14 research outputs found

    Evolution of Plant B Chromosome Enriched Sequences

    No full text
    B chromosomes are supernumerary chromosomes found in addition to the normal standard chromosomes (A chromosomes). B chromosomes are well known to accumulate several distinct types of repeated DNA elements. Although the evolution of B chromosomes has been the subject of numerous studies, the mechanisms of accumulation and evolution of repetitive sequences are not fully understood. Recently, new genomic approaches have shed light on the origin and accumulation of different classes of repetitive sequences in the process of B chromosome formation and evolution. Here we discuss the impact of repetitive sequences accumulation on the evolution of plant B chromosomes

    Cytomolecular characterization of <it>de novo</it> formed rye B chromosome variants

    No full text
    Abstract Background B chromosomes (Bs) are dispensable elements which occur in many species including rye (Secale cereale). We determined the organization of B variants to obtain insights into the origin of B polymorphisms in rye. Results The observed B variants were classified according to their morphology and in situ hybridization patterns with the B-specific repeats D1100 and CL11 into (I) long arm iso B, (II) D1100-deficient B and (III) small metacentric B variants. Long arm iso Bs are likely products of a meiotic centromere misdivision and subsequent duplication of the long arm, whereas small B variants are probably generated by chromosome breakage. Some deficient Bs experienced extensive amplification of CL11 repeats. Conclusions Both the pericentromere and the nondisjunction control region seem to be involved in the generation of rye B chromosome variants. However, due to the loss of the B-specific nondisjuction control region most of the variants generated are not capable to accumulate in a population.</p

    Selection of Salicylic Acid Tolerant Epilines in Brassica napus

    No full text
    © 2019 by the authors. Two of the major pathways involved in induced defense of plants against pathogens include the salicylic acid (SA)- and jasmonic acid (JA)-mediated pathways that act mainly against biotrophs and necrotrophs, respectively. However, some necrotrophic pathogens, such as Botrytis cinerea, actively induce the SA pathway, resulting in cell death that allows the pathogen to proliferate in the plant. Starting from an isogenic canola (Brassica napus) line, epilines were selected with a reduced sensitivity to SA. The genes belonging to the SA pathway had an altered transcription profile in the SA-tolerant lines, when treated with SA. Besides the already known genes of the SA pathway, new SA target genes were identified, creating possibilities to better understand the plant defense mechanism against pathogens. The SA-tolerant line with the lowest SA-induced gene expression is tolerant to Botrytis cinerea. When treated with SA, this line has also a reduced histone modification (histone H3 lysine 4 trimethylation) at the genes at the start of the SA pathway.status: publishe

    Selection of Salicylic Acid Tolerant Epilines in <i>Brassica napus</i>

    No full text
    Two of the major pathways involved in induced defense of plants against pathogens include the salicylic acid (SA)- and jasmonic acid (JA)-mediated pathways that act mainly against biotrophs and necrotrophs, respectively. However, some necrotrophic pathogens, such as Botrytis cinerea, actively induce the SA pathway, resulting in cell death that allows the pathogen to proliferate in the plant. Starting from an isogenic canola (Brassica napus) line, epilines were selected with a reduced sensitivity to SA. The genes belonging to the SA pathway had an altered transcription profile in the SA-tolerant lines, when treated with SA. Besides the already known genes of the SA pathway, new SA target genes were identified, creating possibilities to better understand the plant defense mechanism against pathogens. The SA-tolerant line with the lowest SA-induced gene expression is tolerant to Botrytis cinerea. When treated with SA, this line has also a reduced histone modification (histone H3 lysine 4 trimethylation) at the genes at the start of the SA pathway

    Chromatin and epigenetics in all their states : Meeting report of the first conference on Epigenetic and Chromatin Regulation of Plant Traits - January 14 – 15, 2016 - Strasbourg, France

    No full text
    In January 2016, the first Epigenetic and Chromatin Regulation of Plant Traits conference was held in Strasbourg, France. An all-star lineup of speakers, a packed audience of 130 participants from over 20 countries, and a friendly scientific atmosphere contributed to make this conference a meeting to remember. In this article we summarize some of the new insights into chromatin, epigenetics, and epigenomics research and highlight nascent ideas and emerging concepts in this exciting area of research.</p
    corecore