364 research outputs found

    Budget-Aware Adapters for Multi-Domain Learning

    Full text link
    Multi-Domain Learning (MDL) refers to the problem of learning a set of models derived from a common deep architecture, each one specialized to perform a task in a certain domain (e.g., photos, sketches, paintings). This paper tackles MDL with a particular interest in obtaining domain-specific models with an adjustable budget in terms of the number of network parameters and computational complexity. Our intuition is that, as in real applications the number of domains and tasks can be very large, an effective MDL approach should not only focus on accuracy but also on having as few parameters as possible. To implement this idea we derive specialized deep models for each domain by adapting a pre-trained architecture but, differently from other methods, we propose a novel strategy to automatically adjust the computational complexity of the network. To this aim, we introduce Budget-Aware Adapters that select the most relevant feature channels to better handle data from a novel domain. Some constraints on the number of active switches are imposed in order to obtain a network respecting the desired complexity budget. Experimentally, we show that our approach leads to recognition accuracy competitive with state-of-the-art approaches but with much lighter networks both in terms of storage and computation.Comment: ICCV 201

    La discrétisation temporelle. Une méthode de structuration des données pour la cartographie dynamique

    No full text
    National audienceLa cartographie dynamique tient rarement compte du rythme des phénomènes représentés. Dès lors, les séquences composant certaines animations peuvent paraître tantôt trop rapides - avec un risque de mauvaise perception du phénomène représenté - tantôt trop lentes - avec un risque de lassitude et de perte d'attention de la part du lecteur. Aussi, cette communication propose-t-elle une méthode de structuration des données temporelles visant à préparer la construction de cartes dynamiques adaptées

    In situ three-dimensional monitoring of collagen fibrillogenesis using SHG microscopy.

    Get PDF
    International audienceWe implemented in situ time-lapse Second Harmonic Generation (SHG) microscopy to monitor the three-dimensional (3D) self-assembly of collagen in solution. As a proof of concept, we tuned the kinetics of fibril formation by varying the pH and measured the subsequent exponential increase of fibril volume density in SHG images. We obtained significantly different time constants at pH = 6.5 ± 0.3 and at pH = 7.5 ± 0.3. Moreover, we showed that we could focus on the growth of a single isolated collagen fibril because SHG microscopy is sensitive to well-organized fibrils with diameter below the optical resolution. This work illustrates the potential of SHG microscopy for the rational design and characterization of collagen-based biomaterials

    Fibrillogenesis from nanosurfaces: multiphoton imaging and stereological analysis of collagen 3D self-assembly dynamics

    No full text
    International audienceThe assembly of proteins into fibrillar structures is an important process that concerns different biological contexts, including molecular medicine and functional biomaterials. Engineering of hybrid biomaterials can advantageously provide synergetic interactions of the biopolymers with an inorganic component to ensure specific supramolecular organization and dynamics. To this aim, we designed hybrid systems associating collagen and surface-functionalized silica particles and we built a new strategy to investigate fibrillogenesis processes in such multicomponents systems, working at the crossroads of chemistry, physics and mathematics. The self-assembly process was investigated by bimodal multiphoton imaging coupling second harmonic generation (SHG) and 2 photon excited fluorescence (2PEF). The in-depth spatial characterization of the system was further achieved using the three-dimensional analysis of the SHG/2PEF data via mathematical morphology processing. Quantitation of collagen distribution around particles offers strong evidence that the chemically induced confinement of the protein on the silica nanosurfaces has a key influence on the spatial extension of fibrillogenesis. This new approach is unique in the information it can provide on 3D dynamic hybrid systems and may be extended to other associations of fibrillar molecules with optically responsive nano-objects

    Wildlife genetics and disease: allozyme evolution in the wild boar (Sus scrofa) caused by a swine fever epidemy

    Get PDF
    Enzyme polymorphism at 42 loci was compared before and after a major epidemy of swine fever in wild boars from northern Vosges (France). No change was observed in the 38 monomorphic loci, but allele frequencies at the phosphoglucomutase locus PGM-2* changed significantly. Possible causes for this observation are discussed, and it appears that PGM-2 locus could be a genetic marker of resistance to this viral disease

    18F-FDOPA PET/CT Uptake Parameters Correlate with Catecholamine Secretion in Human Pheochromocytomas

    Get PDF
    International audienceBackground: 18 F-FDOPA positron emission tomography/ computed tomography (PET/CT) is a sensitive nuclear imaging technology for the diagnosis of pheochromocytomas (PHEO). However, its utility in determining predictive factors for the secretion of catecholamines remains poorly studied. Methods: Thirty-nine histologically confirmed PHEO were included in this retrospective single-center study. Patients underwent 18 F-FDOPA PET/CT before surgery, with an evaluation of several uptake parameters (standardized uptake values [SUV max and SUV mean ] and the metabolic burden [MB] calculated as follows: MB = SUV mean Ă— tumor volume) and measurement of plasma and/or urinary metanephrine (MN), normetanephrine (NM), and chromogranin A. Thirty-five patients were screened for germline mutations in the RET, SDHx, and VHL genes. Once resected, primary cultures of 5 PHEO were used for real-time measurement of catechol-amine release by carbon fiber amperometry. Results: The MB of the PHEO positively correlated with 24-h urinary excre-tion of NM (r = 0.64, p < 0.0001), MN (r = 0.49, p = 0.002), combined MN and NM (r = 0.75, p < 0.0001), and eventually plasma free levels of NM (r = 0.55, p = 0.006). In the mutated patients (3 SDHD, 2 SDHB, 3 NF1, 1 VHL, and 3 RET), a similar correlation was observed between MB and 24-h urinary combined MN and NM (r = 0.86, p = 0.0012). For the first time, we demonstrate a positive correlation between the PHEO-to-liver SUV max ratio and the mean number of secretory granule fusion events of the corresponding PHEO cells revealed by amperometric spikes (p = 0.01). Conclusion: While the 18 F-FDOPA PET/CT MB of PHEO strongly correlates with the concentration of MN, amperometric recordings suggest that 18 F-FDOPA uptake could be enhanced by overactivity of cat-echolamine exocytosis

    Ex vivo multiscale quantitation of skin biomechanics in wild-type and genetically-modified mice using multiphoton microscopy

    Get PDF
    International audienceSoft connective tissues such as skin, tendon or cornea are made of about 90% of extracellular matrix proteins, fibrillar collagens being the major components. Decreased or aberrant collagen synthesis generally results in defective tissue mechanical properties as the classic form of Elhers-Danlos syndrome (cEDS). This connective tissue disorder is caused by mutations in collagen V genes and is mainly characterized by skin hyperextensibility. To investigate the relationship between the microstructure of normal and diseased skins and their macroscopic mechanical properties, we imaged and quantified the microstructure of dermis of ex vivo murine skin biopsies during uniaxial mechanical assay using multiphoton microscopy. We used two genetically-modified mouse lines for collagen V: a mouse model for cEDS harboring a Col5a2 deletion (a.k.a. pN allele) and the transgenic K14-COL5A1 mice which overexpress the human COL5A1 gene in skin. We showed that in normal skin, the collagen fibers continuously align with stretch, generating the observed increase in mechanical stress. Moreover, dermis from both transgenic lines exhibited altered collagen reorganization upon traction, which could be linked to microstructural modifications. These findings show that our multiscale approach provides new crucial information on the biomechanics of dermis that can be extended to all collagen-rich soft tissues

    Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging.

    No full text
    International audienceWe studied the azimuthal orientations of collagen fibers in histological slides of uterine cervical tissue by two different microscopy techniques, namely Mueller polarimetry (MP) and Second Harmonic Generation (SHG). SHG provides direct visualization of the fibers with high specificity, which orientations is then obtained by suitable image processing. MP provides images of retardation (among other polarimetric parameters) due to the optical anisotropy of the fibers, which is enhanced by Picrosirius Red staining. The fiber orientations are then assumed to be those of the retardation slow axes. The two methods, though fully different from each other, provide quite similar maps of average fiber orientations. Overall, our results confirm that MP microscopy provides reliable images of dominant fiber orientations at a much lower cost that SHG, which remains the "gold standard" for specific imaging of collagen fibers using optical microscopy

    Target-Space Duality in Heterotic and Type I Effective Lagrangians

    Get PDF
    We study the implications of target-space duality symmetries for low-energy effective actions of various four-dimensional string theories. In the heterotic case such symmetries can be incorporated in simple orbifold examples. At present a similar statement cannot be made about the simplest type IIB orientifolds due to an obstruction at the level of gravitational anomalies. This fact confirms previous doubts concerning a conjectured heterotic-type IIB orientifold duality and shows that target-space symmetries can be a powerful tool in studying relations between various string theories at the level of the effective low-energy action. Contraints on effective Lagrangians from these symmetries are discussed in detail. In particular, we consider ways of extending T-duality to include additional corrections to the Kaehler potential in heterotic string models with N=2 subsectors.Comment: 30 pages, LaTeX2
    • …
    corecore