164 research outputs found

    High purity semi-insulating 4H-SiC epitaxial layers by Defect-Competition Epitaxy

    Full text link
    Thick, high-purity semi-insulating (SI)homoepitaxial layers on Si-face 4H-SiC weregrownsystematically, with resistivity \geq 109{\Omega}-cmby maintaining high C/Si ratios 1.3-15 during growth.Comparison of secondary ion mass spectra betweenlow-dopedepilayers grown at C/Si ratio<1.3andSI-epilayers grown at C/Si ratio>1.3 showed little difference in residual impurity concentrations. A reconciliation of impurity concentration with measured resistivity indicated a compensating trap concentration of ~1015cm-3present only in the SI-epilayers. High- resolution photo induced transient spectroscopy (HRPITS) identified themas Si-vacancy related deep centers, with no detectable EH6/7 and Z1/2levels. Recombination lifetimes ~5ns suggest application in fast-switching power devices.Comment: Submitted to Applied Physics Letter

    A two-step procedure for purification of papain from extract of papaya latex

    Full text link
    A method is presented for purifying papain from extracts of papaya latex. The procedure involves precipitation of the extract of papaya latex with sodium chloride followed by affinity chromatography of the redissolved precipitate. Precipitation of the protein from the latex extract is necessary to separate the papain from material which interferes with the binding of papain to the affinity column. During affinity chromatography, the affinity column is overloaded to insure absence in the final product of impurities which are capable of binding to the affinity column.The papain prepared by this procedure yielded an amino acid analysis and an N-terminal amino acid analysis expected for a sample of pure papain. No Met was detected on amino acid analysis nor was the presence of N-terminal residues other than He detected. On polyacrylamide disc gel electrophoresis at pH 4.3, papain prepared by the method described in this work was indistinguishable from crystalline papain which was prepared by the method of Kimmel and Smith, and further purified by affinity chromatography. Both disc gel patterns consisted of a single band and a trailing shadow which was less than 5% of the main band. In routine spectrophotometric assays, the specific activity toward N,[alpha]-benzoyl--arginine ethyl ester of papain prepared by the procedure described in this work was indistinguishable from crystalline papain prepared by the method of Kimmel and Smith, and further purified by affinity chromatography. Values of 24 sec-1' and 15 m were obtained from the turnover number and Km for the papain-catalyzed hydrolysis of N,[alpha]-benzoyl--arginine ethyl ester at 25 [deg]C, pH 6.00, [Gamma]/2 0.30 using a pH stat.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/22283/1/0000723.pd

    Drinking water turbidity and emergency department visits for gastrointestinal illness in Atlanta, 1993–2004

    Get PDF
    The extent to which drinking water turbidity measurements indicate the risk of gastrointestinal illness is not well-understood. Despite major advances in drinking water treatment and delivery, infectious disease can still be transmitted through drinking water in the U.S., and it is important to have reliable indicators of microbial water quality to inform public health decisions. The objective of our study was to assess the relationship between gastrointestinal illness, quantified through emergency department visits, and drinking water quality, quantified as raw water and filtered water turbidity measured at the treatment plant

    Cognitive Engineering

    Get PDF
    Cognitive engineering is the application of cognitive psychology and related disciplines to the design and operation of human–machine systems. Cognitive engineering combines both detailed and close study of the human worker in the actual work context and the study of the worker in more controlled environments. Cognitive engineering combines multiple methods and perspectives to achieve the goal of improved system performance. Given the origins of experimental psychology itself in issues regarding the design of human–machine systems, cognitive engineering is a core, or fundamental, discipline within academic psychology

    Drinking water residence time in distribution networks and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia

    Get PDF
    We examined whether the average water residence time, the time it takes water to travel from the treatment plant to the user, for a zip code was related to the proportion of emergency department (ED) visits for gastrointestinal (GI) illness among residents of that zip code. Individual-level ED data were collected from all hospitals located in the five-county metro Atlanta area from 1993 to 2004. Two of the largest water utilities in the area, together serving 1.7 million people, were considered. People served by these utilities had almost three million total ED visits, 164,937 of them for GI illness. The relationship between water residence time and risk for GI illness was assessed using logistic regression, controlling for potential confounding factors, including patient age and markers of socioeconomic status (SES). We observed a modestly increased risk for GI illness for residents of zip codes with the longest water residence times compared to intermediate residence times (odds ratio (OR) for Utility 1 = 1.07, 95% confidence interval (CI) = 1.03, 1.10; OR for Utility 2 = 1.05, 95% CI = 1.02, 1.08). The results suggest that drinking water contamination in the distribution system may contribute to the burden of endemic GI illness

    Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States

    Get PDF
    Secondary organic aerosol (SOA) constitutes a substantial fraction of fine particulate matter and has important impacts on climate and human health. The extent to which human activities alter SOA formation from biogenic emissions in the atmosphere is largely undetermined. Here, we present direct observational evidence on the magnitude of anthropogenic influence on biogenic SOA formation based on comprehensive ambient measurements in the southeastern United States (US). Multiple high-time-resolution mass spectrometry organic aerosol measurements were made during different seasons at various locations, including urban and rural sites in the greater Atlanta area and Centreville in rural Alabama. Our results provide a quantitative understanding of the roles of anthropogenic SO(2) and NO(x) in ambient SOA formation. We show that isoprene-derived SOA is directly mediated by the abundance of sulfate, instead of the particle water content and/or particle acidity as suggested by prior laboratory studies. Anthropogenic NO(x) is shown to enhance nighttime SOA formation via nitrate radical oxidation of monoterpenes, resulting in the formation of condensable organic nitrates. Together, anthropogenic sulfate and NO(x) can mediate 43–70% of total measured organic aerosol (29–49% of submicron particulate matter, PM(1)) in the southeastern US during summer. These measurements imply that future reduction in SO(2) and NO(x) emissions can considerably reduce the SOA burden in the southeastern US. Updating current modeling frameworks with these observational constraints will also lead to more accurate treatment of aerosol formation for regions with substantial anthropogenic−biogenic interactions and consequently improve air quality and climate simulations
    corecore