532 research outputs found

    In Situ Chalcophile and Siderophile Element Behavior in Sulfides from Moroccan Middle Atlas Spinel Peridotite Xenoliths during Metasomatism and Weathering

    Get PDF
    In situ chalcophile and siderophile major and trace elements were analyzed in sulfides from eight Moroccan Middle Atlas lherzolite xenoliths using electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The sulfides occur enclosed in primary silicates, interstitial in the peridotite matrix, and associated with glass-bearing melt pockets. Monosulfide solid solutions are enriched in these xenoliths relative to pentlandite and intermediate solid solutions. Regardless of the textural occurrence, sulfide platinum-group element (PGE) patterns are distinguished into residual ([Pd/Ir]N 1 or [Pt/Pd]N 1), and unfractionated patterns. The coexistence of both residual and melt-like PGE signatures on a cm scale in a single sample implies that sulfides may record initial depletion and subsequent re-enrichment more effectively than constituent silicates do. Chalcophile and siderophile trace elements other than the PGEs are fractionated between the precipitated sulfide phases, but do not vary systematically with the PGE signatures, suggesting that the PGEs are comparatively sensitive to melting and depletion. In addition, Fe-rich hydroxides generated by sulfide breakdown due to atmospheric weathering display PGE systematics almost identical to their precursor sulfides, implying that they may be reliable tracers of mantle processes even after extensive weathering.Peer reviewe

    In Situ Chalcophile and Siderophile Element Behavior in Sulfides from Moroccan Middle Atlas Spinel Peridotite Xenoliths during Metasomatism and Weathering

    Get PDF
    In situ chalcophile and siderophile major and trace elements were analyzed in sulfides from eight Moroccan Middle Atlas lherzolite xenoliths using electron microprobe and laser ablation inductively coupled plasma mass spectrometry. The sulfides occur enclosed in primary silicates, interstitial in the peridotite matrix, and associated with glass-bearing melt pockets. Monosulfide solid solutions are enriched in these xenoliths relative to pentlandite and intermediate solid solutions. Regardless of the textural occurrence, sulfide platinum-group element (PGE) patterns are distinguished into residual ([Pd/Ir]N 1 or [Pt/Pd]N 1), and unfractionated patterns. The coexistence of both residual and melt-like PGE signatures on a cm scale in a single sample implies that sulfides may record initial depletion and subsequent re-enrichment more effectively than constituent silicates do. Chalcophile and siderophile trace elements other than the PGEs are fractionated between the precipitated sulfide phases, but do not vary systematically with the PGE signatures, suggesting that the PGEs are comparatively sensitive to melting and depletion. In addition, Fe-rich hydroxides generated by sulfide breakdown due to atmospheric weathering display PGE systematics almost identical to their precursor sulfides, implying that they may be reliable tracers of mantle processes even after extensive weathering

    Tracking crystal-melt segregation and magma recharge using zircon trace element data

    Get PDF
    The Cretaceous Yunshan caldera complex in SE China consists of an unusual coexisting assemblage of peraluminous and peralkaline rhyolites and a resurgent intra-caldera porphyritic quartz monzonite. In this study, we use zircon trace element data to study the compositional differences of zircons from cogenetic magmas and to track the evolution of the entire magmatic system. Our results indicate that the zircons from the peraluminous and peralkaline rhyolites formed from highly evolved compositions with high Hf concentrations and low Ti contents, and low Th/U and Zr/Hf ratios, which are distinct from those of the intrusive porphyritic quartz monzonite. Zircons from the peraluminous and peralkaline rhyolites display overlapping Zr/Hf and Hf, but the zircons from the peralkaline rhyolites have extremely low Eu/Eu* ratios (Peer reviewe

    Immunological evaluation of herbal extracts commonly used for treatment of mental diseases during pregnancy

    Get PDF
    Nonpsychotic mental diseases (NMDs) affect approximately 15% of pregnant women in the US. Herbal preparations are perceived a safe alternative to placenta-crossing antidepressants or benzodiazepines in the treatment of nonpsychotic mental diseases. But are these drugs really safe for mother and foetus? This question is of great relevance to physicians and patients. Therefore, this study investigates the influence of St. John's wort, valerian, hops, lavender, and California poppy and their compounds hyperforin and hypericin, protopine, valerenic acid, and valtrate, as well as linalool, on immune modulating effects in vitro. For this purpose a variety of methods was applied to assess the effects on viability and function of human primary lymphocytes. Viability was assessed via spectrometric assessment, flow cytometric detection of cell death markers and comet assay for possible genotoxicity. Functional assessment was conducted via flow cytometric assessment of proliferation, cell cycle and immunophenotyping. For California poppy, lavender, hops, and the compounds protopine and linalool, and valerenic acid, no effect was found on the viability, proliferation, and function of primary human lymphocytes. However, St. John's wort and valerian inhibited the proliferation of primary human lymphocytes. Hyperforin, hypericin, and valtrate inhibited viability, induced apoptosis, and inhibited cell division. Calculated maximum concentration of compounds in the body fluid, as well as calculated concentrations based on pharmacokinetic data from the literature, were low and supported that the observed effects in vitro would probably have no relevance on patients. In-silico analyses comparing the structure of studied substances with the structure of relevant control substances and known immunosuppressants revealed structural similarities of hyperforin and valerenic acid to the glucocorticoids. Valtrate showed structural similarities to the T cells signaling modulating drugs

    Cadomian and Variscan metamorphic events in the Léon Domain (Armorican Massif) resolved by trace element analysis in monazite and garnet

    Get PDF
    The question, whether crustal domains are allochthonous terranes or not is crucial for plate tectonic models of the Ibero-Armorican segment of the Variscan belt. The Léon Domain in the Armorican Massif appears as a displaced crustal block as it bears a resemblance to the South Armorican Domain of the internal Variscan belt (Le Corre et al. 1989). In the central part of the Léon, the amphibolite-facies Conquet- Penze Micaschist Unit (CPMU) overlies the high-grade Lesneven Gneiss Unit (LGU). At the base of the LGU, a high-pressure stage at 700°C/>13 kbar, recorded by garnet-clinopyroxene assemblages in eclogites was followed by a high-temperature event at 800°C/8 kbar with garnet and cordierite in aluminous paragneisses. Maximal temperatures in the upper parts of the LGU were 630°C/6 kbar. In the micaschists of the Conquet-Penze Unit, microstructures indicate a crystallization of garnet and then staurolite during the development of S1 and S2 foliations. Zoned garnet in assemblages with staurolite recorded prograde P–T paths from 490– 610°C at 5–8 kbar in the upper and at 6– 9 kbar in the lower parts of the CPMU. The foliation S2 was overprinted by shear bands with a top-to- SW directed normal sense of shear, corresponding to a dextral strike-slip movement (Balé & Brun 1986). A younger population of monazite with variable Y contents displays Variscan Th-U-Pb ages (EMP dating method) between 340 and 300Ma. In contrast, an older population of Cadomian monazite at 552–517Ma is uniformly rich in Y and was observed in samples with only few or even no garnet. As the 330–340Ma Saint Renan- Kersaint granite postdates the foliations S1 and S2 with peak metamorphic assemblages one can conclude that 340–300Ma Variscan monazites should postdate garnet crystallization.conferenc

    Aryltetralin lignans from Hyptis brachiata inhibiting T lymphocyte proliferation

    Get PDF
    Increased activation and proliferation of T lymphocytes plays an essential role in the development of chronic inflammation and autoimmune diseases. Currently used immunosuppressive drugs often do not provide long-lasting relief of symptoms and show a gradual loss of efficacy over time, and are accompanied by various side effects. Therefore, novel immunosuppressive lead substances are needed. For this purpose, an in-house library consisting of 600 extracts of plants from Panama was screened for inhibition of human T lymphocyte proliferation. As one of the hits, an ethyl acetate extract from the aerial parts of Hyptis brachiata (Lamiaceae) exhibited strong inhibitory effects. Subsequent investigation resulted in the isolation of seven aryltetralin lignans, five arylnaphthalene lignans, two flavonoids, three triterpenes, and cinnamyl cinnamate. Aryltetralin lignans inhibited T lymphocyte proliferation in a concentration-dependent manner without induction of apoptosis. No relevant inhibition was observed for the arylnaphthalene lignans, flavonoids, and triterpenes. Additional cell cycle arrest investigations revealed that isolated aryltetralin lignans potently inhibited cell division in G2/M phase similarly to podophyllotoxin. Multifluorescence panel analyses of the extract also showed weak suppressive effects on the production of IL-2 and TNF-α. Therefore, preparations made out of H. brachiata could be further explored as an interesting herbal alternative in the treatment of autoimmune diseases

    Uncovering and quantifying the subduction zone sulfur cycle from the slab perspective

    Get PDF
    Sulfur belongs among H2O, CO2, and Cl as one of the key volatiles in Earth’s chemical cycles. High oxygen fugacity, sulfur concentration, and δ34S values in volcanic arc rocks have been attributed to significant sulfate addition by slab fluids. However, sulfur speciation, flux, and isotope composition in slab-dehydrated fluids remain unclear. Here, we use high-pressure rocks and enclosed veins to provide direct constraints on subduction zone sulfur recycling for a typical oceanic lithosphere. Textural and thermodynamic evidence indicates the predominance of reduced sulfur species in slab fluids; those derived from metasediments, altered oceanic crust, and serpentinite have δ34S values of approximately −8‰, −1‰, and +8‰, respectively. Mass-balance calculations demonstrate that 6.4% (up to 20% maximum) of total subducted sulfur is released between 30–230 km depth, and the predominant sulfur loss takes place at 70–100 km with a net δ34S composition of −2.5 ± 3‰. We conclude that modest slab-to-wedge sulfur transport occurs, but that slab-derived fluids provide negligible sulfate to oxidize the sub-arc mantle and cannot deliver 34S-enriched sulfur to produce the positive δ34S signature in arc settings. Most sulfur has negative δ34S and is subducted into the deep mantle, which could cause a long-term increase in the δ34S of Earth surface reservoirs

    Trace Elements in Magnetite from the Pagoni Rachi Porphyry Prospect, NE Greece: Implications for Ore Genesis and Exploration

    Get PDF
    Magnetite is a common accessory phase in various types of ore deposits. Its trace element content has proven to have critical implications regarding petrogenesis and as guides in the exploration for ore deposits in general. In this study we use LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometry) analyses of trace elements to chemically characterize magnetite from the Pagoni Rachi Cu–Mo–Re–Au porphyry-style prospect, Thrace, northern Greece. Igneous magnetite mostly occurs as euhedral grains, which are commonly replaced by hematite in fresh to propylitic-altered granodiorite porphyry, whereas, hydrothermal magnetite forms narrow veinlets or is disseminated in sodic/potassic-calcic altered (albite + K-feldspar + actinolite + biotite + chlorite) granodiorite porphyry. Magnetite is commonly associated with chalcopyrite and pyrite and locally exhibits martitization. Laser ablation ICP-MS analyses of hydrothermal magnetite yielded elevated concentrations in several trace elements (e.g., V, Pb, W, Mo, Ta, Zn, Cu, and Nb) whereas Ti, Cr, Ni, and Sn display higher concentration in its magmatic counterpart. A noteworthy enrichment in Mo, Pb, and Zn is an unusual feature of hydrothermal magnetite from Pagoni Rachi. High Si, Al, and Ca values in a few analyses of hydrothermal magnetite imply the presence of submicroscopic or nano-inclusions (e.g., chlorite, and titanite). The trace element patterns of the hydrothermal magnetite and especially the decrease in its Ti content reflect an evolution from the magmatic towards the hydrothermal conditions under decreasing temperatures, which is consistent with findings from analogous porphyry-style deposits elsewhere

    Magmatic PGE Sulphide Mineralization in Clinopyroxenite from the Platreef, Bushveld Complex, South Africa

    Get PDF
    The Platreef, at the base of the northern limb of the Bushveld Complex in South Africa, hosts platinum-group element (PGE) mineralization in association with base-metal sulphides (BMS) and platinum-group minerals (PGM). However, whilst a magmatic origin of the stratiform mineralization of the upper Platreef has been widely confirmed, the processes responsible for the PGE and BMS mineralization and metasomatism of the host rocks in the Platreef are still under discussion. In order to contribute to the present discussion, we present an integrated petrographical, mineral-chemical, whole-rock trace- and major-element, sulphur- and neodymium-isotope, study of Platreef footwall clinopyroxenite drill core samples from Overysel, which is located in the northern sector of the northern Bushveld limb. A metasomatic transformation of magmatic pyroxenite units to non-magmatic clinopyroxenite is in accordance with the petrography and whole-rock chemical analysis. The whole-rock data display lower SiO2, FeO, Na2O and Cr (<1700 ppm), and higher CaO, concentrations in the here-studied footwall Platreef clinopyroxenite samples than primary magmatic Platreef pyroxenite and norite. The presence of capped globular sulphides in some samples, which display differentiation into pyrrhotite and pentlandite in the lower, and chalcopyrite in the upper part, is attributed to the fractional crystallization of a sulphide liquid, and a downward transport of the blebs. In situ sulphur (V-CDT) isotope BMS data show isotopic signatures (δ34S = 0.9 to 3.1 ‰; Δ33S = 0.09 to 0.32‰) close to or within the pristine magmatic range. Elevated (non-zero) Δ33S values are common for Bushveld magmas, indicating contamination by older, presumably crustal sulphur in an early stage chamber, whereas magmatic δ34S values suggest the absence of local crustal contamination during emplacement. This is in accordance with the εNd (2.06 Ga) (chondritic uniform reservoir (CHUR)) values, of −6.16 to −6.94, which are similar to those of the magmatic pyroxenite and norite of the Main Zone and the Platreef in the northern sector of the northern Bushveld limb. Base-metal sulphide textures and S–Se-ratios give evidence for a secondary S-loss during late- to post-magmatic hydrothermal alteration. The textural evidence, as well as the bulk S/Se ratios and sulphide S isotopes studies, suggest that the mineralization in both the less and the pervasively hydrothermally altered clinopyroxenite samples of Overysel are of magmatic origin. This is further supported by the PPGE (Rh, Pt, Pd) concentrations in the BMS and mass-balance calculations, in both of which large proportions of the whole-rock Pd and Rh are hosted by pentlandite, whereas Pt and the IPGE (Os, Ir, Ru) were interpreted to mainly occur in discrete PGM. However, the presence of pentlandite with variable PGE concentrations on the thin section scale may be related to variations in the S content, already at S-saturation during magmatic formation, and/or post-solidification mobilization and redistribution

    Gold deposits in Greece: Hypogene ore mineralogy as a guide for precious and critical metal exploration

    Get PDF
    Gold deposits in Greece are spatially associated with back-arc/arc related volcanic, subvolcanic and plutonic rocks, which were controlled by extensional kinematic conditions when metamorphic core complexes in the Rhodope-Serbomacedonian- and Attico-Cycladic Massifs were uplifted to near surface levels over the south-westward retreating Hellenic subduction zone. Porphyry Cu-Mo-Au, high-intermediate sulfidation epithermal Au-Ag deposits and other intrusion-related proximal to distal systems (skarn, carbonate replacement, metamorphic rock-hosted quartz veins) are characterized by enrichment of trace metallic minerals like bismuth sulfosalts and Bi-sulfotellurides, precious- and base metal tellurides and Se-bearing phases, which can be considered as pathfinder minerals for gold as they are intimately associated with gold-bearing ores. Mineralogical studies of various styles of gold deposits in Greece can be applied as an exploration tool and selected examples from well described mineralization/deposits are presented here
    corecore