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Early response evaluation by single cell
signaling profiling in acutemyeloid leukemia

Benedicte Sjo Tislevoll 1, Monica Hellesøy 2, Oda Helen Eck Fagerholt 1,
Stein-Erik Gullaksen2, Aashish Srivastava 3, Even Birkeland4,
Dimitrios Kleftogiannis 1,5, Pilar Ayuda-Durán 6,7, Laure Piechaczyk6,7,8,
Dagim Shiferaw Tadele 9,10, Jørn Skavland1, Baliakas Panagiotis 11,
Randi Hovland 12, Vibeke Andresen 1, Ole Morten Seternes 13,
Tor Henrik Anderson Tvedt14, Nima Aghaeepour 15,16,17, Sonia Gavasso1,18,
Kimmo Porkka 19, Inge Jonassen 5, Yngvar Fløisand 7,14,
Jorrit Enserink 6,7,20, Nello Blaser 21 & Bjørn Tore Gjertsen 1,2

Aberrant pro-survival signaling is a hallmark of cancer cells, but the response
to chemotherapy is poorly understood. In this study, we investigate the initial
signaling response to standard induction chemotherapy in a cohort of 32 acute
myeloid leukemia (AML) patients, using 36-dimensional mass cytometry.
Through supervised and unsupervised machine learning approaches, we find
that reduction of extracellular-signal-regulated kinase (ERK) 1/2 and p38
mitogen-activated protein kinase (MAPK) phosphorylation in the myeloid cell
compartment 24 h post-chemotherapy is a significant predictor of patient
5-year overall survival in this cohort. Validation by RNA sequencing shows
induction of MAPK target gene expression in patients with high phospho-
ERK1/2 24 h post-chemotherapy, while proteomics confirm an increase of the
p38 prime target MAPK activated protein kinase 2 (MAPKAPK2). In this study,
we demonstrate that mass cytometry can be a valuable tool for early response
evaluation in AML and elucidate the potential of functional signaling analyses
in precision oncology diagnostics.

Acute myeloid leukemia (AML) is a hematopoietic stem cell-derived
myeloid malignancy characterized by manifold genetic aberrations
and poor overall survival1–3. Standard treatment for newly diagnosed
AML patients fit for intensive chemotherapy includes a combination of
an anthracycline (daunorubicin 60–90mg/m2 or idarubicin 10–12mg/
m2) for three days and cytarabine (Ara-C) (200mg/m2) for seven days
with an initial remission rate of 60–80%2. However, relapse is a chal-
lenge in more than 40% of AML patients. In AML, like in most cancers,
response to therapy is evaluated weeks to months after the start of
therapy. Early detection tools of responders and non-responders will
be essential to improve cancer patient survival, providing physicians
with patient-specific information to change treatment strategy early
and avoid unnecessary adverse effects4–7.

Aberrant signaling in cancer is known to regulate cancer cell
proliferation, protect against cell death and modulate interactions
with the micro-environment8. Approximately 60% of AML patients
harbor mutations in signal transduction pathways9, including muta-
tions resulting in abnormal activation of signaling that is associated
with prognosis2. Conventional chemotherapeutics affect signaling
directly or through the induction of cell stress. In AML, this is
demonstrated within hours after the start of chemotherapy, involving
gene expression of proteins central in the regulation of cell death and
survival10,11.

The intratumor heterogeneity of AML underscores the need for
methods that provide single-cell resolution. Single-cell immune and
signaling profiling by mass cytometry provides a high dimensional
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method that deciphers the phenotypic- and functional heterogeneity
in cancer by simultaneous analysis of multiple parameters in single
cells12. The application of >40 antibodies permits simultaneous ana-
lysis of both intracellular signaling networks and phenotypic char-
acterization of cells13. Furthermore, the possibility of sample
multiplexing allows for direct comparison of sequentially acquired
patient samples, making this an ideal tool for the assessment of ther-
apy response in a clinical setting14.

The current risk stratification for predicting long-term response in
AML is based on genetic analyses in cancer cells sampled at the time of
diagnosis2. However, risk stratifications that include clinical and biolo-
gical information are under discussion15. Functional analyses of drug
sensitivity and signaling responses are suggested13,16–18, butbasedonour
previous observations of protein and gene expression hours after the
start of chemotherapy10,11, we hypothesize that early chemotherapy-
induced alterations in intracellular signaling networks may be a more
accurate predictor of long-term therapy response.

Here, we employ mass cytometry to investigate intracellular sig-
naling networks in peripheral blood (PB) samples from 32 newly
diagnosedAMLpatients during thefirst 24 hof standardized induction
chemotherapy. By correlating initial intracellular signaling response to
5-year overall survival, we demonstrate that early response evaluation
by mass cytometry at 24 h identifies patients with suboptimal treat-
ment response to standard induction therapy.

Results
Characterization of major immunophenotypic clusters in AML
by FlowSOM
Based on experience with proteomics-based functional diagnostics in
leukemic patients11,19,20, we collected PB samples for single-cell signal-
ing profiling from 32 AML patients immediately before, at 4 h and 24 h
after the start of standard “7 + 3” induction chemotherapy (Fig. 1,
Supplementary Fig. 1, Supplementary Tables 1 and 2, Supplementary
Data 1 and 2). These patients were risk classified by ELN 2017 risk
classification and assessed by conventional response evaluation by BM
aspiration at day 17 post-treatment or before cycle two of induction
therapy. (Fig. 1b, d). The antibody panel of 21 extracellular markers
(Supplementary Table 3, Supplementary Data 3) was designed to
identify the major immunophenotypic cell subsets in the samples,
including both healthy immune cells and leukemic blasts. The inclu-
sion of 15 intracellular markers allowed the investigation of the major
intracellular signaling pathways regulating myeloid cell proliferation
and survival19,21. To avoid user bias and enable robust and efficient
analysis of our dataset, we applied the unsupervised clustering algo-
rithm FlowSOM22 (Fig. 1a).

AML is a diseasewith a large degree of intra- (and inter-) individual
immunophenotypic heterogeneity. This is a challenge in multi-
parameter flow cytometry or mass cytometry analysis because strict
clustering based on surface marker expression leads to the identifi-
cation of multiple unique blast clusters, often represented in only one
or a few patients. In this work, we chose an analytical approach of
under-clustering the data to capture the immature myeloid cell com-
partment in as few clusters as possible, while simultaneously identi-
fying the major (presumably) healthy cell subsets. Manual analysis of
increasing resolutions from 1 to 20 metaclusters (MCs) demonstrated
that a total of 10 MCs was sufficient to differentiate the major healthy
cell populations in PB from the AML blast cells (Fig. 2a). The 10
FlowSOM-identified MCs were annotated manually based on surface
marker expression (Fig. 2c). Healthy cell types (MC3–8) had a homo-
geneous surfacemarker expressionacrosspatients andhealthy donors
(Supplementary Fig.2). The AML blast clusters (MC1 and MC2), the
myeloid cluster (MC9) and the hematopoietic stem cell cluster (MC10)
were, as expected, more heterogeneous. MC1 and MC2 had a high
expression of CD34 and CD117 and were therefore classified as CD34+

blast cells (Fig. 2c and Supplementary Fig. 2). Most patients in this

cohort hadaCD34+CD117+ blast population present inMC1,whilstMC2
was nearly entirely composed of patient 9 and 22, having mutated
FLT3-ITD and WT1 (Fig. 2b and Supplementary Fig. 1). MC2 could pri-
marily be distinguished from MC1 by higher expression of HLA-DR,
CD33, and CD123. MC9 included most cells, with 43.2% of the cells in
the entire cohort, and was represented in all patient samples and
healthy donors. MC9 had a myeloid phenotype (CD64 dim, CD33 dim,
and HLA-DR dim) and did not express lymphoid markers. This cluster
had heterogeneous CD34expression amongpatients andwas negative
for CD117 (Supplementary Fig. 2). MC9 was expanded in AML patients
and bone marrow (BM) of healthy donors but not in PB of healthy
donors. (Fig. 2b and Supplementary Fig. 3).

The healthy donors had a similar distribution of different cell
populations that resembled a normal differential blood count, with
approximately 60% granulocytes, 30% lymphocytes, and 3% mono-
cytes. The AML patients showed an abnormal distribution of cell
populations, with expanded myeloid lineage and CD34 + cells, while
expansion of these cells was not detected in healthy donors (MC1/
MC2) (Fig. 2b).

Overall, the size of the MCs was quite consistent between the
different time points (Supplementary Fig. 4). However, there was a
tendency among several patients towards a more differentiated phe-
notype at 24 h, with a decrease in the myeloid cluster MC9 and an
increase in granulocytes (MC7) andmonocytes (MC6) (Supplementary
Fig. 4). There was no significant association between MC size and
patient survival or ELN 2017 risk class, neither at the pre-treatment
time point nor over the time course.

Chemotherapy-induced changes in intracellular signaling dur-
ing the first 24 h of treatment may predict long-term survival
Chemotherapy modulates intracellular phospho-proteins, including
p53 and ribosomal P2, in bulk samples of tumor cells11,20. Therefore, we
examined the treatment-induced phospho-signaling in each MC in the
patient samples. We employed a machine-learning approach using a
supervised LASSO Cox regression model with automated feature
selection and nested leave-one-out cross-validation to evaluate which
features were predictive of patient survival (Supplementary Fig. 5).
Features evaluated in the model included age, sex, the 10 MC sizes (%
of total), in each MC the 90th percentile dual count measured for all
the functional markers (cCaspase3, CyclinB1, p-4E-BP1(T37/T46), p-
AKT(S473), p-AXL(Y779), p-CREB(S133), p-ERK1/2(T202/Y204), p-His-
tone3(S28), p-NF-kB p65(S529), p-p38(T180/Y182), p-Rb(S807/S811), p-
S6(S235/S236), p-STAT1(Y701), p-STAT3(Y750), and p-STAT5(Y684)) at
all three timepoints (pre-treatment, 4, and 24 h), and in all MCs the
change in all functional markers from pre-treatment to 24 h (ratio
24 h). The analysis identified p-ERK1/2 (p = 2.057e−4, p-adj = 0.0004,
Log-hazard ratio (Log-HR) 2.41) at 24 h in MC9 as the most significant
predictor for patient 2-year overall survival (2y-OS) (Fig. 3a, b). Fur-
thermore, we repeated the LASSO analysis with 5-year overall survival
(5y-OS), which revealed that p-ERK1/2 (p = 9.59e−5, p-adj = 0.0003,
Log-HR 2.51) at 24 h in MC9 still was the most significant feature
(Fig. 3c). When the cohort was split by median p-ERK1/2 at 24 h,
resulting in 16 patients in each arm (Fig. 3d),we found that the patients
with a high level of p-ERK1/2 inMC9 at 24h after the start of induction
chemotherapy had significantly inferior survival (p =0.0049 2y-OS,
p =0.0015, 5y-OS) compared to patients with p-ERK1/2 levels below
median at 24 h (Fig. 3c). These two arms of 16 patients eachwill further
be referred to as the high and the low 24 h-p-ERK1/2 groups, respec-
tively. p-ERK1/2 levels at pre-treatment or 4 h after the start of induc-
tion therapy were not significant in predicting patient 5y-OS. The 24 h
sample gave a better separation of deceased and alive patients (Sup-
plementary Fig. 6a), and the 24 h levels of p-ERK1/2 in the 24 h-pERK1/2
high group were significantly higher than the levels in PB and BM from
healthy donors (Supplementary Fig. 6b). To exclude potential con-
founding factors, we performed a new Cox regression analysis of
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pERK1/2 in MC9 and included the validated prognostic factors of ELN
2017 risk, age, WBC at time of diagnosis and allogeneic stem cell
transplantation as a time-dependent covariate. The pERK1/2 value at
24 h inMC9was the only predictivemarker for the patient outcome (5-
yOS, p-value 0.000581, p-adj = 0.0029, Log-HR 2.27).

By further inspection of the longitudinal signaling patterns from
pre-treatment to 24 h, a substantial drop in p-ERK 1/2 was observed in
the low 24h-p-ERK1/2 groups and vice versa in the high 24 h-p-ERK1/2
groups (Fig. 3d). We, therefore, calculated the ratio and delta between
pre-treatment and 24 h for p-ERK1/2 and performed a univariate sur-
vival analysis by dividing the patients into two groups by the median.
Both p-ERK1/2 ratio and delta significantly discriminated 5y-OS
(p = 0.0333) (Supplementary Fig. 6c, d). This confirms that 24 h of
chemotherapy-induced a drop in p-ERK1/2, which provided a better

prediction of survival compared to the pre-treatment basal p-ERK1/
2 level.

In MC9, the level of p-p38 at 24 h was the second most sig-
nificant feature predicting patient 2y-OS and 5y-OS (p = 3.42e−4, p-
adj = 0.0013, Log-HR 3.39 2y-OS and p = 2.969e−4, p-adj = 0.0005,
Log-3.50 5y-OS) (Supplementary Fig. 7a–c). In addition, p-Rb
(p = 0.003, p-adj = 0.013, Log-HR 1.72) at 24 h in MC9 and the
change in Cyclin B1 from pre-treatment to 24 h (p = 0.003, p-adj =
0.014, Log-HR 9.3) in MC8 (NK-cells) were significant in predicting
5y-OS. (Supplementary Fig. 7d, e) ERK1/2 and p38 are both members
of the mitogen-activated protein kinase (MAPK) family and play
important roles in cell proliferation, differentiation and apoptosis23.
CREB is a downstream target of multiple kinases, including both p-
ERK1/2 and p-p38, and is also directly phosphorylated at S133 by

Fig. 1 | Mass cytometry analysis of early response evaluation by single-cell
signaling to profile. a Peripheral blood samples were collected from 32 AML
patients treated with conventional induction therapy (“7 + 3” cytarabine +
daunorubicin). Samples were collected before the start of treatment, at 4- and 24-h
after the start of treatment, and immediately fixed to preserve in vivo signaling. Ten
patients in this study received per-oral treatment of lenalidomide in addition to the
7 + 3 induction therapy from days 1–21. b Five-year survival Kaplan–Meier curves
showing the survival for the 32 AML patients in this study based on conventional
therapy response assessment and European Leukemia Net (ELN) 2017 risk classifi-
cation. Conventional therapy response assessment was done by bone marrow

aspiration on day 17 post-treatment or before cycle two of induction therapy.
Seventeen patients had CR/CRi, nine patients had nonCR and six patients were
aplastic before the second cycle of induction therapy. Based on the ELN 2017 Risk
classification, 11 patients had favorable risk, nine had intermediate risk and 12 had
adverse risk. c Early therapy response assessment bymass cytometry at 4- and 24-h
post-treatment by investigation of intracellular signaling response to chemother-
apy. Machine learning approaches were used to identify markers in the blast cell
population that could be predictive of patients' 5-year survival hours after the start
of induction therapy (Kaplan–Meier curve, 16 patients in each group). Source data
are provided as a Source Data file.
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MSK1, MSK2, or MAPKAPK2 (MK2) immediately downstream of both
ERK1/2 (MSK1/2) and p38 (MSK1/2 andMK2)24–26. Our data confirmed
that p-CREB (S133) was significantly higher in the patients with high
p-ERK1/2 and p-p38 in MC9 at 24 h (Supplementary Fig. 7f). The ERK
pathway has been shown to drive the selection of resistant clones
during induction therapy for AML in vitro and elevated ERK1/2
activity has also been observed in AML patients who have developed
resistance to FLT3-targeted inhibitors27,28. Expression of p38 has also
been shown to drive chemotherapy resistance in different
cancers29,30. Similarly, the high ERK 1/2 and p38 activation levels
following chemotherapy treatment could indicate an enhanced pro-
survival signaling response in the PB leukemic blasts.

Immunophenotypic characterization of MC 9
The results of the LASSOCox regressionmodel indicated thatMC9was
a particularly interesting cluster.However, thismyeloid clusterwasnot
well defined, and was characterized by a heterogeneous immuno-
phenotype across the cohort (Supplementary Fig. 2). Thus, one could
question whether the identified p-ERK1/2 association to survival could
be attributed to a specific cellular subset within MC9. Therefore, we

performed a further in-depth characterization and analysis of MC9
across the patient cohort.

First, wemanually gated the pERK1/2 positive and negative cells in
MC9 in each patient sample at 24 h (the timepoint where pERK1/2 was
significant) to investigate the immunophenotype of these cells. Like
the bulk ofMC9, we found that both the pERK1/2 negative and positive
subset of cells in MC9 had heterogenous immunophenotypes across
the cohort (Supplementary Fig. 8). Comparing the surface marker
expression levels of the pERK1/2 positive and negative populations
(unpaired t-test), we found that the expression of AXL (p =0.0002),
CD90 (p = 4.7E−05), and CD56 (p =0.0006) was significantly higher in
pERK1/2 positive cells. Furthermore, when performing a paired t-test
we additionally found that the expression of CD34 (p = 0.002) was
significantly higher in pERK1/2 positive cells. This suggests that these
markers could be associatedwith suboptimal chemotherapy response,
which is supported by previous reports associating all these markers
with adverse prognoses in AML.

Next, we set out to further decipher the immunophenotypic
diversity within MC9 by dividing this cluster into smaller sub-clusters
(Sub-Cs).We performed a new FlowSOMclustering using only the cells

Fig. 2 | Characterizationof immunophenotype in 32AMLpatients by FlowSOM.
a t-SNE maps of the 10 FlowSOM identified metaclusters based on surface marker
expression across the seven healthy donors and the 32 AML patients at pre-treat-
ment, 4, and 24 h (20,000cellsper plot for visualization). t-SNEmaps are annotated
with color-codedoverlay shown in (c).b Stackedbar chart showing themetacluster
relative distribution in each patient and healthy donor, as a percent of the total
population in the pre-treatment sample. Patient numbers are colored by patient

5-year survival (blue = alive, orange = deceased, BM=bonemarrow, PB= peripheral
blood). The ten patients who received lenalidomide treatment in addition to
standard induction chemotherapy (“3 + 7”) are annotated by stars. c Heatmap
showing the median marker intensity of the 19 surface markers used for clustering
in the pre-treatment sample of the 32 AML patients. The total metacluster size
among the 32 AML patients is shown as a percent of the total. Source data are
provided as a Source Data file.
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from MC9 in each patient sample. All surface markers were used for
clustering, with 10 sub-Cs as output. As expected, most of the cells
(61%) clustered together. This predominant cluster (sub-MC3) was
present in all patient samples, although at varying sizes (1.6–88.0%),
and was characterized by expression of CD64, CD38, CD33, and HLA-
DR (Supplementary Fig. 9a, b). Of note, the algorithm also identified
three minor clusters characterized by CD34 expression; sub-MC1
(13.04% of the total, CD123+), sub-MC4 (5.99% of the total, CD7+, and
CD123+), and sub-MC2 (4.78% of the total, CD34low, CD117+, and
CD123+). The size of these clusters, especially sub-MC1, varied sub-
stantially across the patient cohort (Supplementary Fig. 9c). As CD34-

expressing cell populations are known to bear prognostic information
in AML31, we considered whether the pERK1/2 and/or p-p38 signal
couldoriginate from these cells. Thus,we performed a new LASSOCox
regression analysis, as described above, using the 10 sub-MCs identi-
fiedwithinMC9. This analysis confirmed the prognostic significanceof
pERK1/2 at 24 h (p = 7.3e−5, p-adj = 0.0003, Log-HR = 2.78), but within
a small sub-cluster; sub-MC7 (3.24% of total). This cluster was present,
but small, in all patient samples, and was characterized by CD20 and
CD123 expression. p-p38 was found to be of prognostic significance at
24 h (p = 7.8e−6, p-adj = 3.93e−5, Log-HR = 4.3) within a separate small
sub-cluster; sub-MC2 (4.78% of total). This cluster was CD34 low and
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Fig. 3 | p-ERK1/2 signaling at 24 h after the start of induction therapy predicts
patient 2- and 5-year survival. a t-SNE plot highlighting the position and dis-
tribution of metacluster (MC) 9 (red) in the t-SNE plot of all 32 patients at pre-
treatment. The other metaclusters are shown in gray. b Heatmap of the arcsinh
transformed 90th percentile p-ERK1/2 in MC9 at all timepoints sorted by the 24h
value, divided bymedian into high and low 24h-p-ERK1/2 groups. Patient numbers
are color coded by 5-year survival (blue = alive, orange = deceased). Complete
remission (CR) by bone marrow aspiration at day 17 or before cycle two of
induction therapy, European Leukemia Net (ELN) 2017 risk classification, trans-
plantation status, and minimal residual disease (MRD) status after cycle 2 are
shown in color-coded bars to the right. c LASSO Cox regression analysis identified
p-ERK1/2 at 24h in MC 9, as significantly associated with patient 2 and 5-year

survival. The 32 AML patients were divided into two groups based on the 24h
median value as shown in (b); high and low 24 h-p-ERK1/2 groups, with 16 patients
in each group. Kaplan–Meier survival curve of the 5-year overall survival (OS) in the
two groups (Log-rank (Mantel–Cox) test p =0.0015, hazard ratio (log-rank) low/
high group 0.2307 and 95% CI of ratio 0.0945 to 0.5625) show the poor survival of
the high group. d Line-graph of the arcsinh transformed 90th percentile p-ERK1/2
value at all timepoints in the two groups. Abbreviations Allo allogenous stem cell
transplantation, Auto autologous stem cell transplantation, CRi complete remis-
sion with incomplete count recovery, nonCR >5% remaining blast in the bone
marrow after the first cycle of induction therapy. Source data are provided as a
Source Data file.
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the only cluster with CD117 expression (Supplementary Fig. 9d). These
results do not exclude the possibility ofCD34 and/or CD117 expression
being a relevant feature of the cells demonstrating suboptimal che-
motherapy response. However, extensive inter-patient heterogeneity
in the cells responding to chemotherapy rather suggests that the
intracellular signaling state is poorly reflected by the immunopheno-
type. This is analogous to the study by Levine et al., where data-driven
bioinformatic approaches identified a progenitor-like signaling phe-
notype in AML, independent of the immunophenotype, with a sig-
nificant correlation to prognosis13.

Clinical parameters related to the p-ERK1/2 level in MC9
To determine the prognostic impact of standard clinical parameters in
the high and low 24 h-p-ERK1/2 group, we investigated the distribution
of complete remission (CR/CRi) (before the second cycle of induction
therapy), minimum residual disease (MRD) after cycle 2, ELN 2017 risk
classification and transplantation status between the two groups
(Fig. 3b).More patients achieved CR/CRi after induction therapy in the
low 24 h-p-ERK1/2 compared to the high (Fisher exact test, p = 0.032).
Six out of sixteen patients in high 24 h-p-ERK1/2 and 3/16 patients in
the low 24 h-p-ERK1/2 groups had remaining blasts (>6%) at day 17 or
before cycle two. However, P18 in low 24 h-p-ERK1/2 had 15%BMblasts
on day 17, but when reevaluated on day 26, the number had been
reduced to below 5%. P25 in the low group had prolonged aplasia, but
30% blasts on day 29 were measured by flow cytometry. MRD data
were available for 14 of the patients in this study. 5/7 patients in the low
group had negative MRD after cycle 2, the remaining two had no
detectable leukemia-associated immunophenotype at diagnosis and
negative MRD but positive NPM1MRD, respectively. Four out of seven
patients in the high group had negative MRD and three patients had
positive MRD. The three patients with positive MRD were among the
six patients with the highest pERK1/2 values in MC9 at 24 h (Fig.3b).
Likely due to the low number of patients in this study, there were no
significant differences in the ELN risk groups, MRD or allo-HSCT
between patients in low and high pERK1/2 group (Fisher exact test).
Ten of the patients included in this study were included in the HOVON
132 trial and received a per-oral addition of lenalidomide fromday 1 to
21 during induction therapy. These patients were equally distributed
between the high and low 24 h-pERK1/2 groups, with five patients in
each group, and we could not detect any signaling responses corre-
lating to the lenalidomide treatment. (Supplementary Fig. 10a, b). A
Cox proportional hazard model showed no effect of lenalidomide on
patient 5y-survival (p =0.16). Furthermore, there were no significant
differences in survival between the patients treated with lenalidomide
and the other patients in our study. (Log–Rank (Mantel–Cox) test
(p = 0.15) and Gehan–Breslow–Wilcoxon test (p =0.25) (Supplemen-
tary Fig. 10c).

Mutations and signaling patterns in MC9
To investigatewhether activation of signaling pathwayswas associated
with specific mutations, we associated the signaling in MC9 (Myeloid
cells) and MC1 (CD34 + blasts) to next-generation sequencing data
(TruSight myeloid panel) and cytogenetics (Supplementary Fig. 11a–f).
The two patients with the highest p-ERK1/2 levels inMC9 at 4 and 24 h
were the only patients in the cohort with NPM1 mutations and wild-
type FLT3. Furthermore, the two patients with the highest level of
p-STAT5 in MC9 at all time points had FLT3-ITD mutations. STAT5 is
known to be activated in FLT3-mutated AML32. There were several
examples where patients with the same mutations seemed to have a
similar signaling pattern at 4- or 24 h; p-STAT5 at 24 h in patients with
IDH1/2mutations (MC9), p-p38 at 4 h inpatients with BCORor BCORL1
mutations (MC9) and p-NF-kB at 24 h in patients with SRSF2mutations
(MC1) (Supplementary Fig. 11b, d, f). Patients with mutations affecting
DNA methylation (DNMT3A, IDH1/2, and TET2) seemed to have a
strong induction of p-Histone3 in the CD34 +MC1 from 4 to 24 h

(Supplementary Fig. 11e). Due to the complexity of the mutational
landscape of these patients, establishing a significant coupling of
mutations to signaling would demand a much larger patient cohort.
Nevertheless, we identified signaling patterns that appear to reflect the
mutational status of the patients, which could be worth further
investigation.

Signaling in CD34+ CD117+ MC1 AML blast cluster
MC1 had high expression of the stem cell markers CD34 and CD117, a
cell population that previously has been suggested of prognostic
impact (Supplementary Fig. 2)31. Although present in all patients, MC1
had a large variation in cluster size between patients, ranging from
0.04% to 35% (Supplementary Fig. 12a). Tenpatients hadCD34+ cells in
MC9, most of them (7/10) were in the high 24 h-p-ERK1/2 group
(Supplementary Fig. 12b) (not significant, Fisher exact test). The MC1
cluster size or the change in cluster size during the first 24 h was not
significantly correlated to survival. Furthermore, we did a univariate
survival analysis of p-ERK1/2 and p-p38 by dividing the patients into
two groups by median at 24 h (16 patients in each group). The differ-
ence in survival between the two groups was not significant for p-ERK
1/2, but significant for p-p38 (p =0.014) (Supplementary Fig. 12c).
Comparing MC1 with MC9, we found that the level of both p-ERK 1/2
and p-p38 was significantly higher in MC1 than in MC9 (paired t-test
p <0.0001) (Supplementary Fig. 12d, e). p-ERK1/2 has previously been
shown to be upregulated in CD34+ cells compared to CD34− cells27.

Validation of FlowSOMautomatic cell clustering and supervised
LASSO Cox regression analysis by manual gating of mass cyto-
metry data
Our unsupervised cell clustering was followed by an analysis with a
machine-learning algorithm that identified treatment-induced altera-
tions in intracellular signaling. We evaluated whether a comparable
result could be achieved by simple analysis ofmanual bi-axial gating of
the data. Successful manual analysis may suggest that routine flow
cytometry could be used for functional response assessment, e.g., by
crude gating of leukemic blasts in bivariate plots using CD45 vs. side
scatter (SSC). Mass cytometry data does not provide scatter para-
meters; therefore, we focused our manual gating on CD45 expression,
indicative of hematological cellmaturity. CellsweregatedbyCD45 and
CD66b, which allowed the identification of the majority of immature
cells (CD45 low/CD66b low) and the exclusion of themore mature cell
types (CD45 high), including the granulocytes (CD45 low/CD66bhigh).
The gating strategy is visualized in Fig. 4a. Healthy donor samples
included in the respective barcodes were used to guide blast cell gat-
ing. After gating, we evaluated the measured dual counts (90th per-
centile) of p-ERK1/2 and p-p38 in time-to-event analyses, where
patients were stratified by median marker expression (above/below
median), as described above (Fig. 4b, c). The pre-treatment and the 4 h
samples were not predictive of patient survival, while the negative
prognostic value of high p-pERK1/2 (p =0.0011) and p-p38 (p = 0.0013)
at 24 h and the ratio of p-ERK1/2 (24 h/0h) (p = 0.0005) was confirmed
(Fig. 4d and Supplementary Fig. 18e). Interestingly, p-ERK1/2 and p-p38
at 24 h and the ratio of p-ERK1/2 was even more significant than in the
unsupervised machine learning approach described above. Together,
these results show that a simple gating strategy, easily achievable by
standard flow cytometric methods, is sufficient to detect
chemotherapy-induced changes in PB leukemic blasts that could
provide early information on therapy response and therapy outcome.

Target genes of ERK1/2 and p38 signaling are upregulated after
the start of induction therapy
To validate the results obtained by mass cytometry, we examined
chemotherapy-induced changes in gene expression profiles by RNA
sequencing (RNAseq) in a subset of the patients in our cohort (n = 14).
A grouped students t-test performedon all genes (n = 50.668) between
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patients in low vs. high 24 h-pERK1/2 groups identified 76 genes with
FDR <0.05. (Supplementary Fig. 13). Among the genes that were high
in the high 24 h-p-ERK1/2 groups were HOXA9, which is highly
expressed in AML and is known to be a poor prognostic factor33. Fur-
ther on, we focused our analysis on previously reported primary
response genes (immediate early genes (IEGs), immediate late genes
(ILGs), delayed early genes (DEGs)) and secondary response genes
(SRGs) induced by ERK (n = 189) or by p38 (n = 501) signaling34,35. In
total, this included 689 genes (Supplementary Data 4), of which 525
were identified in our dataset (Fig. 5a). Due to the small sample size
(n = 14), the two timepoints post chemotherapy (4 and 24 h) for each
patient were used as post-treatment replicates when evaluating
chemotherapy-induced changes. A two-sample students t-test was
performed on the 24 h-p-ERK1/2 low post-treatment group (n = 3)
versus the 24 h-p-ERK1/2 high post-treatment group (n = 7) with a
threshold p-value < 0.05 (Fig. 5b). This resulted in 62 significantly dif-
ferentially expressed genes, of which 29 were upregulated in 24 h-p-
ERK1/2 high post-treatment group, including FOSL1 (FOS like 1)
(Fig. 5c). FOSL1 is an activator protein-1 (AP-1) transcription factor and
an immediate late gene downstream of ERK34,36. Patients in the 24 h-p-
ERK1/2 high grouphada higher induction of FOSL1, especially 4 hpost-
treatment (Fig. 5d). The analysis also revealed high expression of
additional genes that have been linked to poor prognosis in AML in the
24 h-p-ERK1/2 high groups, like heat shock protein 90 alpha family
class A (HSP90AA1)37,38 and F2R like trypsin receptor 1 (F2RL1)39 Fur-
thermore, we performed a paired students t-test on the 4 h versus pre-

treatment sample in the 24 h-p-ERK1/2 high groups on the 689 ERK-
and p38-inducible genes (Supplementary Fig. 14a, b). This analysis
revealed another AP-1 transcription factor; activating transcription
factor 3 (ATF3)40, which was strongly induced at 4 h in all patients in
the 24 h-p-ERK1/2 high group and decreased in the two patients in the
low group that had 4 h samples (Supplementary Fig. 14c, d). Several of
these genes, including ATF3, were also upregulated 4 h post induction
therapy in our previous work10.

The MAPK pathway is an important regulator of AP-1 transcrip-
tional activation41. We, therefore, investigated the other components
of AP-1, which appeared to have a similar pattern as FOSL1 and ATF3;
with an increase at 4 h in the high group and a decrease in the low
group (Supplementary Fig. 15a–c). Interestingly, Duy et al. showed that
induction chemotherapy in AML induced a transient senescence-like
state in resilient cells that was capable of initiating AML recurrence42.
ATF3 has been shown to be critical among the AP-1 transcription fac-
tors in reconstructing the accessibility of chromatin to promote
senescence43.

Super-SILAC proteomics revealed the p38 target MAPKAPK2
(MK2) to be significantly induced 24h after the start of induc-
tion therapy
Additional validation was performed by proteomics profiling and
conducted on 15 patients in our study (Fig. 6a). We quantified 7480
proteins, of which 6363 had a quantitative value in at least two samples
(Supplementary Data 5). A paired students t-test between the pre-

Fig. 4 | Validation by manual blast gating confirm p-ERK1/2 and p-p38 pre-
diction of survival. Manual gating of mass cytometry data was performed by bi-
axial gating in cytobank on all 32 patients. a Bi-axial gating strategy of patient P11
(PB peripheral blood) and a healthy donor (PB) for gating guidance. AML blast cells
were defined as CD66 low and CD45 low, the red arrows pinpoint the exported
population. Raw 90th percentile data of p-ERK1/2 and p-p38 from the CD66low,
CD45low cell population was exported from cytobank and arcsinh transformed
with cofactor 5.bHeatmap shows the arcsinh transformed 90th percentile data for

p-ERK 1/2 and c p-p38, sorted by their respective 24 h values. Patient numbers are
color-coded by 5-year survival (blue = alive, orange = deceased). d Kaplan–Meier
survival curves (n = 32) in 24h-low and high-pERK1/2 group (n = 16) and 24h-low
and high-pp38 group (n = 16).Groups are defined by themedian 24h value for each
marker. Curve comparison p-values are calculated by Log–rank (Mantel–Cox) test
(p-ERK1/2; HR low/high group: 0.2252, 95% CI of ratio: 0.09215–0.5502, p-p38; HR
low/high group: 0.2437, 95% CI of ratio: 0.09791–0.6064). Source data are pro-
vided as a Source Data file.
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treatment and 24 h samples in the 24 h-p-ERK1/2 high group (n = 7)was
performed, with a p-value cut off at <0.02. This resulted in 114 differ-
entially expressed proteins; of which 64 proteins increased from pre-
treatment to 24 h and 50 proteins decreased (Fig. 6b). MAPK-activated
protein kinase 2 (MAPKAPK2), a downstream substrate that is directly
phosphorylated and activated by p-38, was one of the most sig-
nificantly (p =0.0039, p-adj = 1) upregulated proteins at 24 h in the
24 h-p-ERK1/2 high group (Fig. 6b, c). To determine the effect of che-
motherapy on cellular proteins, we calculated the change (delta) from

pre-treatment to 24h (24h-0h) for the top 15most significant proteins.
Delta MAPKAPK2, along with ferritin light chain (FTL), had the most
significant difference between the 24 h-p-ERK1/2 low groups and 24 h-
p-ERK1/2 high groups, with a p-value of 0.0091 and 0.0026, respec-
tively (Fig. 6c, d). MAPKAPK2 is a primary target of p38 and has been
shown to sustain robust AP-1 activity in triple-negative breast
cancer44,45. The increase of MAPKAPK2 protein by chemotherapy
supports our RNAseq results of induced AP-1 activity post-treatment in
the 24 h-pERK1/2 high groups. The p38-MAPKAPK2 signaling axis

Fig. 5 | RNA sequencing shows AP-1 complex induction after the start of
induction chemotherapy. a Venn diagram showing that 525 p-ERK1/2 and p-p38
induced genes were identified among our RNAseq data. These genes were used for
further RNA sequencing data analysis. b Heatmap of 90th percentile arcsinh
transformed p-ERK1/2 mass cytometry data in M9. The high and low groups used
for RNAseq data analysis were defined by the 24hp-ERK1/2 median value in MC9.
Patient numbers are color-coded by 5-year survival (blue = alive, orange =
deceased). An overview of the patient sample material and the analysis performed
is shown to the right. All 32 patients in the studywere analyzed bymass cytometry,
15 patients with mass cytometry and proteomics, and 14 patients with mass cyto-
metry, proteomics, and RNAseq. In addition, diagnostic fresh bone marrow or
peripheral blood samples from 18 of the 32 patients was screened with an ex vivo
drug sensitivity screen and a selective drug sensitivity score (sDSS). was calculated
cHierarchical clustering (Euclideandistance) of the 10patientswithpost-treatment

samples, based on the gene expression (DESeq normalized counts) of the 62 dif-
ferentially expressed genes post-treatment identified between the 24h-p-ERK1/2
high and low groups (only genes with p-values < 0.05 are shown, exact p-values are
shown in the sourcedata, two-sided students t-test). Thep-valueswere not adjusted
for multiple comparison testing. The heatmap shows z-scored DESeq2 normalized
counts. The two timepoints post-chemotherapy (4 and 24 h) for each patient were
considered post-treatment replicates. Mutations identified by NGS and diagnostic
cytogenetics are shown for each patient in the top panel.d Line plots of particularly
relevant genes showing the DESeq2 normalized counts at the three different
timepoints for each patient. Each line represents one patient, and numbers for
identification are annotated next to the lines. For patients with only pre-treatment
samples, the patient number is annotated to the left. Patients in the 24 h p-ERK1/2
low group are colored in gray, and patients in the 24h p-ERK1/2 high group are in
red. Source data are provided as a Source Data file.
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has also been shown by others to be induced in quiescent (G0) leu-
kemic cells after exposure to cytarabine, and thereby promote
chemoresistance46. Interestingly, MAPKAPK2 is especially important in
p53-deficient cells for cell-cycle arrest and survival afterDNAdamage47.
This is of importance in AML asmost patients with TP53mutations are
resistant to intensive chemotherapy as well as allogeneic stem cell
transplantation48,49.

Ferritin heavy chain 1 (FTH1) was the most significantly
upregulated protein at 24 h in the 24 h-p-ERK1/2 high group
(p = 0.00015, p-adj = 0.98), but did not show the same significance
between the low and high 24 h-p-ERK1/2 groups as FTL. Iron is a pre-
requisite for leukemic cell response to anthracyclines50, and upregu-
lation of FTH1 may be a protection mechanism that attenuates the
effect of chemotherapy. Ferritin heavy/light chain (FTH1/FTL) has
previously been linked to cytarabine resistance in AML51.

The BCL-2 protein family has a central role in the regulation of
cell death, and overexpression of BCL-2 in AML is associated with

poor survival and resistance to conventional chemotherapy52,53.
ERK1/2 and p38 can regulate several members of the BCL-2 family to
control cell survival54,55. The pro-apoptotic protein BCL-2 associated
X protein (BAX) was among the top 15 expressed proteins that
increased from pre-treatment to 24 h (p = 0.0022, p-adj=1) in the
24 h-pERK1/2 high group (Fig. 6b). This finding is consistent with our
previous work10. We, therefore, investigated the other proteins in
the BCL-2 family (Supplementary Fig. 16a-d). BCL-2 decreased to
undetectable levels at 24 h in 4/5 patient samples in the 24 h-p-ERK1/
2 low groups. On the contrary, there were only minor changes in the
BCL-2 expression in the 24 h-p-ERK1/2 high group, except in P4
(Supplementary Fig. 16a). Furthermore, expression of the pro-
apoptotic BCL-2 antagonist killer 1 (BAK1) was significantly higher
from pre-treatment to 24 h in the low 24 h-pERK1/2 groups
(p = 0.0145) (Supplementary Fig. 16c, d). These findings reveal
that the stress signaling is indeed pro-survival and confers
chemoresistance.

Fig. 6 | Proteomics reveals increased MAPKAPK2 (MK2) expression at 24 h in
patients with high p-ERK1/2 signaling. a Heatmap of the 90th percentile arcsinh
transformed p-ERK1/2 in M9 mass cytometry data. The high and low groups used
for proteomics data analysis were defined by the 24-h pERK1/2 median value in
MC9. Patient numbers are color-coded by 5-year survival (blue = alive, orange=
deceased). An overview of the patient sample material and the analysis performed
is shown to the right (sDSS= selective drug sensitivity score). Groups for pro-
teomics paired data analysis are highlighted in red. b Hierarchical clustering
(Euclidean distance) of the 53 most differentially expressed proteins (Stable iso-
tope labeling using amino acids in cell culture (SILAC) log2 ratio, z-score) identified
by a two-sided paired students t-test (only proteins with p-values < 0.01 are shown)
between the pre-treatment sample (0h) and 24-h sample of the seven patients in
24h p-ERK1/2 high group with 24-h samples. Patients are sorted by sampling

timepoint; 0 h and 24-h. Exact p-values for each protein are shown in the source
data. Adjustments for multiple comparisons were not used when identifying these
genes. c, d The two proteins (MK2 and FTL) among the 15 most significant differ-
entially expressed proteins in the high group (n = 7) that had the most significant
increase in expression from pre-treatment to 24h, compared to the five patients in
24h p-ERK1/2 low group. c SILAC log2 (Light/Heavy) ratio of MK2 and FTL in all
patients analyzed by proteomics (n = 15). Patients in the low group are colored in
gray and patients in the high group are colored in red. d The change in protein
expression (SILAC log2 ratio) of MK2 and FTL from pre-treatment to 24h was
calculated and compared between the 24h p-ERK1/2 low and high groups. Patients
in the high group had a significantly higher increase in MK2 and FTL compared to
the low group (unpaired t-test, with two-tailed p-value 0.0091 for MK2 and 0.0026
for FTL). Source data are provided as a Source Data file.
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Drug sensitivity data show sensitivity for HSP90, mTOR, BCL-2,
and MEK inhibitors
Ex vivo drug sensitivity and resistance testing (DSRT) of AML patient
samples has been suggested to predict therapy response in vivo56,57.
We investigated the ex vivo drug sensitivity of a subset of patient
samples in the cohort (18/32). Fresh BMor PB fromdiagnostic samples
was screened by a drug sensitivity assay consisting of 349 drugs, using
CellTiter-Glo as a readout to assess cell viability. Selective drug sensi-
tivity score (sDSS) was calculated by subtracting the mean DSS of the
respective drugs of control samples from five healthy donors (four BM
and one PB) from each individual DSS score. (Supplementary Data 6).
Notably, we had ten patients with sDSS data in the 24 h-p-ERK1/2 low
group and eight patients in the 24 h-p-ERK1/2 high group. sDSS data
were correlated to the intracellular signaling profiles detected bymass
cytometry by hierarchical clustering (Supplementary Fig 17a, b). As the
DSRT was only performed at the time of diagnosis, we chose to com-
pare it with the pERK1/2 value at the time of diagnosis. A grouped
students t-test between low versus high 0h-pERK1/2 group identified
two significant drugs that had a high sDSS in the high 0h pERK1/2
group, namely theHSP90 inhibitor tanespimycin (p =0.0225, p-adj = 1)
and the hypomethylating agent azacytidine (p =0.0128, p-adj = 1)
(Supplementary Fig. 17c, d).

Furthermore, we focused on the 10 drugs with the highest sDSS
score for each patient (Supplementary Fig. 18). Among the most

frequent compounds with the highest efficacy were HSP90- inhibi-
tors (n = 12), BCL-2- inhibitors (n = 11), mTOR- inhibitors (n = 10), and
topoisomerase-inhibitors (n = 8). We then investigated if there was a
difference in which drugs the patients weremore sensitive toward in
the 24 h-p-ERK1/2 low and high groups. The most frequent drug
targets among patients in the 24 h-p-ERK1/2 low group were HSP90
(n = 5), BCL-2 (n = 5), andmicrotubule (n = 5) inhibitors (Fig. 7a, b). In
the high group, the most frequent targets were HSP90 (n = 7), BCL-2
(n = 6), and mTOR (n = 6) (Fig. 7c). In the high group, 7/8 patients
were responsive to HSP90 inhibitors, exemplifying similarities in
sensitivity to top targeted drugs. Interestingly, 4/8 (50%) of
the patients in the high group hadMEK inhibitors among their top 10
targets. Notably, the patient with the highest p-ERK1/2 at 24 h (P8)
was very sensitive to MEK inhibitors and had MEK inhibitors among
the top three most efficient drugs. For the remaining five patients
with the highest p-ERK1/2 level at 24 hmeasured bymass cytometry,
we did not have sDSS data. In the 24 h-p-ERK1/2 low groups, two
patients (20%) had MEK inhibitors among their top targets. One of
them, P6, had an NRASmutation andwas, as expected, very sensitive
to MEK inhibitors. The other patient in the 24 h-p-ERK1/2 low group
that had a MEK inhibitor among its top 10 drugs was P30. This
patient had the highest pre-treatment p-ERK1/2 value in MC9 of all
patients in our cohort. Our data suggest that, in addition to patients
with RAS mutations, patients with high p-ERK1/2 levels at diagnosis

Fig. 7 | Drug sensitivity and resistance testing (DSRT). a Heatmap of the 90th
percentile arcsinh transformed p-ERK1/2 in M9mass cytometry data. The high and
low groups were defined by the 24-h p-ERK1/2 median value. Patient numbers are
color-codedby 5-year survival (blue = alive, orange= deceased).Remission atday 17
post-treatment or before cycle two is annotated to the right. The blue circles
indicate the 18 patients that were analyzed by ex vivo drug sensitivity screening.
Diagnostic cytogenetics of inv(16), del(7q), FLT3-ITD, and mutations detected by
NGS are shown to the right. The column FLT3-ITD annotates the diagnostic cyto-
genetics, the column FLT3 NGS shows FLT3 mutations detected by NGS (TruSight
myeloid panel). Mutations are grouped by gene function, colors are shown in the

top panel, and color code is shown to the upper right. Gray squares annotate
detectedmutations, andwhite squares if themutationwas not detected.b,cThe 10
drugs with the highest selective drug sensitivity score (sDSS) for each patient were
selected and the 12most commondrug targets in the cohort are shown for the 24h-
pERK1/2 low and high group. The circlemaps below the x-axis shownwhich patient
had each target among its top 10 drugs. MEK inhibitors are annotated in yellow.
b Top targets among patients in the low group. cTop targets among patients in the
high group. Abbreviations CR complete remission, CRi complete remission with
incomplete count recovery, nonCR = >5% remaining blast in the bonemarrow after
the first cycle of induction therapy. Source data are provided as a Source Data file.
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or 24 h after induction chemotherapy may benefit from MEK
inhibitors.

Discussion
Conventional cancer response evaluation is based on the measure-
ment of change in tumor load determined clinically, by advanced
imaging, cytometry or histopathology, and quantitative genetics58. In
AML, early evaluation of peripheral blast cell clearance by flow cyto-
metry within the first three days of chemotherapy has been shown to
predict CR, relapse risk, and survival59. Assessment of tumor clearance
is refined in the determination of measurable residual disease (MRD),
established as a robust marker for optimal response in leukemia60 and
in solid cancer through the emergence of liquid biopsy and PET
imaging58. The time it takes to obtain a minimal tumor state may be a
challenge for optimal therapy, e.g., after two-month-long cycles of
chemotherapy in AML60, with a risk for tumor regrowth and develop-
ment of therapy resistance. Measurement of functional cellular
responses to therapy may be an alternative and time-saving approach
to response evaluation. All cancer therapeutics target cellular proteins
directly, from the more selective ATP antagonistic tyrosine kinase
inhibitors (TKI) to the multi-targeting antibiotics of anthracyclines.
Here, we examined protein phospho-signaling in PB of AML patients
before and shortly after the start of therapy, using signaling pathways
as sensors for cell fate. Our results show that functional phospho-
signaling profiles 24 h post-chemotherapy in this cohort predicted
survival more precisely than both risk stratification by BM tumor load
on day 17 and the ELN 2017 genetic risk stratification. Thus, in vivo
functional cellular responses may provide close to real-time outcome
prediction, potentially saving precious time in the evaluation of
aggressive tumors.

Biologically relevant intracellular signal systems are affected
in vivo early after the start of treatment11,20,61,62. In this study, we
explored a selection of 15 intracellular targets, covering three major
pathways important for myeloid leukemogenesis; the JAK/STAT, RAF/
MEK/ERK (MAPK), and PI3K/AKT/mTOR pathways. These signaling
systems are tightly connected to the regulation of hematopoiesis and
are also affected by mutations in more than 50% of AML cases9. AML
can be stratified based on signal responses to in vitro stimulation with
relevant cytokines and growth factors that regulate these signaling
systems, into a potentiated response cluster and a non-potentiated
cluster19. Analogous lines can be drawn to our study, where the che-
motherapy acts as an in vivo stimulus (or stressor) of the signaling
networks. We, therefore, hypothesized that temporal dynamics of
signaling could be explored in therapy response evaluation. We found
that the 24 h cross-sectional analysis resulted in the highest sig-
nificance in risk stratification. A possible explanation for the higher
significance at 24 h may be in the intense cellular stress response
caused by the combination of anthracycline and cytarabine. The 24 h
chemotherapy treatment may cause an optimal state for decoding the
intracellular signaling into precise information about the response. A
wide range of cellular stress response systems are activated, and most
of the leukemic cell death and removal start beyond 24 h63. This is
confirmed by our cell profiling, which indicates that the PB cell
populations are stable at 4- and 24 h, (Supplementary Fig. 3) and
optimal for examination of intracellular signaling perturbations that
reflect therapy-induced cell fate.

Functional analyses of cancer cells may improve the genetic
diagnostic approach in risk stratification18. AML has some of the most
robust genetic risk stratification systems in cancer developed over
decades, based on a diagnostic sample. However, the prognostic
algorithms do not cover a significant proportion of patients with
normal cytogenetics and non-detectable mutations by NGS in a satis-
factory way. At least 30% of the “good risk” AML patients experience
relapse and leukemia-related death2. An increasing number of genetic
alterations have been included and are incorporated in revisions of the

risk stratification. This approach has two possible limitations: First, the
analytical process of the stratification will take days to weeks and is
most useful for adjustment of consolidation therapy. Second, with
higher sensitivity of genetic diagnostics, an increasing number of pri-
vate genetic aberrations will be discovered: genetic alterations with
currently unknown impact in risk assessment. The phenotype of
therapy response is defined by a plethora of genetic and epigenetic
constitutions. Multivariate single-cell signaling before and early after
the start of therapy reflects the genetic and epigenetic script, whichwe
arguedefines the therapy responsemore accurately. To fully utilize the
knowledge from genomics, we need to achieve a deeper biological
understanding of the connection between cancer phenotype and
genotype. Real-time functional response evaluation may be funda-
mental in deciding the best target for therapeutic intervention among
the myriad of genetic lesions17.

Leukemic cells are characterized by aberrant expression of sur-
face markers, and the intra- and inter-patient immunophenotypic
heterogeneity in AML is extensive. This is also evident in the present
study. Although presumably healthy cell subsets, such as lymphoid
cells in the AML samples, displayed homogeneous expression levels of
expected surface markers, malignant cells were characterized by het-
erogenous surfacemarker expressionpatterns and -levels. This reflects
that cell identity is not discrete or perpetual but often lies within a
continuum64, such as cells with mixed identities or cells in phenotypic
transition. Although expression of isolated surface markers (e.g.,
CD34, CD117, CD90, CD25, CD7, CD56, and more) has been linked to
poor prognosis in AML, the “poor prognostic immunophenotype” in
AML remains elusive. This suggests that the link between phenotype
and cell functionality is not necessarily straightforward in this disease.
Interestingly, previous reports have suggested that a poor prognostic
signaling phenotype can be identified in immunophenotypically het-
erogeneous malignant cell populations in diagnostic AML samples13

and in response to chemotherapy17. Analogously, we identified a
functional signaling response with significant prognostic association
within MC9, a myeloid cluster with a heterogeneous expression of
several markers with the poor prognostic association. Collectively,
these results suggest that functional signaling profiles and therapy
responses can be identified independently of immunophenotype,
potentially providing valuable prognostic information that could
supplement conventional outcome assessments.

The possible impact of functional signaling analysis and the
prognostic impact of ERK and p38 singling in the prediction of survival
needs to be examined in future studies. One limitation of our study is
its small cohort size, and follow-up studies are required with larger
patient cohorts to further validate our findings. The number of
patients included in this study is limited in contrast to the studies that
have established genetics in risk stratification and MRD in response
evaluation9,60,65. This is a possible explanation for the lackof prognostic
association with genetics in our cohort. However, the cohort consists
of consecutively selected AML patients fit for standard “7 + 3” induc-
tion therapy48, and should, as such, constitute a representative patient
cohort. Despite the small sample size, our analyses identified respon-
ses with significant prognostic associations. Furthermore, validation
by manual clustering, proteomics, and gene expression confirmed the
observation of high versus low p-ERK1/2 groups (Figs. 4–6). Thus, we
suggest that functional signaling analysis early after the start of ther-
apy could be a future diagnostic tool for improving therapy precision
in chemotherapy of AML patients.

Methods
Patient samples
The study was performed in accordance with the Declaration of
Helsinki, and all samples, including samples from healthy donors,
were collected following written informed consent. All patients and
healthy donors were above 16 years of age. The biobank and the
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clinical protocols were approved by the ethical committee at the
University of Bergen (Ethical approval REK Vest 2012/2245, 2012/
2247 and the Regional Committee for Medical Research Ethics
South-East Norway (REK 2015/2012), the Norwegian Medicines
Agency and The Data Inspectorate. Patients were consecutively
included in this observational study, and samples were collected
between 2014 and 2016 at Haukeland University Hospital, Bergen,
Norway, and Oslo University Hospital, Rikshospitalet, Norway. No
compensation was given to the patients who contributed to this
study. A small fee was given to the healthy donors who volunteered
to donate BM samples to the study.

The patients are numbered consecutively after their sampling
date. The healthy donors are numbered after the barcode pool (1–7)
they were included in. The cohort consist of 32 AML patients (30 de
novo and two secondary AML) that received the standard “7 + 3”
induction therapy according to the HOVON/SAKK 102 and 132 trials48,
consisting of a 30min infusion of anthracycline; daunorubicin
(60mg/m2) or idarubicin (10–12mg/m2) for 3 days in combinationwith
24 h infusion of cytarabine (Ara-C) for seven days. Routine diagnostic
workup of flowcytometry and genetic biomarkers investigated by G-
banding, RT-PCR, FISH, and fragment analysis of FLT3 and NPM1 was
performed on all patients. 18 of these 32 patients were included in the
HOVON 132 clinical trial (EudraCTNumber: 2013-002843-26) and were
randomized to receive either standard “7 + 3” (Eight patients), or
“7 + 3” with the addition of per-oral treatment of lenalidomide at days
1–21 in cycle I and cycle II (ten patients). Lenalidomide treatment was
given in the evening on the first day of induction therapy, after the 4 h
sample and prior to the 24 h sample. We observed no signaling effect
of lenalidomide in our study, and lenalidomide treatment did not have
an effect on patient survival. Therefore, we considered patients who
received an addition of lenalidomide together with the patients
receiving standard “3 + 7”. Themedian age for the 32 AML patients was
56.3 years, there were 19 male and 13 female patients included in our
cohort. Supplementary Table 2 shows an overview of the patient
characteristics described in Supplementary Table 1 (Supplementary
Data 2). Additionally, we analyzed samples from twoAMLpatients who
received dose-reduced “3 + 7” (P33 and P34). These were not included
in themain FlowSOMand LASSO cox regression analysis but were later
added in a new analysis to prove the stability of our findings (descri-
bed below).

All patient samples in this study were PB samples, collected at the
time of diagnosis, and 4 and 24 h after the start of therapy. Three
patients (P14, P16, and P24) were only sampled at two timepoints (pre-
treatment and 24 h). Furthermore, four PB and three BM samples from
healthy volunteers were included in our analyses as healthy reference
samples. Additionally, PB from seven healthy donors was used as a
control for batch effect standardization.

Sample preparation for mass cytometry
To minimize potential ex vivo changes in intracellular signaling net-
works, sample processing was performed within 20min of sampling.
White blood cells were fixed and erythrocytes lysed using Lyse/Fix
buffer (BD Phosphoflow), following the manufacturer’s instructions.
Fixed samples were frozen in saline at −80 °C for shipping and long-
term storage. Samples were barcoded using the Cell-IDTM 20 Plex-Pd
Barcoding Kit (Fluidigm), following the manufacturer’s instructions.
The 20 barcoded samples were then pooled, resulting in a total of
seven barcodepools. Tominimize batch effects, all sequential samples
collected from the same patient were contained to the same barcode.
Each barcode also included one unique healthy donor sample, either
BM (barcodes 3-5) or PB (barcodes 1, 2, 6, and 7). Additionally, an
identical reference sample composed of pooled PB from seven healthy
donors was aliquoted into all barcodes. This reference sample was
used for standardization of batch effects (i.e., staining variability)
between the seven barcodepools, as described below.

The samples were stained with an antibody panel consisting of
21 surface markers and 15 intracellular markers (Supplementary
table 2). Surface markers known to be expressed by healthy cells, and
frequently expressed by AML blast cells were included66. The selection
of markers was based on EuroFlow panels applied for AML
diagnostics1, and a study performed by Levine et al. that identified
markers highly informative in characterizing pediatric AML patients13.
Samples were stained according to the MaxPar Phospho-Protein
Staining Protocol (PRD016 v3) Acquisitionof sampleswasdoneusing a
Helios mass cytometer (Fluidigm) at the Flow Cytometry Core Facility,
University of Bergen, Norway. All antibodies applied in this study were
titrated on lyse/fix PB from five healthy donors, nine of the patients
included in this study, and BM from 5\five healthy donors. In addition,
all antibodies have been validated by the supplier (please refer to the
manufacturer’s notes on their website). Several of the antibodies
included in this study have been validated by Gullaksen et al. Cyto-
metry part A, 2019. The catalog number and dilutions for each anti-
body are given in Supplementary Table 3 (Supplementary Data 3). Six
antibodies, namely CD14, CD34, pRB, CD7, AXL, and pAxl were con-
jugated in-house to the isotopes, using the Maxpar X8 antibody con-
jugation Kit as described by the manufacturer (Fluidigm).

Mass cytometry data pre-processing and analysis
After the acquisition, the collected data was normalized to EQ bead
standard67. Cells were gated by DNA-Ir191 versus event length, fol-
lowed by the exclusion of cell doublets through stringent gating using
the twoDNA stain channels (Ir191/Ir193). Filesweredebarcodedusing a
single-cell debarcode algorithm (https://github.com/nolanlab/single-
cell-debarcoder). All data were arcsinh-transformed (cofactor 5). To
limit the possibility of spillover between antibodies channels, the data
were compensated according to the CATALYST (Cytometry Data
analysis tools) pipeline. https://doi.org/10.18129/B9.bioc.CATALYST68.
The study was performed before the compensation method was
available, and we, therefore, used beads created in a later experiment
for compensation. The beads were stained with other antibodies
conjugated to the same metal isotopes. We assume the difference in
metal abundance between the two experiments is negligible, and that
the potential difference in metal abundance between the two experi-
ments will be outweighed by the advantage of compensating for
the data.

Subsequently, based on the reference samples, all samples were
standardized across the seven barcodepools using quantile normal-
ization. Barcodepool 7 was selected as the normalization standard as it
had the best separation of populations and the least background
staining when the median intensity of all surface markers was com-
pared between barcodes. Standardization was performed following
the CytoNorm approach, but without clustering, in 101 quantiles69. In
short, we calculated 0–100% quantiles for the reference samples in
each barcode. For each barcode, we then calculated the piecewise
linear function whose value at the ith quantile is the ith quantile of the
reference barcode. Subsequently, the piecewise linear functions were
applied to all non-reference samples. The differences in survival out-
come based on p-ERK1/2 at 24 h and ratio (24 h/0 h) between unnor-
malized, uncompensated, and normalized, compensated data are
shown in Supplementary Fig. 19. Normalized and unnormalized data
without clustering are compared in Supplementary Fig 20a and two
tSNE plots showing the 7 reference samples prior to and after nor-
malization is shown in Supplementary Fig 20b. The entirepipelinewith
clustering was also performed on the normalized, uncompensated
data, and the result was p-ERK1/2 at 24h in MC9 (p = 0.00133) with
patient 2-year survival.

To identify the immuno-phenotypically defined cell subsets
across samples, the single-cell datawas clustered using FlowSOM22.We
used a setup with a 5×5 grid for clustering and consensus meta-
clustering with 10 metalusters (MCs). Nineteen of the 21 surface
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markers were used for clustering (AXL, CD117 (c-Kit), CD123 (IL-3R),
CD14, CD16, CD20, CD3, CD33, CD34, CD38, CD4, CD45, CD56
(NCAM), CD64, CD66b, CD7, CD8a, CD90 (Thy-1), and HLA-DR). CD25
(IL-2R) and CD11b (Mac-1) were excluded as clustering channels due to
large variability in staining between barcodes, not correctable by
standardization. Clustering andmeta-clustering were performed on all
cells in the pre-treatment patient samples (baseline) and the healthy
donors. We subsequently assigned each cell on post-treatment sam-
ples to the closest cluster center. Clustering of data was performed
using the FlowSOM package in R (FlowSOM version 2.0.0 https://
bioconductor.org/packages/FlowSOM/, R version 4.1.0 (2021-05-18)
https://www.r-project.org/)22. t-SNE plots showing surface marker
expression in these 10 MCs are shown in Supplementary Fig. 21. Sup-
plementary Fig.22 and 23 show color-coded overlay of the seven dif-
ferent batches (barcodepools) and patient ID in these 10 MCs.
Supplementary Fig.24 shows a color-coded overlay of the different
MC9 sub-clusters shown in Supplementary Fig. 9.

For survival analyses, we applied a Lasso–Cox regression model
with automatic feature selection and nested leave-one-out cross-
validation to determine the regularization parameter. Since we used
leave-one-out cross-validation and only had 32 patients, we could use
all possible 1-patient subsets as test samples, all 1-patient subsets as
validation samples, and all 30-patient subsets as training data. (Sup-
plementary Fig.5).

Feature input in the model included, for each MC, the measured
dual count (arcsinh transformed, 90th percentile) of the intracellular
markers cCaspase3, CyclinB1, p-4E-BP1(T37/T46), p-AKT(S473), p-
AXL(Y779), p-CREB(S133), p-ERK1/2(T202/Y204), p-Histone3(S28), p-
NF-kB p65(S529), p-p38(T180/Y182), p-Rb(S807/S811), p-S6RP(S235/
S236), p-STAT1(Y701), p-STAT3(Y750) and p-STAT5(Y684). Addition-
ally, we included the change in the level of each feature frombaseline to
24 h (delta 24 h), size of the 10 MCs, and age and sex as features in the
model. Survival of the individual patients was followed until five years
post induction chemotherapy. For each selected feature, we performed
time-to-event analyses in a regularized Lasso Cox proportional hazards
model70. We split the resulting features that were significantly asso-
ciated with survival at the median and plotted the survival curves for
patients with high and low values of each feature. We used the R
package glmnet version 4.1-2. https://glmnet.stanford.edu71,72.

Our analysis was initially focused on the 32 AML patients who
received standard «7 + 3» induction therapy. However, 34 patients
were analyzed by mass cytometry in this study. Two of the initially
excluded patients, P33 and P34, received a dose-reduced “7 + 3”
induction therapy. When these two patients were added to the Flow-
SOM clustering and we did a new LASSO analysis with these two
patients included, we found that p-ERK1/2 (p = 0.0019, p-adj=0.0038,
Log-HR 1.25) and p-p38 (p = 0.0020, p-adj = 0.004, Log-HR 2.07) inMC
9 at 24 h was significant at predicting 2-year survival. When analyzing
5-year survival with P33 and P34 included, significancewas identified in
p-ERK1/2 at 24 h in myeloid blasts (MC9) (p =0.0011, p-adj=0.0022,
Log-HR 1.29) and p-Rb at 24 h in the B-cells (MC5) (p = 0.003, p-adj =
0.006, Log-HR 1.67).

Furthermore, we performed a new FlowSOM analysis with only
the cells from MC9 in all patients at all timepoints. We used the same
parameters for clustering asdescribed in thefirst analysis above. T-SNE
plots showing the distribution of patients in each of the seven barco-
depools (batches) are shown in Supplementary Fig. 25. The staining of
pERK1/2 in MC9 for all patients at all timepoints and healthy donors is
shown in Supplementary Fig. 23.

Drug sensitivity and resistance testing (DSRT)
Cells derived from 18 of the patients included in our study were
screened for sensitivity to 349 drugs (anti-cancer compound library
#L3000 from Selleck Chemicals) using DSRT16.

The 349 compounds from the anti-cancer SelleckChemical library
were pre-aliquoted at five concentrations, increasing in 10-fold steps
from 1 nM to 10μM, in 384-well plates using an Echo Liquid Handler.
Each plate also contained eight positives (benzethonium chloride,
BzCl) and eight negative (DMSO only) controls. Fresh diagnostic (pre-
treatment) BM or PB was lymphoprepped (15 BM and 8 PB), and cells
were seeded directly into the plates containing the drugs at a con-
centration of 10.000 cells/well and incubated for 72 h in mononuclear
cell media (MCM) media (promo cell C-28030) supplemented with 1%
Penicillin + Streptomycin (PS) (Gibco,15140-122). Finally, cell viability
was assessed by CellTiter-Glo Luminescent viability assay. All drugs
were also tested against samples from five healthy donors (four BM
and one PB).

All patient samples were normalized to themedian of the positive
(BzCl) and negative (DMSO) controls per plate and presented as
selectiveDrug Sensitivity Score (sDSS), calculated using the online tool
Breeze (https://breeze.fimm.fi/28489_mc43oty0nzywmcaxnje3nzgwn
zaw/index.php#).

Patient sample preparation for RNA sequencing, proteomics,
and next-generation sequencing (NGS)
PB samples at pre-treatment, 4 and 24 h after the start of treatment for
proteomics, RNA sequencing, and targeted DNA-seq were sampled in
BC Vacutainer CPTTM Mononuclear cell preparation tubes with sodium
heparin. Mononuclear cells were prepared by density gradient
separation (Lymphoprep, Axis-shield). For RNA sequencing, approxi-
mately 1 × 106 cellswere dissolved inTRIzolTM Reagent (ThermoFisher)
and stored at −80 °C until analysis. For proteomics, approximately
5 × 106 cells were precipitated in 7% trichloroacetic acid (TCA) and
stored at −80 °C until analysis. For targeted DNA-seq, approximately
5 × 106 cells were pelleted, the supernatant removed, and stored as a
dry pellet at −80 °C until analysis. The gradient separation and sample
preparation for storage were done immediately after sampling and the
same standardized method for sample preparation was used at both
collection sites in Oslo and Bergen.

TruSight myeloid panel sequencing
Totally, 54 frequently mutated genes in myeloid malignancies were
sequenced using Illumina Trusight Myeloid Gene Panel with Miseq
where v3 reagent kit was used (all from Illumina, SanDiego, CA, USA)73.
The amplicon sequencing library was prepared from 50ng DNA
according to the manufacturer’s instructions, except for normal-
ization, which was done manually by measuring each sample on Qubit
and thereafter diluting each sample to a concentrationof 4 nM. Sixteen
sampleswere sequenced each timeand the totalDNA input on the flow
cell was 15 picomolar. Secondary analysis was done using MiS-
eqReporter version 2.6.2.3 (Illumina) mapping to the human genome
reference hg19 and variant calling using Somatic variant caller 3.5.2.1.
Sequence alignment of selected variants was manually examined with
the Integrative Genomics Viewer (IGV)74. Annotation was done by
snpSIFT and snpEFF v 4.1. Variant filtering and interpretation were
done in Coremine Oncology (PubGene AS, Oslo, Norway) with >1%
minor allele frequency in the 1000 genomes data were presumed to be
germline and removed from further interpretations. Synonymous
substitutions and intronic variants that were not at the splice site and
variants that were interpreted either as benign or most likely benign
were not included. The variant allele frequency (VAF) was calculated
for each mutation as the number of variant reads divided by the total
reads. The cut-off for reported variants was for VAF >8%with a reading
depth of 100. Only variants interpreted as pathogenic, probably
pathogenic, and variants of unknown significance were reported. The
nomenclature is according to HGSV (http://varnomen.hgvs.org). FLT3
and NPM1 were also investigated by fragment analysis and CEBPA by
sanger sequencing.
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Super-SILAC proteomics sample preparation and data analysis
TCA-precipitated samples for proteomics were washed three times in
cold water-saturated ether prior to proteomics sample preparation20.
Samples were then lysed in 4% sodium dodecyl sulfate (SDS)/0.1M
Tris-HCl (pH 7.6), heated at 95 °C for 7min under mild shaking and
sonicated (3 cycles at 30% amplitude for 30 s with 1min rest between
each cycle). Cell debris was removed by centrifugation (14.000×g for
10min), and the protein concentrationwas determinedwith the Pierce
BCA Protein Assay kit (Thermo Fisher Scientific). Samples were kept at
−80 °C until analysis. For labeled proteomics, 20mg of each patient
sample was mixed with 10mg of a super-SILAC mix composed of five
heterogenous AML cell lines labeled with Arg6 and Lys8 isotopes. The
patient cell lysate was further processed by filter-aided sample pre-
paration (FASP) and small-scale proteome fractionation75.

Abundance and peptide identification was conducted on a Q
Exactive HF Orbitrapmass spectrometer coupled to an Ultimate 3000
Rapid Separation LC system (Thermo scientific)75.

LC–MS/MS raw files were processed with MaxQuant software
version 1.5.2.876. The spectra were searched against the concatenated
forward and reversed-decoy Swiss-Prot Homo sapiens database (ver-
sion 2018_02), using the Andromeda search engine76. The Perseus
1.6.1.1 platform was used for data analysis and statistics. MaxQuant-
normalized SILAC ratios were inverted, log2 transformed, and nor-
malized again, using width adjustment.

RNAseq data analysis
36 samples were sequenced in Hiseq 4000 with 75 × 2 chemistry. The
demultiplexed fastq files were aligned to the human genome
GRCh38.p13 using HISAT2 aligner77. The aligned bam files were quan-
tified as a whole read count matrix using the tool FeatureCount78. The
generated read count was normalized using DESEQ2 R package. Var-
iance stabilizing transformation was adopted. P-values below 0.05
were considered significant. The Perseus 1.6.1.1 platform was used for
RNAseq data analysis and statistics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Themass cytometry data generated in this study have beendeposited in
the FlowRepository database under accession code
RvFr0LLv9McDJ89jgK50G4lwnfDFRTrcMelxYgnSIcE2Cymrpf2qh2Na
WybtWDNH. The proteomics data generated in this study have been
deposited in the ProteomeXchange Consortium via the PRIDE partner
database under accession code PXD031916 Proteomics output data is
provided in thismanuscript as Supplementary informationfile 1. The raw
fastq files from the RNA sequencing data are deposited in theNCBI gene
expression omnibus (GEO) repository and is available under the acces-
sion codeGSE218664TheDSRTdata and the results of theNGS (Illumina
TruSightmyeloid panel) data generated in this study are provided in the
Source Data file. Public availability of raw data DNA sequencing data
(TruSigh myeloid panel) is not compliant with Norwegian regulations
(GDPR) or allowed by the patient consent. For non-commercial aca-
demic use, please contact B.T.G. for further information (bjorn.gjertse-
n@uib.no), which will require an ethical application to the Regional
Committee for Medical Research Ethics in Norway (REK). The time the
data will be available for the requester will need to be provided in the
application and discussed with REK, and further information can be
found on the REK website [https://rekportalen.no]. In the proteomics
data analysis, the spectra were searched against the concatenated for-
ward and reversed-decoy Swiss-Prot Homo sapiens database (version
2018_02), using the Andromeda search engine. The RNA sequencing
fastq files were aligned to the human genomeGRCh38.p13 usingHISAT2
aligner. Secondary analysis of the TruSightmyeloid data was done using

MiSeqReporter version2.6.2.3 (Illumina)mapping to thehumangenome
reference hg19 and variant calling using Somatic variant caller 3.5.2.1.
The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided in this paper.
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