2,247 research outputs found

    Solar-like oscillations in the G9.5 subgiant beta Aquilae

    Full text link
    An interesting asteroseismic target is the G9.5 IV solar-like star beta Aql. This is an ideal target for asteroseismic investigations, because precise astrometric measurements are available from Hipparcos that greatly help in constraining the theoretical interpretation of the results. The star was observed during six nights in August 2009 by means of the high-resolution \'echelle spectrograph SARG operating with the TNG 3.58 m Italian telescope on the Canary Islands, exploiting the iodine cell technique. We present the result and the detailed analysis of high-precision radial velocity measurements, where the possibility of detecting time individual p-mode frequencies for the first and deriving their corresponding asymptotic values will be discussed. The time-series analysis carried out from \sim 800 collected spectra shows the typical p-mode frequency pattern with a maximum centered at 416 \muHz. In the frequency range 300 - 600 \muHz we identified for the first time six high S/N (\gtrsim 3.5) modes with l = 0,2 and 11 < n < 16 and three possible candidates for mixed modes (l = 1), although the p-mode identification for this type of star appears to be quite difficult owing to a substantial presence of avoided crossings. The large frequency separation and the surface term from the set of identified modes by means of the asymptotic relation were derived for the first time. Their values are \Delta \nu = 29.56 \pm 0.10 \muHz and \epsilon = 1.29 \pm 0.04, consistent with expectations. The most likely value for the small separation is \delta\nu_{02} = 2.55 \pm 0.71 \muHz.Comment: 8 pages, 8 figures, 3 tables, accepted by A&

    Characteristics of solar-like oscillations in red giants observed in the CoRoT exoplanet field

    Full text link
    Observations during the first long run (~150 days) in the exo-planet field of CoRoT increase the number of G-K giant stars for which solar-like oscillations are observed by a factor of 100. This opens the possibility to study the characteristics of their oscillations in a statistical sense. We aim to understand the statistical distribution of the frequencies of maximum oscillation power (nu_max) in red giants and to search for a possible correlation between nu_max and the large separation (delta_nu). The nu_max distribution shows a pronounced peak between 20 - 40 microHz. For about half of the stars we obtain delta_nu with at least two methods. The correlation between nu_max and delta_nu follows the same scaling relation as inferred for solar-like stars. The shape of the nu_max distribution can partly be explained by granulation at low frequencies and by white noise at high frequencies, but the population density of the observed stars turns out to be also an important factor. From the fact that the correlation between delta_nu and nu_max for red giants follows the same scaling relation as obtained for sun-like stars, we conclude that the sound travel time over the pressure scale height of the atmosphere scales with the sound travel time through the whole star irrespective of evolution.Comment: Accepted for publication in Astronomy and Astrophysics (CoRoT special issue), 5 pages, 7 figures and 1 tabl

    Oscillations in Arcturus from WIRE photometry

    Full text link
    Observations of the red giant Arcturus (Alpha Boo) obtained with the star tracker on the Wide Field Infrared Explorer (WIRE) satellite during a baseline of 19 successive days in 2000 July-August are analysed. The amplitude spectrum has a significant excess of power at low-frequencies. The highest peak is at about 4.1 micro-Hz (2.8 d), which is in agreement with previous ground-based radial velocity studies. The variability of Arcturus can be explained by sound waves, but it is not clear whether these are coherent p-mode oscillations or a single mode with a short life-time.Comment: 6 pages, 1 Latex file, 4 .eps figures, 2 .sty files, ApJL, 591, L151 See erratum (astro-ph/0308424

    Seismology of Procyon A: determination of mode frequencies, amplitudes, lifetimes, and granulation noise

    Get PDF
    The F5 IV-V star Procyon A (aCMi) was observed in January 2001 by means of the high resolution spectrograph SARG operating with the TNG 3.5m Italian telescope (Telescopio Nazionale Galileo) at Canary Islands, exploiting the iodine cell technique. The time-series of about 950 spectra carried out during 6 observation nights and a preliminary data analysis were presented in Claudi et al. 2005. These measurements showed a significant excess of power between 0.5 and 1.5 mHz, with ~ 1 m/s peak amplitude. Here we present a more detailed analysis of the time-series, based on both radial velocity and line equivalent width analyses. From the power spectrum we found a typical p-mode frequency comb-like structure, identified with a good margin of certainty 11 frequencies in the interval 0.5-1400 mHz of modes with l=0,1,2 and 7< n < 22, and determined large and small frequency separations, Dn = 55.90 \pm 0.08 muHz and dnu_02=7.1 \pm 1.3 muHz, respectively. The mean amplitude per mode (l=0,1) at peak power results to be 0.45 \pm 0.07 m/s, twice larger than the solar one, and the mode lifetime 2 \pm 0.4 d, that indicates a non-coherent, stochastic source of mode excitation. Line equivalent width measurements do not show a significant excess of power in the examined spectral region but allowed us to infer an upper limit to the granulation noise.Comment: 10 pages, 15 figures, 4 tables. Accepted for publication in A&

    Characterizing temporary hydrological regimes at a European scale

    Get PDF
    Monthly duration curves have been constructed from climate data across Europe to help address the relative frequency of ecologically critical low flow stages in temporary rivers, when flow persists only in disconnected pools in the river bed. The hydrological model is 5 based on a partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. The corresponding frequency for pools is then based on the ratio of bank full discharge to pool flow, arguing from observed ratios of cross-sectional areas at flood 10 and low flows to estimate pool flow as 0.1% of bankfull flow, and so estimate the frequency of the pool conditions that constrain survival of river-dwelling arthropods and fish. The methodology has been applied across Europe at 15 km resolution, and can equally be applied under future climatic scenarios

    Solar-like oscillations in the metal-poor subgiant nu Indi: II. Acoustic spectrum and mode lifetime

    Full text link
    Convection in stars excites resonant acoustic waves which depend on the sound speed inside the star, which in turn depends on properties of the stellar interior. Therefore, asteroseismology is an unrivaled method to probe the internal structure of a star. We made a seismic study of the metal-poor subgiant star nu Indi with the goal of constraining its interior structure. Our study is based on a time series of 1201 radial velocity measurements spread over 14 nights obtained from two sites, Siding Spring Observatory in Australia and ESO La Silla Observatory in Chile. The power spectrum of the high precision velocity time series clearly presents several identifiable peaks between 200 and 500 uHz showing regularity with a large and small spacing of 25.14 +- 0.09 uHz and 2.96 +- 0.22 uHz at 330 uHz. Thirteen individual modes have been identified with amplitudes in the range 53 to 173 cm/s. The mode damping time is estimated to be about 16 days (1-sigma range between 9 and 50 days), substantially longer than in other stars like the Sun, the alpha Cen system or the giant xi Hya.Comment: 5 pages, 7 figures, A&A accepte

    Sampling variance of flood quantiles from the generalised logistic distribution estimated using the method of L-moments

    No full text
    International audienceThe method of L-moments is the recommended method for fitting the three parameters (location, scale and shape) of a Generalised Logistic (GLO) distribution when conducting flood frequency analyses in the UK. This paper examines the sampling uncertainty of quantile estimates obtained using the GLO distribution for single site analysis using the median to estimate the location parameter. Analytical expressions for the mean and variance of the quantile estimates were derived, based on asymptotic theory. This has involved deriving expressions for the covariance between the sampling median (location parameter) and the quantiles of the estimated unit-median GLO distribution (growth curve). The accuracy of the asymptotic approximations for many of these intermediate results and for the quantile estimates was investigated by comparing the approximations to the outcome of a series of Monte Carlo experiments. The approximations were found to be adequate for GLO shape parameter values between ?0.35 and 0.25, which is an interval that includes the shape parameter estimates for most British catchments. An investigation into the contribution of different components to the total uncertainty showed that for large returns periods, the variance of the growth curve is larger than the contribution of the median. Therefore, statistical methods using regional information to estimate the growth curve should be considered when estimating design events at large return periods. Keywords: flood frequency analysis, Flood Estimation Handbook, single site, annual maximum series, Generalised Logistic Distribution, uncertaint

    Solving the m-mixing problem for the three-dimensional time-dependent Schr\"{o}dinger equation by rotations: application to strong-field ionization of H2+

    Get PDF
    We present a very efficient technique for solving the three-dimensional time-dependent Schrodinger equation. Our method is applicable to a wide range of problems where a fullly three-dimensional solution is required, i.e., to cases where no symmetries exist that reduce the dimensionally of the problem. Examples include arbitrarily oriented molecules in external fields and atoms interacting with elliptically polarized light. We demonstrate that even in such cases, the three-dimensional problem can be decomposed exactly into two two-dimensional problems at the cost of introducing a trivial rotation transformation. We supplement the theoretical framework with numerical results on strong-field ionization of arbitrarily oriented H2+ molecules.Comment: 5 pages, 4 figure
    • …
    corecore