675 research outputs found
Landing and catalytic characterization of individual nanoparticles on electrode surfaces
We demonstrate a novel and versatile pipet-based approach to study the landing of individual nanoparticles (NPs) on various electrode materials without any need for encapsulation or fabrication of complex substrate electrode structures, providing great flexibility with respect to electrode materials. Because of the small electrode area defined by the pipet dimensions, the background current is low, allowing for the detection of minute current signals with good time resolution. This approach was used to characterize the potential-dependent activity of Au NPs and to measure the catalytic activity of a single NP on a TEM grid, combining electrochemical and physical characterization at the single NP level for the first time. Such measurements open up the possibility of studying the relation between the size, structure and activity of catalyst particles unambiguously
Origin of the X-ray Emission in the Nuclei of FR Is
We investigate the X-ray origin in FRIs using the multi-waveband high
resolution data of eight FR I sources, which have very low Eddington ratios. We
fit their multi-waveband spectrum using a coupled accretion-jet model. We find
that X-ray emission in the source with the highest L_X (~1.8*10^-4 L_Edd) is
from the advection-dominated accretion flow (ADAF). Four sources with moderate
L_X(~several*10^-6 L_Edd) are complicated. The X-ray emission of one FR I is
from the jet, and the other three is from the sum of the jet and ADAF. The
X-ray emission in the three least luminous sources (L_X<1.0*10^-6L_Edd) is
dominated by the jet. These results roughly support the predictions of Yuan and
Cui(2005) where they predict that when the X-ray luminosity of the system is
below a critical value, the X-radiation will not be dominated by the emission
from the ADAF any longer, but by the jet. We also find that the accretion rates
in four sources must be higher than the Bondi rates, which implies that other
fuel supply (e.g., stellar winds) inside the Bondi radius should be important.Comment: 6 pages. To published in Journal of Physics, in proceedings of "The
Universe under the Microscope - Astrophysics at High Angular Resolution" (Bad
Honnef, Germany, April 2008), eds. R. Schoedel, A. Eckart, S. Pfalzner, and
E. Ro
Measuring the mass of the central black hole in the bulgeless galaxy ngc 4395 from gas dynamical modeling
NGC 4395 is a bulgeless spiral galaxy, harboring one of the nearest known type 1 Seyfert nuclei. Although there is no consensus on the mass of its central engine, several estimates suggest it is one of the lightest massive black holes (MBHs) known. We present the first direct dynamical measurement of the mass of this MBH from a combination of two-dimensional gas kinematic data, obtained with the adaptive optics assisted near-infrared integral field spectrograph Gemini/NIFS and high-resolution multiband photometric data from Hubble Space Telescope's Wide Field Camera 3. We use the photometric data to model the shape and stellar mass-to-light ratio of the nuclear star cluster (NSC). From the Gemini/NIFS observations, we derive the kinematics of warm molecular hydrogen gas as traced by emission through the H2 1–0 S(1) transition. These kinematics show a clear rotational signal, with a position angle orthogonal to NGC 4395's radio jet. Our best-fitting tilted ring models of the kinematics of the molecular hydrogen gas contain a black hole with mass M={4}-3+8× {10}5 M⊙ (3σ uncertainties) embedded in an NSC of mass M=2× {10}6 M⊙. Our black hole mass measurement is in excellent agreement with the reverberation mapping mass estimate of Peterson et al. but shows some tension with other mass measurement methods based on accretion signals
Special Geometry of Euclidean Supersymmetry I: Vector Multiplets
We construct the general action for Abelian vector multiplets in rigid
4-dimensional Euclidean (instead of Minkowskian) N=2 supersymmetry, i.e., over
space-times with a positive definite instead of a Lorentzian metric. The target
manifolds for the scalar fields turn out to be para-complex manifolds endowed
with a particular kind of special geometry, which we call affine special
para-Kahler geometry. We give a precise definition and develop the mathematical
theory of such manifolds. The relation to the affine special Kahler manifolds
appearing in Minkowskian N=2 supersymmetry is discussed. Starting from the
general 5-dimensional vector multiplet action we consider dimensional reduction
over time and space in parallel, providing a dictionary between the resulting
Euclidean and Minkowskian theories. Then we reanalyze supersymmetry in four
dimensions and find that any (para-)holomorphic prepotential defines a
supersymmetric Lagrangian, provided that we add a specific four-fermion term,
which cannot be obtained by dimensional reduction. We show that the Euclidean
action and supersymmetry transformations, when written in terms of
para-holomorphic coordinates, take exactly the same form as their Minkowskian
counterparts. The appearance of a para-complex and complex structure in the
Euclidean and Minkowskian theory, respectively, is traced back to properties of
the underlying R-symmetry groups. Finally, we indicate how our work will be
extended to other types of multiplets and to supergravity in the future and
explain the relevance of this project for the study of instantons, solitons and
cosmological solutions in supergravity and M-theory.Comment: 74 page
rasterdiv ‐ an Information Theory tailored R package for measuring ecosystem heterogeneity from space: to the origin and back
Ecosystem heterogeneity has been widely recognized as a key ecological indicator of several ecological functions, diversity patterns and change, metapopulation dynamics, population connectivity or gene flow. In this paper, we present a new R package—rasterdiv—to calculate heterogeneity indices based on remotely sensed data. We also provide an ecological application at the landscape scale and demonstrate its power in revealing potentially hidden heterogeneity patterns. The rasterdiv package allows calculating multiple indices, robustly rooted in Information Theory, and based on reproducible open-source algorithms
One single dose of etomidate negatively influences adrenocortical performance for at least 24 h in children with meningococcal sepsis
Objective: To investigate the effect of one single bolus of etomidate used for intubation on adrenal function in children with meningococcal sepsis. Design: Retrospective study conducted between 1997 and 2004. Setting: University-affiliated paediatric intensive care unit (PICU). Patients and participants: Sixty children admitted to the PICU with meningococcal sepsis, not treated with steroids. Interventions: Adrenal hormone concentrations were determined as soon as possible after PICU admission, and after 12h and 24h. To assess disease severity, PRISM score and selected laboratory parameters were determined. Measurements and main results: On admission, before blood was drawn, 23 children had been intubated with etomidate, 8 without etomidate and 29 were not intubated. Children who were intubated had significantly higher disease severity parameters than those not intubated, whereas none of these parameters significantly differed between children intubated with or without etomidate. Children who received etomidate had significantly lower cortisol, higher ACTH and higher 11-deoxycortisol levels than those who did not receive etomidate. Arterial glucose levels were significantly lower in children who were intubated with etomidate than in non-intubated children. When children were intubated with etomidate, cortisol levels were 3.2 times lower for comparable 11-deoxycortisol levels. Eight children died, seven of whom had received etomidate. Within 24h cortisol/ACTH and cortisol/11-deoxycortisol ratios increased significantly in children who received etomidate, but not in children who did not, resulting in comparable cortisol/ACTH ratios with still significantly lowered cortisol/11-deoxycortisol ratios 24h after admission. Conclusions: Our data imply that even one single bolus of etomidate negatively influences adrenal function for at least 24h. It might therefore increase risk of death
LinKS:Discovering galaxy-scale strong lenses in the Kilo-Degree Survey using Convolutional Neural Networks
We present a new sample of galaxy-scale strong gravitational lens candidates, selected from 904 deg2 of Data Release 4 of the Kilo-Degree Survey, i.e. the `Lenses in the Kilo-Degree Survey' (LinKS) sample. We apply two convolutional neural networks (ConvNets) to {˜ }88 000 colour-magnitude-selected luminous red galaxies yielding a list of 3500 strong lens candidates. This list is further downselected via human inspection. The resulting LinKS sample is composed of 1983 rank-ordered targets classified as `potential lens candidates' by at least one inspector. Of these, a high-grade subsample of 89 targets is identified with potential strong lenses by all inspectors. Additionally, we present a collection of another 200 strong lens candidates discovered serendipitously from various previous ConvNet runs. A straightforward application of our procedure to future Euclid or Large Synoptic Survey Telescope data can select a sample of ˜3000 lens candidates with less than 10 per cent expected false positives and requiring minimal human intervention
The strong gravitational lens finding challenge
Large-scale imaging surveys will increase the number of galaxy-scale strong lensing candidates by maybe three orders of magnitudes beyond the number known today. Finding these rare objects will require picking them out of at least tens of millions of images, and deriving scientific results from them will require quantifying the efficiency and bias of any search method. To achieve these objectives automated methods must be developed. Because gravitational lenses are rare objects, reducing false positives will be particularly important. We present a description and results of an open gravitational lens finding challenge. Participants were asked to classify 100 000 candidate objects as to whether they were gravitational lenses or not with the goal of developing better automated methods for finding lenses in large data sets. A variety of methods were used including visual inspection, arc and ring finders, support vector machines (SVM) and convolutional neural networks (CNN). We find that many of the methods will be easily fast enough to analyse the anticipated data flow. In test data, several methods are able to identify upwards of half the lenses after applying some thresholds on the lens characteristics such as lensed image brightness, size or contrast with the lens galaxy without making a single false-positive identification. This is significantly better than direct inspection by humans was able to do. Having multi-band, ground based data is found to be better for this purpose than single-band space based data with lower noise and higher resolution, suggesting that multi-colour data is crucial. Multi-band space based data will be superior to ground based data. The most difficult challenge for a lens finder is differentiating between rare, irregular and ring-like face-on galaxies and true gravitational lenses. The degree to which the efficiency and biases of lens finders can be quantified largely depends on the realism of the simulated data on which the finders are trained
The first sample of spectroscopically confirmed ultra-compact massive galaxies in the Kilo Degree Survey
We present results from an ongoing investigation using the Kilo Degree Survey
(KiDS) on the VLT Survey Telescope (VST) to provide a census of ultra-compact
massive galaxies (UCMGs), defined as galaxies with stellar masses and effective radii . UCMGs, which are expected to have undergone very few merger
events, provide a unique view on the accretion history of the most massive
galaxies in the Universe. Over an effective sky area of nearly 330 square
degrees, we select UCMG candidates from KiDS multi-colour images, which provide
high quality structural parameters, photometric redshifts and stellar masses.
Our sample of photometrically selected UCMGs at
represents the largest sample of UCMG candidates assembled to date over the
largest sky area. In this paper we present the first effort to obtain their
redshifts using different facilities, starting with first results for 28
candidates with redshifts , obtained at NTT and TNG telescopes. We
confirmed, as bona fide UCMGs, 19 out of the 28 candidates with new redshifts.
A further 46 UCMG candidates are confirmed with literature spectroscopic
redshifts (35 at ), bringing the final cumulative sample of
spectroscopically-confirmed lower-z UCMGs to 54 galaxies, which is the largest
sample at redshifts below . We use these spectroscopic redshifts to
quantify systematic errors in our photometric selection, and use these to
correct our UCMG number counts. We finally compare the results to independent
datasets and simulations.Comment: Accepted for publication on MNRAS, 27 pages, 13 figures, 7 tables.
This revised and improved version presents different updates. In particular,
systematics and uncertainties in the measurement of the effective radii are
now better discussed, and new plots are adde
International Society for Extracellular Vesicles and International Society for Cell and Gene Therapy statement on extracellular vesicles from mesenchymal stromal cells and other cells: considerations for potential therapeutic agents to suppress coronavirus disease-19
STATEMENT: The International Society for Cellular and Gene Therapies (ISCT) and the International Society for Extracellular Vesicles (ISEV) recognize the potential of extracellular vesicles (EVs, including exosomes) from mesenchymal stromal cells (MSCs) and possibly other cell sources as treatments for COVID-19. Research and trials in this area are encouraged. However, ISEV and ISCT do not currently endorse the use of EVs or exosomes for any purpose in COVID-19, including but not limited to reducing cytokine storm, exerting regenerative effects or delivering drugs, pending the generation of appropriate manufacturing and quality control provisions, pre-clinical safety and efficacy data, rational clinical trial design and proper regulatory oversight
- …