35 research outputs found

    Prostaglandin E2 increases calcium conductance and stimulates release of substance P in avian sensory neurons

    Get PDF
    Prostaglandins are known to lower activation threshold to thermal, mechanical, and chemical stimulation in small-diameter sensory neurons. Although the mechanism of prostaglandin action is unknown, agents known to elevate intracellular calcium produce a sensitization that is similar to that produced by prostaglandins. Consistent with the idea of prostaglandin-induced elevations in calcium, prostaglandins might also stimulate the release of neurotransmitter from sensory neurons. We therefore examined whether prostaglandin E2 (PGE2) could enhance the release of the putative sensory transmitter substance P (SP) from isolated neurons of the avian dorsal root ganglion grown in culture. Utilizing the whole-cell patch-clamp recording technique, we also examined whether PGE2 could alter calcium currents in these cells. Exposure of sensory neurons to PGE2 produced a dose-dependent increase in the release of SP. One micromolar PGE2 increased release approximately twofold above basal release, whereas 5 and 10 microM PGE2 increased release by about fourfold. The release evoked by these higher concentrations of PGE2 was similar in magnitude to the release induced by 50 mM KCl. Neither arachidonic acid (10 microM), prostaglandin F2 alpha (10 microM), nor the lipoxygenase product leukotriene B4 (1 microM) significantly altered SP release. The addition of 1 microM PGE2 increased the peak calcium currents by 1.8-fold and 1.4-fold for neurons held at potentials of -60 and -90 mV, respectively. The action of PGE2 was rapid with facilitation occurring within 2 min. As with release studies, arachidonic acid, prostaglandin F2 alpha, and leukotriene B4 had no significant effect on the amplitude of the calcium current. These results suggest that PGE2 can stimulate the release of SP through the activation or facilitation of an inward calcium current. The capacity of PGE2 to facilitate the calcium current in these sensory neurons may be one mechanism to account for the ability of prostaglandins to sensitize sensory neurons to physical or chemical stimuli

    Cerebellum Abnormalities in Idiopathic Generalized Epilepsy with Generalized Tonic-Clonic Seizures Revealed by Diffusion Tensor Imaging

    Get PDF
    Although there is increasing evidence suggesting that there may be subtle abnormalities in idiopathic generalized epilepsy (IGE) patients using modern neuroimaging techniques, most of these previous studies focused on the brain grey matter, leaving the underlying white matter abnormalities in IGE largely unknown, which baffles the treatment as well as the understanding of IGE. In this work, we adopted multiple methods from different levels based on diffusion tensor imaging (DTI) to analyze the white matter abnormalities in 14 young male IGE patients with generalized tonic-clonic seizures (GTCS) only, comparing with 29 age-matched male healthy controls. First, we performed a voxel-based analysis (VBA) of the fractional anisotropy (FA) images derived from DTI. Second, we used a tract-based spatial statistics (TBSS) method to explore the alterations within the white matter skeleton of the patients. Third, we adopted region-of-interest (ROI) analyses based on the findings of VBA and TBSS to further confirm abnormal brain regions in the patients. At last, considering the convergent evidences we found by VBA, TBSS and ROI analyses, a subsequent probabilistic fiber tractography study was performed to investigate the abnormal white matter connectivity in the patients. Significantly decreased FA values were consistently observed in the cerebellum of patients, providing fresh evidence and new clues for the important role of cerebellum in IGE with GTCS

    Differential Development of Human Brain White Matter Tracts

    Get PDF
    Neuroscience is increasingly focusing on developmental factors related to human structural and functional connectivity. Unfortunately, to date, diffusion-based imaging approaches have only contributed modestly to these broad objectives, despite the promise of diffusion-based tractography. Here, we report a novel data-driven approach to detect similarities and differences among white matter tracts with respect to their developmental trajectories, using 64-direction diffusion tensor imaging. Specifically, using a cross-sectional sample comprising 144 healthy individuals (7 to 48 years old), we applied k-means cluster analysis to separate white matter voxels based on their age-related trajectories of fractional anisotropy. Optimal solutions included 5-, 9- and 14-clusters. Our results recapitulate well-established tracts (e.g., internal and external capsule, optic radiations, corpus callosum, cingulum bundle, cerebral peduncles) and subdivisions within tracts (e.g., corpus callosum, internal capsule). For all but one tract identified, age-related trajectories were curvilinear (i.e., inverted ‘U-shape’), with age-related increases during childhood and adolescence followed by decreases in middle adulthood. Identification of peaks in the trajectories suggests that age-related losses in fractional anisotropy occur as early as 23 years of age, with mean onset at 30 years of age. Our findings demonstrate that data-driven analytic techniques may be fruitfully applied to extant diffusion tensor imaging datasets in normative and neuropsychiatric samples

    Pere Alberch's developmental morphospaces and the evolution of cognition

    Get PDF
    In this article we argue for an extension of Pere Alberch's notion of developmental morphospace into the realm of cognition and introduce the notion of cognitive phenotype as a new tool for the evolutionary and developmental study of cognitive abilities

    European consensus statement on diagnosis and treatment of adult ADHD: The European Network Adult ADHD.

    Get PDF
    BACKGROUND: Attention deficit hyperactivity disorder (ADHD) is among the most common psychiatric disorders of childhood that persists into adulthood in the majority of cases. The evidence on persistence poses several difficulties for adult psychiatry considering the lack of expertise for diagnostic assessment, limited treatment options and patient facilities across Europe. METHODS: The European Network Adult ADHD, founded in 2003, aims to increase awareness of this disorder and improve knowledge and patient care for adults with ADHD across Europe. This Consensus Statement is one of the actions taken by the European Network Adult ADHD in order to support the clinician with research evidence and clinical experience from 18 European countries in which ADHD in adults is recognised and treated. RESULTS: Besides information on the genetics and neurobiology of ADHD, three major questions are addressed in this statement: (1) What is the clinical picture of ADHD in adults? (2) How can ADHD in adults be properly diagnosed? (3) How should ADHD in adults be effectively treated? CONCLUSIONS: ADHD often presents as an impairing lifelong condition in adults, yet it is currently underdiagnosed and treated in many European countries, leading to ineffective treatment and higher costs of illness. Expertise in diagnostic assessment and treatment of ADHD in adults must increase in psychiatry. Instruments for screening and diagnosis of ADHD in adults are available and appropriate treatments exist, although more research is needed in this age group

    Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging.

    No full text
    Evidence concerning anatomical connectivities in the human brain is sparse and based largely on limited post-mortem observations. Diffusion tensor imaging has previously been used to define large white-matter tracts in the living human brain, but this technique has had limited success in tracing pathways into gray matter. Here we identified specific connections between human thalamus and cortex using a novel probabilistic tractography algorithm with diffusion imaging data. Classification of thalamic gray matter based on cortical connectivity patterns revealed distinct subregions whose locations correspond to nuclei described previously in histological studies. The connections that we found between thalamus and cortex were similar to those reported for non-human primates and were reproducible between individuals. Our results provide the first quantitative demonstration of reliable inference of anatomical connectivity between human gray matter structures using diffusion data and the first connectivity-based segmentation of gray matter
    corecore