39 research outputs found

    Editorial: Cancer evolution

    Get PDF

    Early response evaluation by single cell signaling profiling in acute myeloid leukemia

    Get PDF
    Aberrant pro-survival signaling is a hallmark of cancer cells, but the response to chemotherapy is poorly understood. In this study, we investigate the initial signaling response to standard induction chemotherapy in a cohort of 32 acute myeloid leukemia (AML) patients, using 36-dimensional mass cytometry. Through supervised and unsupervised machine learning approaches, we find that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38 mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell compartment 24 h post-chemotherapy is a significant predictor of patient 5-year overall survival in this cohort. Validation by RNA sequencing shows induction of MAPK target gene expression in patients with high phosphoERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study, we demonstrate that mass cytometry can be a valuable tool for early response evaluation in AML and elucidate the potential of functional signaling analyses in precision oncology diagnostics.Peer reviewe

    Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    No full text
    <div><p>A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.</p> </div

    DiMA (Diginorm-MSP-Velvet) strategy.

    No full text
    <p>This figure depicts the DiMA assembly strategy combined with the Velvet assembler. The process begins by cleaning the original data with a three-phase Digital Normalization algorithm. The cleaned data are distributed on different disk partitions based on the MSP algorithm. Then, the <b>velveth</b> program runs followed by <b>velvetg</b> on each partition. These programs constitute the Velvet assembler’s distinct phases (overlapping computation using hashing and graph construction) and the results are stored on the disk. A merging phase creates the final assembly graph and Velvet’s traversing algorithm produces the final results.</p

    DWFS: a wrapper feature selection tool based on a parallel genetic algorithm.

    No full text
    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem's dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filtering methods that may be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs

    Children\u27s Access to Primary Care in Greater New Haven, Connecticut

    No full text
    <p>Actual classification performance for Medelon dataset using NBC classifier.</p

    The Three Body Problem and the Runge-Lenz Equivalent Constant of the Motion

    No full text
    The Runge-Lenz equivalent for the Hydrogen Molecular Cation (and the Earth, Moon and Sun) problem is obtaine
    corecore