732 research outputs found

    The Viscous Nonlinear Dynamics of Twist and Writhe

    Get PDF
    Exploiting the "natural" frame of space curves, we formulate an intrinsic dynamics of twisted elastic filaments in viscous fluids. A pair of coupled nonlinear equations describing the temporal evolution of the filament's complex curvature and twist density embodies the dynamic interplay of twist and writhe. These are used to illustrate a novel nonlinear phenomenon: ``geometric untwisting" of open filaments, whereby twisting strains relax through a transient writhing instability without performing axial rotation. This may explain certain experimentally observed motions of fibers of the bacterium B. subtilis [N.H. Mendelson, et al., J. Bacteriol. 177, 7060 (1995)].Comment: 9 pages, 4 figure

    Twirling and Whirling: Viscous Dynamics of Rotating Elastica

    Full text link
    Motivated by diverse phenomena in cellular biophysics, including bacterial flagellar motion and DNA transcription and replication, we study the overdamped nonlinear dynamics of a rotationally forced filament with twist and bend elasticity. Competition between twist injection, twist diffusion, and writhing instabilities is described by a novel pair of coupled PDEs for twist and bend evolution. Analytical and numerical methods elucidate the twist/bend coupling and reveal two dynamical regimes separated by a Hopf bifurcation: (i) diffusion-dominated axial rotation, or twirling, and (ii) steady-state crankshafting motion, or whirling. The consequences of these phenomena for self-propulsion are investigated, and experimental tests proposed.Comment: To be published in Physical Review Letter

    Evidence for a singularity in ideal magnetohydrodynamics: implications for fast reconnection

    Full text link
    Numerical evidence for a finite-time singularity in ideal 3D magnetohydrodynamics (MHD) is presented. The simulations start from two interlocking magnetic flux rings with no initial velocity. The magnetic curvature force causes the flux rings to shrink until they come into contact. This produces a current sheet between them. In the ideal compressible calculations, the evidence for a singularity in a finite time tct_c is that the peak current density behaves like ∣JâˆŁâˆžâˆŒ1/(tc−t)|J|_\infty \sim 1/(t_c-t) for a range of sound speeds (or plasma betas). For the incompressible calculations consistency with the compressible calculations is noted and evidence is presented that there is convergence to a self-similar state. In the resistive reconnection calculations the magnetic helicity is nearly conserved and energy is dissipated.Comment: 4 pages, 4 figure

    Coiling Instability of Multilamellar Membrane Tubes with Anchored Polymers

    Full text link
    We study experimentally a coiling instability of cylindrical multilamellar stacks of phospholipid membranes, induced by polymers with hydrophobic anchors grafted along their hydrophilic backbone. Our system is unique in that coils form in the absence of both twist and adhesion. We interpret our experimental results in terms of a model in which local membrane curvature and polymer concentration are coupled. The model predicts the occurrence of maximally tight coils above a threshold polymer occupancy. A proper comparison between the model and experiment involved imaging of projections from simulated coiled tubes with maximal curvature and complicated torsions.Comment: 11 pages + 7 GIF figures + 10 JPEG figure

    Universality in Bacterial Colonies

    Full text link
    The emergent spatial patterns generated by growing bacterial colonies have been the focus of intense study in physics during the last twenty years. Both experimental and theoretical investigations have made possible a clear qualitative picture of the different structures that such colonies can exhibit, depending on the medium on which they are growing. However, there are relatively few quantitative descriptions of these patterns. In this paper, we use a mechanistically detailed simulation framework to measure the scaling exponents associated with the advancing fronts of bacterial colonies on hard agar substrata, aiming to discern the universality class to which the system belongs. We show that the universal behavior exhibited by the colonies can be much richer than previously reported, and we propose the possibility of up to four different sub-phases within the medium-to-high nutrient concentration regime. We hypothesize that the quenched disorder that characterizes one of these sub-phases is an emergent property of the growth and division of bacteria competing for limited space and nutrients.Comment: 12 pages, 5 figure

    Approaching the Gamow Window with Stored Ions : Direct Measurement of Xe 124 (p,Îł) in the ESR Storage Ring

    Get PDF
    © 2019 American Physical Society. All rights reserved.We report the first measurement of low-energy proton-capture cross sections of Xe124 in a heavy-ion storage ring. Xe12454+ ions of five different beam energies between 5.5 and 8 AMeV were stored to collide with a windowless hydrogen target. The Cs125 reaction products were directly detected. The interaction energies are located on the high energy tail of the Gamow window for hot, explosive scenarios such as supernovae and x-ray binaries. The results serve as an important test of predicted astrophysical reaction rates in this mass range. Good agreement in the prediction of the astrophysically important proton width at low energy is found, with only a 30% difference between measurement and theory. Larger deviations are found above the neutron emission threshold, where also neutron and γ widths significantly impact the cross sections. The newly established experimental method is a very powerful tool to investigate nuclear reactions on rare ion beams at low center-of-mass energies.Peer reviewedFinal Published versio

    GeneChip analyses point to novel pathogenetic mechanisms in mantle cell lymphoma

    Get PDF
    The translocation t(11;14)(q13;q32) is the genetic hallmark of mantle cell lymphoma (MCL) but is not sufficient for inducing lymphomagenesis. Here we performed genome-wide 100K GeneChip Mapping in 26 t(11;14)-positive MCL and six MCL cell lines. Partial uniparental disomy (pUPD) was shown to be a recurrent chromosomal event not only in MCL cell lines but also in primary MCL. Remarkably, pUPD affected recurrent targets of deletion like 11q, 13q and 17p. Moreover, we identified 12 novel regions of recurrent gain and loss as well as 12 high-level amplifications and eight homozygously deleted regions hitherto undescribed in MCL. Interestingly, GeneChip analyses identified different genes, encoding proteins involved in microtubule dynamics, such as MAP2, MAP6 and TP53, as targets for chromosomal aberration in MCL. Further investigation, including mutation analyses, fluorescence in situ hybridisation as well as epigenetic and expression studies, revealed additional aberrations frequently affecting these genes. In total, 19 of 20 MCL cases, which were subjected to genetic and epigenetic analyses, and five of six MCL cell lines harboured at least one aberration in MAP2, MAP6 or TP53. These findings provide evidence that alterations of microtubule dynamics might be one of the critical events in MCL lymphomagenesis contributing to chromosomal instability

    Non-aqueous Isorefractive Pickering Emulsions

    Get PDF
    Non-aqueous Pickering emulsions of 16–240 ÎŒm diameter have been prepared using diblock copolymer worms with ethylene glycol as the droplet phase and an n-alkane as the continuous phase. Initial studies using n-dodecane resulted in stable emulsions that were significantly less turbid than conventional water-in-oil emulsions. This is attributed to the rather similar refractive indices of the latter two phases. By utilizing n-tetradecane as an alternative oil that almost precisely matches the refractive index of ethylene glycol, almost isorefractive ethylene glycol-in-n-tetradecane Pickering emulsions can be prepared. The droplet diameter and transparency of such emulsions can be systematically varied by adjusting the worm copolymer concentration

    Adolescent Religiosity and Selective Exposure to Television

    Get PDF
    Relying on the Adolescent Media Practice Model and selective exposure theory, this study investigated whether religious adolescents watch less mature television entertainment programs than their less religious peers. Program maturity was measured using V-chip ratings, with higher maturity scores indicating content that included more sexuality, violence, and/or adult and sexual language. The responses from 1,335 16- to 18-year-olds who completed Wave 2 of the National Study of Youth and Religion (NSYR) survey were analyzed. Findings indicate that religiosity contributes to explaining the variance in television maturity means, with more religious adolescents indicating a preference for less mature television entertainment. Gender, race, income, and parents’ monitoring of teens’ media were also found to influence television maturity. Teens’ attitudes toward premarital sex appeared to mediate the effect of religiosity on their television entertainment choices
    • 

    corecore