotation on the deflagration scenario. Methods: We use three dimensional hydrodynamical simulations to model turbulent deflagrations ignited within a variety of rapidly rotating CO WDs obeying rotation laws suggested by accretion studies. Results: We find that rotation has a significant impact on the explosion. The flame develops a strong anisotropy with a preferred direction towards the stellar poles, leaving great amounts of unburnt matter along the equatorial plane. Conclusions: The large amount of unburnt matter is contrary to observed spectral features of SNe Ia. Thus, rapid rotation of the progenitor star and the deflagration scenario are incompatible in order to explain SNe Ia.Comment: 13 pages, 10 figures, accepted for publication by A&

    Computer simulations of electrorheological fluids in the dipole-induced dipole model

    Full text link
    We have employed the multiple image method to compute the interparticle force for a polydisperse electrorheological (ER) fluid in which the suspended particles can have various sizes and different permittivites. The point-dipole (PD) approximation being routinely adopted in computer simulation of ER fluids is shown to err considerably when the particles approach and finally touch due to multipolar interactions. The PD approximation becomes even worse when the dielectric contrast between the particles and the host medium is large. From the results, we show that the dipole-induced-dipole (DID) model yields very good agreements with the multiple image results for a wide range of dielectric contrasts and polydispersity. As an illustration, we have employed the DID model to simulate the athermal aggregation of particles in ER fluids both in uniaxial and rotating fields. We find that the aggregation time is significantly reduced. The DID model accounts for multipolar interaction partially and is simple to use in computer simulation of ER fluids.Comment: 22 pages, 7 figures, submitted to Phys. Rev.

    Preparation and Analysis by Ion Exchange Techniques of Sodium Salts of Mandelic Acid Derivatives

    Get PDF
    Author Institution: Department of Chemistry, Xavier University, Cincinnati, Ohioen sodium salts of mandelic acid derivatives were prepared and analyzed. Results obtained by an ion-exchange-titration method of analysis agreed with those obtained by a gravimetric procedur

    Do cladistic and morphometric data capture common patterns of morphological disparity?

    Get PDF
    The distinctly non-random diversity of organismal form manifests itself in discrete clusters of taxa that share a common body plan. As a result, analyses of disparity require a scalable comparative framework. The difficulties of applying geometric morphometrics to disparity analyses of groups with vastly divergent body plans are overcome partly by the use of cladistic characters. Character-based disparity analyses have become increasingly popular, but it is not clear how they are affected by character coding strategies or revisions of primary homology statements. Indeed, whether cladistic and morphometric data capture similar patterns of morphological variation remains a moot point. To address this issue, we employ both cladistic and geometric morphometric data in an exploratory study of disparity focussing on caecilian amphibians. Our results show no impact on relative intertaxon distances when different coding strategies for cladistic characters were used or when revised concepts of homology were considered. In all instances, we found no statistically significant difference between pairwise Euclidean and Procrustes distances, although the strength of the correlation among distance matrices varied. This suggests that cladistic and geometric morphometric data appear to summarize morphological variation in comparable ways. Our results support the use of cladistic data for characterizing organismal disparity

    Statistical-mechanical theory of the overall magnetic properties of mesocrystals

    Full text link
    The mesocrystal showing both electrorheological and magnetorheological effects is called electro-magnetorheological (EMR) solids. Prediction of the overall magnetic properties of the EMR solids is a challenging task due to the coexistence of the uniaxially anisotropic behavior and structural transition as well as long-range interaction between the suspended particles. To consider the uniaxial anisotropy effect, we present an anisotropic Kirkwood-Fr\"{o}hlich equation for calculating the effective permeabilities by adopting an explicit characteristic spheroid rather than a characteristic sphere used in the derivation of the usual Kirkwood-Fr\"{o}hlich equation. Further, by applying an Ewald-Kornfeld formulation we are able to investigate the effective permeability by including the structural transition and long-range interaction explicitly. Our theory can reduce to the usual Kirkwood-Fr\"{o}hlich equation and Onsager equation naturally. To this end, the numerical simulation shows the validity of monitoring the structure of EMR solids by detecting their effective permeabilities.Comment: 14 pages, 1 figur

    Energy decay for the damped wave equation under a pressure condition

    Get PDF
    We establish the presence of a spectral gap near the real axis for the damped wave equation on a manifold with negative curvature. This results holds under a dynamical condition expressed by the negativity of a topological pressure with respect to the geodesic flow. As an application, we show an exponential decay of the energy for all initial data sufficiently regular. This decay is governed by the imaginary part of a finite number of eigenvalues close to the real axis.Comment: 32 page

    Applications of the Gauss-Bonnet theorem to gravitational lensing

    Full text link
    In this geometrical approach to gravitational lensing theory, we apply the Gauss-Bonnet theorem to the optical metric of a lens, modelled as a static, spherically symmetric, perfect non-relativistic fluid, in the weak deflection limit. We find that the focusing of the light rays emerges here as a topological effect, and we introduce a new method to calculate the deflection angle from the Gaussian curvature of the optical metric. As examples, the Schwarzschild lens, the Plummer sphere and the singular isothermal sphere are discussed within this framework.Comment: 10 pages, 1 figure, IoP styl

    Strangelets: Who is Looking, and How?

    Full text link
    It has been over 30 years since the first suggestion that the true ground state of cold hadronic matter might be not nuclear matter but rather strange quark matter (SQM). Ever since, searches for stable SQM have been proceeding in various forms and have observed a handful of interesting events but have neither been able to find compelling evidence for stable strangelets nor to rule out their existence. I will survey the current status and near future of such searches with particular emphasis on the idea of SQM from strange star collisions as part of the cosmic ray flux.Comment: Talk given at International Conference on Strangeness in Quark Matter, 2006. 8 pages. 1 figur
    • 

    corecore